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Abstract—Modern computer applications, especially at
enterprise-level, are commonly deployed with a big number of
clustered instances to achieve a higher system performance, in
which case single machine based solutions are less cost-effective.
However, how to effectively manage these clustered applications
has become a new challenge. A common approach is to deploy
a front-end load balancer to optimise the workload distribution
between each clustered application. Since then, many research
efforts have been carried out to study effective load balancing
algorithms which can control the workload based on various
resource usages such as CPU and memory. The aim of this
paper is to propose a new load balancing approach to improve
the overall distributed system performance by avoiding potential
performance impacts caused by Major Java Garbage Collection.
The experimental results have shown that the proposed load
balancing algorithm can achieve a significant higher throughput
and lower response time compared to the round-robin approach.
In addition, the proposed solution only has a small overhead
introduced to the distributed system, where unused resources
are available to enable other load balancing algorithms together
to achieve a better system performance.

I. INTRODUCTION AND RELATED WORK

Enterprise applications commonly require to achieve fast
response time and high throughput to constantly meet their
service level agreements. These applications make wide use
of variants of distributed architectures, usually using some
form of load balancing to optimise their performance. Since
then researchers have made efforts to improve the business
intelligence of load balancers to effectively manage workloads.
For example, the authors of [11] proposed a technique to
estimate the global workload of a load balancer to use this
information in the balancing of new workload. Meanwhile, the
work on [5] presented a framework for processor load balanc-
ing during the execution of application programs. Regarding
Java technologies, the authors of [2] enhanced a load balancing
algorithm for Java applications by considering the utilisation of
the JVM threads, heap and CPU to decide how to distribute the
load. Similarly the work in [6] proposes a function to calculate
the utilisation of an Enterprise JavaBean (EJB) and then uses
this information to balance the load among the available EJB
instances. However, Garbage Collection (GC) metrics have not
been considered so far. This gap offers an interesting niche
which is yet to be exploited.

GC is a core feature of Java which automates most of
the tasks related to memory management. However, when the

GC is triggered, it has an impact on the system performance
by pausing the involved programs. Even though milliseconds
pauses caused by GC does not necessarily lead to a harmful
problem, delays of hundreds of milliseconds, let alone full
seconds, can cause trouble for applications requiring fast
response time or high throughput. This is more likely to occur
in the Major Garbage Collection (MaGC), which has the most
expensive type of GC pauses [15].

Many research studies have provided evidence to quantify
the performance costs of the GC. For example, in [18] authors
identified the GC as a major factor degrading the behaviour
of a Java Application Server (a traditional Java business
niche) due to the sensitivity of the GC to the workload. In
these experiments the GC took up to 50% of the execution
time of the Java Virtual Machine (JVM), involving pauses as
high as 300 seconds. The MaGC represented 95% of those
pauses on the heaviest workload. Similarly, a survey conducted
among Java practitioners [14] reported GC as a typical area
of performance issues in the industry. For these reasons, it
is commonly agreed that the GC plays a key role in the
performance of Java systems.

The goal of this work is to predict the MaGC events and
use this information in the decision making process of a load
balancer to improve the system performance. Our solution
consists of two algorithms. A load balance algorithm which
avoids sending any incoming workloads to the application
nodes which are likely to suffer MaGC, and an forecast
algorithm to predict the MaGCs. The experiment results have
shown that this strategy offers a significant performance gain:
The average response time of the tested applications decreased
between 74% and 99%, while the average throughput in-
creased between 4% and 51%.

In summary, the contributions of this paper are:

1) A novel load balance algorithm that uses MaGC forecasts
to improve the performance of distributed Java systems.

2) A novel forecast algorithm that enables Java systems to
predict when a MaGC event will occur.

3) A validation of the algorithms consisting of a prototype
and two experiments. The first proves the accuracy of
the MaGC forecast. The second demonstrates the perfor-
mance benefits of using the forecast for load balancing.



II. BACKGROUND

Memory Management in Java. GC is a form of automatic
memory management which offers significant software engi-
neering benefits over explicit memory management: It frees
programmers from the burden of manual memory manage-
ment, preventing the most common sources of memory leaks
and overwrites [17], as well as improving the programmer’s
productivity [9]. Despite these advantages, the GC comes with
a cost (as discussed in Section I).

Nowadays the most common heap type in Java is the
generational heap', where the objects are segregated by age
into memory regions called generations. New objects are
created in the Youngest generation. The survival rates of
younger generations are usually lower than those of older
ones, meaning that younger generations are more likely to
be garbage and can be collected more frequently than older
ones. The GC in the younger generations is known as Minor
GC (MiGC). It is usually inexpensive and rarely causes a
performance concern. MiGC is also responsible of moving
the live objects which have become old enough to the older
generations, meaning that the MiGC plays a key role in the
memory allocation of older generations. The GC in the older
generations is known as MaGC and is commonly accepted as
the most expensive GC due to its performance impact[15].

Also, it is not possible to programmatically force the
execution of the GC[7]. The closest action a developer can
perform is to call the method System.gc() to suggest the JVM
to execute a MaGC. However, the JVM is not forced to fulfill
this request and may choose to ignore it. The usage of this
method is discouraged by the JVM vendors? because the JVM
usually does a much better job on deciding when to do GC.

Garbage Collection Optimisation & Memory Forecast.

Multiple research works have proposed new GC algorithms
[31, [4], [10], [12] that have smaller performance impacts on
the applications. Even though all these works have helped to
reduce the impact of the MaGC, GC remains a concern due
to the different factors that can affect its performance.

Memory forecast is also an active research topic, looking
for ways to invoke a GC only when it is worthwhile. For
example, the work presented in [16] exploits the observation
that dead objects tend to cluster together to estimate how much
space would be reclaimable to avoid low-yield GCs. However
memory forecasts alone do not provide enough information to
know when the next MaGC would occur.

III. PROPOSED SOLUTION
A. Use case: Adaptive Load Balancer

In a distributed Java system, it is preferable that the oc-
currence of MaGCs in the individual nodes do not affect the
performance of the system. To achieve this goal, a system can
take different actions. For instance, a system might change

Uhttp://www.oracle.com/technetwork/java/javase/memorymanagement-
whitepaper-150215.pdf

Zhttp://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/devapps/-
codeprac.html

its workload schedule to avoid the impact of the MaGCs or
encourage a MaGC when a resource load (i.e. CPU) is low.
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Fig. 1. Adaptive Load Balancer

Among the potential use cases, our work centered on
enhancing the performance of a load balancer. This use case
was selected because variants of this distributed architecture
are commonly used at enterprise-level. This scenario is shown
in Figure 1, where the load balancer selects those nodes
which are less likely to suffer a MaGC pause as optimal
nodes for given workloads. This strategy can keep the system
performance safe from any major MaGC pauses.

B. Major GC Forecast Algorithm

The next sections describe our proposed forecast algorithm.
The below definitions will be used on the algorithm discussion:

Time is always expressed as the number of milliseconds
that have passed since the application started.

Young/Old Generation Samples are composed of a times-
tamp and the usage of the corresponding memory generation.

MiGC sample is composed of the start time, the end time
and the memory usage before and after the latest MiGC event.

Observations are used in a statistical context and are
composed of one independent and one dependent values.
When the dependent value does not contain historical data,
the observation is referred as a forecast observation.

Steady state is the state an application reaches after the
JVM finishes loading all its classes. It is assumed that this
state has been reached if the number of loaded classes remain
unchanged for a certain number of consecutive samples.

3. Observations
Assembly

Y

2. Data
Gathering

4. Forecast

1. Initialisation Calculation

A

5. Sampling
Wait Period

Fig. 2. MaGC Forecast Process - Overview

1) Algorithm Overview: Figure 2 depicts an overview of
the algorithm, which is composed of five main phases. First
the Initialisation which sets the parameters required by the



algorithm. After it occurs, the other phases are iteratively
done to produce MaGC forecasts continuously: New samples
are retrieved from the monitored JVM in the Data Gathering
phase. Then new observations are generated using the new
samples in the Observations Assembly phase. Next the Fore-
cast Calculation occurs. Finally, the logic awaits a Sampling
Interval before a new iteration starts. This loop continues until
the monitored application finishes.

Our algorithm is designed to work on generational heaps, as
it is the most common type of Java heap. It only uses standard
data that can be obtained from any JVM (such as GC) to make
it easy to implement either within or outside the JVM. If the
algorithm is implemented within the JVM, the interaction with
potential consumers would be simplified. If it is implemented
outside the JVM, the implementation would work with any
JVM currently available, facilitating the adoption.

2) Detailed Algorithm: Tt is presented in Algorithm 1, and
its phases are explained in the following sections.

Algorithm 1: MaGC Forecast
Input: Sampling Interval, Forecast Window Size,
Warm-up Window Size
Output: Forecast time of the next MaGC event
1 steadyState :=not reached
2 while forecast is needed do
3 Get new OldGen sample
if steadyState is not reached then
Get new loaded classes sample
if warm-up period is over then
L steadyState :=reached

4
5
6
7

8 Get new MiGC sample

9 Calculate new memory deltas

10 Update memory totals

11 Generate new observations

12 if steadyState is reached then

13 Forecast memory pending to be allocated
14 L Forecast time of the next MaGC event

15 | Wait the Sampling Interval

Initialisation. Here the configuration parameters are set:
o Sampling Interval: How often the samples are collected.
o Forecast Windows Size (FWS): How many observations
are used as historical data in the forecast calculation.
o Warm-up Window Size: How many samples are used to
determine if the application has reached its steady state.
Data Gathering. Its objective is to capture an updated
snapshot of the monitored JVM. It starts by collecting a
new Old Generation sample. Then, if the application has not
reached the steady state yet, a new loaded classes sample is
collected and its history is reviewed. If the warm-up period is
over, a flag is set to indicate this. Later a new MiGC sample is
collected and added to the MiGC history. After having samples
from at least two MiGCs, the next metrics are calculated:
o Time between MiGCs (A Tyicc): How much time
elapsed between the latest two MiGCs.

o YoungGen Memory Allocation (A YMAycc): How
much memory was used to create new objects between
the latest two MiGCs.

e OldGen Memory Allocation (A OMA p;;cc): How much
OldGen Allocation occurred because of the latest MiGC
(meaning that some objects have became old enough to
be moved to the OldGen by the latest MiGC).

The above metrics are added up into their respective totals
(e.g., Total Time between MiGCs) to keep track of how the
metrics grow through time. This data is the key input of the
regression models used by the algorithm, as explained below.

Observations Assembly. Two types of observations are
generated and added to their histories. Each is composed of
one independent (y axis) and one dependent (x axis) values:
The first type (YoungGen-OldGen) captures the relationship
between the memory allocation rates (MAR) in the Young
and Old Generations. This captures how the Old Generation
grows (eventually leading to a MaGC) in relation to the object
allocations requested by the application (which occur in the
Young Generation). In this observation the dependent value is
the Total YoungGen Memory Allocation and the independent
value is the Total OldGen Memory Allocation. The second type
of observation (Time-YoungGen) captures the relationship
between the time and the Young MAR. Here the dependent
value is the Total Time between MiGCs and the independent
value is the Total YoungGen Memory Allocation.
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Fig. 3. Old memory exhaustion forecast

Forecast Calculation. This phase first evaluates if the
application has reached the steady state. If so, two projections
are calculated using linear regression models (LRM). The first
projection corresponds to how much memory allocation needs
to occur in the Young Generation before the free memory in
the Old Generation gets exhausted (hence triggering a MaGC).
This is calculated by initializing a LRM with a subset of
YoungGen-OldGen observations (defined by the FWS) and
then feeding the LRM with a forecast observation whose
independent value is the sum of the current Total OldGen Allo-
cation and the free OldGen memory. This is shown in Figure 3.
In this example, the free OldGen memory is 1,000MB. As our
Total OldGen Allocation is also 1,000MB, the independent
value of our forecast observation is 2,000MB. Using the
observations within the FWS (the rounded rectangle), the LRM



predicts how much memory allocation needs to occur in the
YoungGen before the next MaGC occurs (4,500MB).

The second projection is the core output of this algorithm:
The MaGC forecast time. It is calculated by initializing a LRM
with a subset of Time-YoungGen observations and feeding it
with a forecast observation whose independent value is the
result of the first projection. This is represented in Figure 4.
Using the observations within our FWS, the LRM predicts
when the necessary memory allocation in the YoungGen will
occur (4,500MB in our example), consequently triggering the
next MaGC (around the millisecond 13,000 in our example).
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Fig. 4. MaGC event forecast

Sampling Wait Period. Finally, the process waits the num-
ber of milliseconds configured in the Sampling Interval before
starting the next round of iterative steps of the algorithm.

C. MaGC-Aware Load Balancing

To assess the performance benefits that can be achieved
by adapting the load balancing based on the MaGC forecast
information, we modified the well-known round robin load
balancing algorithm?. Our proposed algorithm is presented in
Algorithm 2. It requires two inputs: The Number of available
nodes from which the algorithm will select the next node
to send workload; and the MaGC Threshold, which is the
time threshold when a node stops being considered a feasible
candidate because the next MaGC is too close. For example,
if the MaGC Threshold is 5 seconds and the current time is
4:00:00PM, any nodes which report a MaGC forecast between
4:00:00PM and 4:00:05PM will be skipped as their forecasts
fall within the configured MaGC Threshold.

When compared against the normal round robin, our algo-
rithm has two differences. The main one is that it performs
an additional check to adapt the selection of the next node to
a close MaGC event. This check reviews if the pre-selected
node (as per the normal round-robin logic) will suffer a MaGC
within the MaGC Threshold. If it does, the node is skipped
and the next available node is evaluated (lines 11 to 15).
The second change is an escape condition (the forecastTries

3http://publib.boulder.ibm.com/infocenter/wsdatap/4mt/
topic/com.ibm.dp.xa.doc/administratorsguide.xa35263.htm

variable) which counts the number of evaluated nodes to
prevent an infinite loop in case all nodes are about to suffer
a MaGC within the MaGC Threshold. If this occurs, the
algorithm would behave as a normal round robin algorithm.

Algorithm 2: MaGC-Aware Load Balancing
Input: Number of available nodes avNodes, MaGC
Threshold maGCThres
Output: Next available node (nextNode)
1 indexNextNode :=0
2 forecastTries :=0
3 while load balance adaptiveness is needed do

4 nextNode := undefined

5 while nextNode is undefined do

6 indexNextNode := indexNextNode+1

7 if index NextNode >avNodes then

8 L indexNextNode :=1

9 nextNode := indexNextNode

10 if forecastTries <avNodes then

11 Get MaGC forecast of server
indexNextNode

12 remainingTime := forecast Time - current
time

13 if remainingTime <=maGCThres then

nextN ode := undefined
forecastTries := forecastTries+1

14
15

16 else

17 L forecastTries :=0

18 else

19 L forecastTries :=0

20 use nextNode for the next workload

D. Prototype Implementations

MaGC Forecast Algorithm. This prototype was devel-
oped external to the JVM, using Java Management Extension
(IMX)* to interact with the monitored JVM. This technology
was chosen because it is a standard component of Java which
can retrieve all needed information (e.g., GCs).

MaGC-Aware Load Balancing Algorithm. This prototype
was built on top of the Central Directory®, which is a light-
weight load balancer. This solution was chosen because it
is open source and developed in Java, characteristics which
facilitated its integration with the MaGC forecast prototype.

IV. EXPERIMENTAL EVALUATION
A. Experiment #1: MaGC Forecast Accuracy

Environment. All experiments were performed in a virtual
machine (VM) equipped with 3 CPUs, 10GB of RAM, and
50GB of HD; Linux Ubuntu 12.04L 64-bit, and Oracle Hotspot
JVM 7. The JVM was configured to initialise its Java Heap to

“http://www.oracle.com/technetwork/java/javase/tech/javamanagement-
140525.html

Shttp://javalb.sourceforge.net/



its maximum size to keep it constant during the experiments.
The calls to programmatically request a MaGC were disabled.

Java Benchmarks. The DaCapo® benchmark 9.12 was
chosen because it stresses the GC system more than other
benchmarks (as proved in [1]) and it also offers a wide range
of application behaviours to test. For each benchmark, the
largest Sample size was used (among the available pre-defined
sizes”). Also different Number of iterations (in increments of
5) and Heap sizes (in increments of SOMB) were tried until
achieving successful executions that triggered MaGCs. These
configurations are summarized in Table 1.

TABLE I
DACAPO CONFIGURATIONS

Benchmark Sample Size #lters Heap Size(MB)
avrora large 30 100
batik large 60 50
eclipse large 5 800
h2 huge 5 1600
pmd large 50 400
sunflow large 80 200
tomcat huge 10 100
tradebeans huge 5 800
tradesoap huge 5 800
xalan large 40 50

Also, a Warm-up timeframe of 5 seconds was found to be
big enough to allow all programs to finish loading their classes
before the first forecast was generated.

MaGC Forecast Algorithm parameters. As explained in
Section III-B, this algorithm requires 3 parameters. To evaluate
the behaviour of the algorithm to the FWS, a broad range of
values was tested (2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,
2048 and 4096). A value of 100ms was selected as Sampling
Interval, assuming that no more than one GC would occur
within that timeframe (hence not missing to sample any GC).
Finally, a Warm-up Window Size of 50 was used (the result of
dividing the Warm-up timeframe by the Sampling Interval).

GC strategies. Three of the most commonly used GC
strategies® in the industry were selected: Serial GC is prefer-
able for client JVMs, Parallel GC is better for server JVMs
except when response time is more important than throughput.
If so, Concurrent GC is preferred.

Metrics. The key metric used was the Forecast Error (FE),
which is the ratio of the absolute forecasting error as a
proportion of the time elapsed since the previous MaGC:

(FT — RT)
(RT — PRT)

where FT is the Forecast Time of when the next MaGC will
occur, RT is the Real Time when the MaGC occurs and PRT
is the Real Time when the Previous MaGC occurred. FE=0
means a perfect match between the forecast and the reality.
FE>0 means the real MaGC occurred before the forecast, and
FE<O0 means the real MaGC occurred after the forecast. It is
usually expressed as a percentage to be comparable among
different programs. To illustrate the metric, consider a case

FE = D

Shttp://dacapobench.org/
http://www.dacapobench.org/benchmarks.html
8http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html

where FT was 15 sec since the application started and RT was
14.8 sec. Assuming PRT was 10 sec, FE would be 4.17%.
Experimental Results. The objective was to assess the
accuracy of the forecast algorithm. Even though the results
varied among the different GC strategies, it was possible
to achieve a Forecast Error (FE) below 10% for all the
benchmarks. These results are presented in Figure 5.
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Fig. 6. Preferred FWS vs. MiGC AVG

As no single FWS achieved the lowest FE for all bench-
marks, the analysis centered in understanding the factors
behind the preferred FWS. As an initial step, the results were
sorted by the average number of MiGCs between MaGCs
(MiGC 4y ). This criterion was chosen because it captures
the relationship between the allocation needs of an application
and the heap size (major factors influencing the GC, as proved
by [8] and [13] respectively). The smaller the MiGC sy g is,
the more frequent the application exhausts its Old Generation
memory. If the value is close to zero (i.e. 5 or less), the applica-
tion is close to an Out-Of-Memory exception. On the contrary,
a value far from zero (i.e. 1,000 or more) indicates that the Old
Generation is infrequently exhausted. The results showed a
relationship between the MiGC 4y ¢ and the preferred FWS: If
an application has a high MiGC 4y ¢, a large FWS is preferred
because a small one does not capture the behaviour of the
allocations in the Old Generation, which happens infrequently.
Similarly, if an application has a low MiGCyy g, a small
FWS works better. This tendency is visually shown in Figure 6
and experimentally proved in Figure 7.

To further explore the sensitivity of the algorithm to
the FWS, the results were analyzed with the coefficient of
variation’ MiGCcy (standard deviation of the MiGCay g
depicted as a percentage of the average) to compare the
applications in terms of variability. This analysis showed that
the higher the value of MiGC¢y (reflecting a more heteroge-
neous behaviour of the application in terms of memory usage),
the more sensitive the algorithm is to changes in FWS. When
this occurs, a more precise selection of FWS is required to
achieve a low FE. On the contrary, if the MiGCcy is low, a
broader range of FWS can be used. Figure 7 exemplifies these

“http://ncalculators.com/statistics/coefficient-of-variance-calculator.htm
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Fig. 5. Forecast Error per DaCapo Benchmark and GC strategy

two scenarios: h2-Serial GC has a low MiGCayva (13), so
smaller FWS are preferable. As h2 also has a high MiGCcy
(70%), it requires a more exact FWS range (between 2 and 16).
On the contrary, larger FWS are preferable for tomcat-Serial
GC because it has a high MiGC 4y ¢ (12673). As tomcat also
has a low MiGCcy (7%), a low FE can be achieved using a
broader FWS range (between 1024 and 4096).

In conclusion, this experiment proved that the forecast
algorithm can achieve a low FE (below 10%) when configured
properly. Also two relevant factors to consider in the selection
of the FWS (MiGC sy ¢ and MiGCeoy) were identified.

B. Experiment #2: MaGC-Aware Load Balancing

Environment. It was composed of seven VMs: Five ap-
plication nodes, one load balancer and one load tester (using
Apache JMeter 2.9'%). All VMs had the characteristics de-
scribed in the Experiment #1.

Java Benchmarks. From the DaCapo suite, the two pro-
grams closest to our use case were selected (tradebeans and
tradesoap). Internally they leverage on the DayTrader bench-
mark!! which simulates an online stock trading system. This
benchmark ran over a Geronimo Application Server'? 2.1.4
with a 10GB heap, and an in-memory Derby'® database.

10http://jmeter.apache.org/
http://www.dacapobench.org/daytrader.htm]
2https://geronimo.apache.org/
Bhttp://db.apache.org/derby/

Load Balance Algorithms. Our algorithm was compared
against the normal round robin algorithm. To compensate
the Forecast Error (FE) of the MaGC forecast, the MaGC
Threshold was set to the F'E 4y ¢ of the tested programs (5
seconds). Internally, our forecast algorithm used a FWS of 64.

GC. Among the strategies used in the experiment #1, the
two which suffer the longest pauses[15] (benefitting more from
our load balance algorithm) were used: Serial and Parallel.

Metrics. Throughput (tps) and response time (ms) were
collected with JMeter. The CPU (%) and memory (MB)
utilisations of the load balancer were collected with nmon'4.

Experimental Results. The objective was to assess the
benefits of load balancing based on the MaGC forecast. Two
types of runs were performed for each program and GC
strategy: One used the normal round robin algorithm and was
considered the Baseline (BL). The other type used our load
balance algorithm (GCLB). Each run involved 150 concurrent
users, lasted approximately 30 minutes and produced around
50,000 transactions. Originally we considered to also compare
our algorithm against a reactive strategy, where the workload
got adapted once a MaGC occurs. However this strategy could
not be implemented because it is not possible to know, from
a JVM, when a GC is happening (only when it has ended)'.

14http://mmon.sourceforge.net/

Bhttp://docs.oracle.com/javase/7/docs/api/java/lang/management/-
GarbageCollectorMXBean.html
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TABLE 11
THROUGHPUT AND RESPONSE TIME COMPARISON - FULL EXPERIMENT

Bench. GC Response Time (ms) Throughput (tps)
RTavea | RTyvax Tave TymiIN
BL GCLB Diff.(%) [ BL GCLB Diff.(%) BL GCLB Diff.(%) BL GCLB Diff.(%)
tradebeans S 4,552.4 112.2 -97.5% 330,813.0 17,596.4 -94.7% 41.4 53.7 29.6% 20.8 38.1 83.5%
tradebeans P 1,900.1 494.9 -74.0% 305,098.0 33,366.0 -89.1% 46.7 48.5 3.8% 24.8 39.0 57.4%
tradesoap S 6,757.8 72.0 -98.9% 139,678.0 59,348.9 -57.5% 17.2 259 50.6% 11.1 19.2 72.4%
tradesoap P 845.5 146.0 -82.7% 115,655.0 21,389.7 -81.5% 16.6 17.8 7.4% 5.1 13.1 158.8%

The results proved that considering the MaGC forecast in
the load balance logic improves significantly the performance
of the system. The average response time (R7 4y ) was re-
duced between 74% and 98.9%, while the maximum response
time (R1ys ax) was reduced between 57.5% and 94.7%. The
throughput experienced a similar improvement: The average
throughput (T'4y ) increased between 3.8% and 50.6%, while
the minimum throughput (7,7 ) increased between 57.4%
and 158.8%. These results are presented in Table II.

The performance gains were the result of preventing that the
MaGCs in the nodes affected the performance of the system.
This behaviour is depicted in Figures 8 and 9, which show
the results of one of the tested configurations. In Figure 8.a,
it can be noticed how the response time of the Baseline is
affected when a MaGC occurs. On the contrary, Figure 8.b
shows that these peaks do not occur when using our algorithm.
The throughput (Figure 9) shows a similar behaviour.

To understand better the performance gains of our algo-
rithm over the Baseline, the results were analysed under two
perspectives. Firstly, the performance was compared during
the periods of time when there were no MaGC events (non-
MaGC time). These results (shown in Table III) proved that
our algorithm does not affect the performance of the system
during the non-MaGC time, as both algorithms performed
similarly. Then the performance was compared during the
periods of time of the MaGC events (MaGC time). These
results (shown in Table IV) demonstrated that our algorithm
improves the system performance during the MaGC time:
RTsyq decreased between 87.4% and 99%, while Tay o
increased between 42.6% and 97.5%. These improvements
were the result of minimising the number of transactions
affected by the MaGC. With our algorithm, the only affected
transactions were those in the pipeline to be processed by the

node which sufferred the MaGC, transactions which led to the
triggering of the MaGC.

To understand the costs of our algorithm, we also compared
the resource usages in the load balance node. Table V shows
these results. The average CPU usage (CPU,y ) increased
between 3.5% and 7.2%, and the maximum CPU usage
(CPUprax) between 1.5% and 5.5%. Regarding memory, its
average usage (M EM sy ) increased 0.3GB and its max-
imum usage (M EMrax) between 0.1 and 0.3GB. These
memory increases were caused by the historical information
that the forecast algorithm maintained. These increments were
considered tolerable because the load balancer was far from
exhausting its resources.

In summary, this experiment demonstrated the performance
gains of using our proposed algorithm. By avoiding the impact
of the MaGCs, the system performance was significantly
improved in terms of response time and throughput.

V. CONCLUSIONS AND FUTURE WORK

This paper proposes a new load balancing algorithm to im-
prove the throughput and response time of a distributed system
with a small performance overhead. The algorithm utilises
JVM data to predict the future occurrences of the MaGC event,
which can cause a long pause time on the underlying applica-
tion. The results have shown that the proposed load balance
algorithm can offer a high improvement in response time and
throughput (up to 99% and 51% respectively) by using the
forecast to decide on how to balance the workload among the
system nodes. Furthermore, the proposed algorithm explores
and uses a new aspect of the system resource information: The
GC. As a result, our work can be combined with other load
balancing algorithms to form a more sophisticated solution.
This scenario will be explored in our future work, as well as
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how best to simplify the configuration of our algorithms (e.g., [71 W. Manning. Scjp sun certified programmer for java 6 exam. Emereo

the FWS selection) to improve their applicability. Pty Ltd, London, 2009. ,
[8] F. Mao, E. Z. Zhang, and X. Shen. Influence of program inputs on the
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TABLE IIT
THROUGHPUT AND RESPONSE TIME COMPARISON - NON-MAGC TIME
Bench. GC Response Time (ms) Throughput (tps)
RTava RTyvax Tava Tyvin
BL GCLB Diff.(%) BL GCLB Diff.(%) BL GCLB Diff.(%) BL GCLB Diff.(%)
tradebeans S 39.1 31.5 -19.4% 1,953.6 1,948.7 -0.3% 48.3 48.9 1.3% 39.2 40.1 2.3%
tradebeans P 241.6 336.5 39.3% 1,135.2 1,157.4 2.0% 49.6 49.5 -0.3% 37.1 39.00 5.0%
tradesoap S 223 19.8 -11.2% 287.1 267.9 -6.7% 25.6 26.3 2.5% 16.4 19.2 16.7%
tradesoap P 123.1 124.4 1.1% 376.8 391.4 3.9% 17.6 17.3 -1.7% 15.5 13.1 -15.2%
TABLE IV
THROUGHPUT AND RESPONSE TIME COMPARISON - MAGC TIME
Bench. GC Response Time (ms) Throughput (tps)
RTavea RTyax Tava | Tyvin
BL GCLB Diff.(%) BL GCLB Diff.(%) BL GCLB Diff.(%) [ BL GCLB Diff.(%)
tradebeans S 9,065.6 192.8 -97.9% 330,813.0 17,596.4 -94.7% 34.5 50.3 45.5% 20.8 38.1 83.5%
tradebeans P 10,192.5 1,287.0 -87.4% 305,098.0 33,366.0 -89.1% 29.4 435 47.9% 24.8 39.0 57.4%
tradesoap N 9,163.4 90.6 -99.0% 139,678.0 59,349.0 -57.5% 13.0 25.8 97.5% 11.1 19.2 72.4%
tradesoap P 3,012.9 210.8 -93.0% 115,655.0 21,389.7 -81.5% 13.6 19.4 42.6% 5.1 13.1 158.7%
TABLE V
RESOURCE USAGE COMPARISON - LOAD BALANCER
Bench. GC CPU Usage (%) Memory Usage (GB)
CPUava | CPUnmax MEMava | MEMn ax
BL GCLB Diff. [ BL GCLB Diff. BL GCLB Diff. [ BL GCLB Diff.
tradebeans S 6.0% 9.5% 3.5% 22.0% 23.7% 1.7% 2.50 2.80 0.30 2.60 2.90 0.30
tradebeans P 7.7% 12.2% 4.5% 24.2% 25.7% 1.5% 2.50 2.80 0.30 2.60 2.90 0.30
tradesoap S 4.2% 10.6% 6.4% 9.8% 15.3% 5.5% 2.50 2.80 0.30 2.60 2.80 0.20
tradesoap P 4.2% 11.4% 7.2% 11.8% 16.0% 4.2% 2.50 2.80 0.30 2.70 2.80 0.10




