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Abstract

Learning probabilistic models over strings is an

important issue for many applications. Spectral

methods propose elegant solutions to the prob-

lem of inferring weighted automata from finite

samples of variable-length strings drawn from

an unknown target distribution. These methods

rely on a singular value decomposition of a ma-

trix HS , called the Hankel matrix, that records

the frequencies of (some of) the observed strings.

The accuracy of the learned distribution depends

both on the quantity of information embedded

in HS and on the distance between HS and its

mean Hr. Existing concentration bounds seem

to indicate that the concentration over Hr gets

looser with its size, suggesting to make a trade-

off between the quantity of used information and

the size of Hr. We propose new dimension-

free concentration bounds for several variants of

Hankel matrices. Experiments demonstrate that

these bounds are tight and that they significantly

improve existing bounds. These results suggest

that the concentration rate of the Hankel matrix

around its mean does not constitute an argument

for limiting its size.

1. Introduction

Many applications in natural language processing, text

analysis or computational biology require learning prob-

abilistic models over finite variable-size strings such as

probabilistic automata, Hidden Markov Models (HMM),

or more generally, weighted automata. Weighted automata
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exactly model the class of rational series, and their al-

gebraic properties have been widely studied in that con-

text (Droste et al., 2009). In particular, they admit algebraic

representations that can be characterized by a set of finite-

dimensional linear operators whose rank corresponds to the

minimum number of states needed to define the automaton.

From a machine learning perspective, the objective is then

to infer good estimates of these linear operators from finite

samples. In this paper, we consider the problem of learning

the linear representation of a weighted automaton, from a

finite sample, composed of variable-size strings i.i.d. from

an unknown target distribution.

Recently, the seminal papers of Hsu et al. (2009) for

learning HMM and Bailly et al. (2009) for weighted au-

tomata, have defined a new category of approaches -

the so-called spectral methods - for learning distributions

over strings represented by finite state models (Siddiqi

et al., 2010; Song et al., 2010; Balle et al., 2012; Balle &

Mohri, 2012). Extensions to probabilistic models for tree-

structured data (Bailly et al., 2010; Parikh et al., 2011; Co-

hen et al., 2012), transductions (Balle et al., 2011) or other

graphical models (Anandkumar et al., 2012c;b;a; Luque

et al., 2012) have also attracted a lot of interest.

Spectral methods suppose that the main parameters of a

model can be expressed as the spectrum of a linear operator

and estimated from the spectral decomposition of a matrix

that sums up the observations. Given a rational series r, the

values taken by r can be arranged in a matrix Hr whose

rows and columns are indexed by strings, such that the lin-

ear operators defining r can be recovered directly from the

right singular vectors of Hr. This matrix is called the Han-

kel matrix of r.

In a learning context, given a learning sample S drawn from

a target distribution p, an empirical estimate HS of Hp is

built and then, a rational series p̃ is inferred from the right

singular vectors of HS . However, the size of HS increases

drastically with the size of S and state of the art approaches
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consider smaller matrices HU,V
S indexed by limited subset

of strings U and V . It can be shown that the above learn-

ing scheme, or slight variants of it, are consistent as soon

as the matrix HU,V
r has full rank (Hsu et al., 2009; Bailly,

2011; Balle et al., 2012) and that the accuracy of the in-

ferred series is directly connected to the concentration dis-

tance ||HU,V
S −HU,V

p ||2 between the empirical Hankel ma-

trix and its mean (Hsu et al., 2009; Bailly, 2011).

On the one hand, limiting the size of the Hankel matrix

avoids prohibitive calculations. Moreover, most existing

concentration bounds on sum of random matrices depend

on their size and suggest that ||HU,V
S − HU,V

p ||2 may be-

come significantly looser with the size of U and V , com-

promising the accuracy of the inferred model.

On the other hand, limiting the size of the Hankel ma-

trix implies a drastic loss of information: only the strings

of S compatible with U and V will be considered. In

order to limit the loss of information when dealing with

restricted sets U and V , a general trend is to work with

other functions than the target p, such as the prefix func-

tion p(u) =
∑

v∈Σ∗ p(uv) or the factor function p̂ =∑
v,w∈Σ∗ p(vuw) (Balle et al., 2013; Luque et al., 2012).

These functions are rational, they have the same rank as p,

a representation of p can easily be derived from representa-

tions of p or p̂ and they allow a better use of the information

contained in the learning sample.

A first contribution is to provide a dimension free concen-

tration inequality for ||HU,V
S −HU,V

p ||2, by using recent re-

sults on tail inequalities for sum of random matrices show-

ing that restricting the dimension of H is not mandatory.

However, these results cannot be directly applied to the

prefix and factor series, since the norm of the correspond-

ing random matrices are unbounded. A second contribu-

tion of the paper is to define two classes of parametrized

functions, pη and p̂η , that constitute continuous intermedi-

ates between p and p (resp. p̂), and to provide analogous

dimension-free concentration bounds for these classes.

These bounds are evaluated on a benchmark made of 11

problems extracted from the PAutomaC challenge (Verwer

et al., 2012). These experiments show that the bounds de-

rived from our theoretical results are quite tight - compared

to the exact values- and that they significantly improve ex-

isting bounds, even on matrices of fixed dimensions.

These results have two practical consequences for spec-

tral learning: (i) the concentration of the empirical Hankel

matrix around its mean does not highly depend on its di-

mension and the only reason not to use all the information

contained in the sample should only rely on computing re-

sources limitations. In that perspective, using random tech-

niques to perform singular values decomposition on huge

Hankel matrices should be considered (Halko et al., 2011);

(ii) by constrast, the concentration is weaker for the pre-

fix and factor functions, and smoothed variants should be

used, with an appropriate parameter.

The paper is organized as follows. Section 2 introduces

the main notations, definitions and concepts. Section 3

presents a first dimension free-concentration inequality for

the standard Hankel matrices. Then, we introduce the pre-

fix and the factor variants and provide analogous concentra-

tion results. Section 4 describes some experiments before

the conclusion presented in Section 5.

2. Preliminaries

2.1. Singular Values, Eigenvalues and Matrix Norms

Let M ∈ R
m×n be a m × n real matrix. The singular

values of M are the square roots of the eigenvalues of the

matrix MTM , where MT denotes the transpose of M :

σmax(M) and σmin(M) denote the largest and smallest

singular value of M , respectively.

In this paper, we mainly use the spectral norms || · ||k in-

duced by the corresponding vector norms on R
n and de-

fined by ||M ||k = maxx 6=0
||Mx||k
||x||k :

• ||M ||1 = Max1≤j≤n

∑m
i=1 |M [i, j]|,

• ||M ||∞ = Max1≤i≤m

∑n
j=1 |M [i, j]|,

• ||M ||2 = σmax(M).

We have: ||M ||2 ≤
√

||M ||1||M ||∞.

These norms can be extended, under certain conditions, to

infinite matrices and the previous inequalities remain true

when the corresponding norms are defined.

2.2. Rational stochastic languages and Hankel matrices

Let Σ be a finite alphabet. The set of all finite strings over

Σ is denoted by Σ∗, the empty string is denoted by ǫ, the

length of string w is denoted by |w| and Σn (resp. Σ≤n)

denotes the set of all strings of length n (resp. ≤ n). For

any string w, let Pref(w)={u ∈ Σ∗|∃v ∈ Σ∗ w = uv}.

A series is a mapping r : Σ∗ 7→ R. A series r is convergent

if the sequence r(Σ≤n) =
∑

w∈Σ≤n r(w) is convergent;

its limit is denoted by r(Σ∗). A stochastic language p is

a probability distribution over Σ∗, i.e. a series taking non

negative values and converging to 1.

Let n ≥ 1 and M be a morphism defined from Σ∗ to

M(n), the set of n× n matrices with real coefficients. For

all u ∈ Σ∗, let us denote M(u) by Mu and Σx∈ΣMx by

MΣ. A series r over Σ is rational if there exists an inte-

ger n ≥ 1, two vectors I, T ∈ R
n and a morphism M :

Σ∗ 7→ M(n) such that for all u ∈ Σ∗, r(u) = ITMuT .
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The triplet 〈I,M, T 〉 is called an n-dimensional linear rep-

resentation of r. The vector I can be interpreted as a vector

of initial weights, T as a vector of terminal weights and the

morphism M as a set of matrix parameters associated with

the letters of Σ. A rational stochastic language is thus a

stochastic language admitting a linear representation.

Let U, V ⊆ Σ∗, the Hankel matrix HU,V
r , associated with

a series r, is the matrix indexed by U × V and defined

by HU,V
r [u, v] = r(uv), for any (u, v) ∈ U × V . If

U = V = Σ∗, HU,V
r , simply denoted by Hr, is a bi-infinite

matrix. In the following, we always assume that ǫ ∈ U
and that U and V are ordered in quasi-lexicographic order:

strings are first ordered by increasing length and then, ac-

cording to the lexicographic order. It can be shown that a

series r is rational if and only if the rank of the matrix Hr

is finite. The rank of Hr is equal to the minimal dimension

of a linear representation of r.

Let r be a non negative convergent rational series and let

〈I,M, T 〉 be a minimal d-dimensional linear representation

of r. Then, the sum Id+MΣ+. . .+Mn
Σ+. . . is convergent

and r(Σ∗) = IT (Id − MΣ)
−1T where Id is the identity

matrix of size d.

Several convergent rational series can be naturally associ-

ated with a stochastic language p:

• p, defined by p(u) =
∑

v∈Σ∗ p(uv), the series associ-

ated with the prefixes of the language,

• p̂, defined by p̂(u) =
∑

v,w∈Σ∗ p(vuw), the series as-

sociated with the factors of the language.

It can be noticed that p(u) = p(uΣ∗), the probability that a

string begins with u, but that in general, p̂(u) ≥ p(Σ∗uΣ∗),
the probability that a string contains u as a substring.

If 〈I,M, T 〉 is a minimal d-dimensional linear representa-

tion of p, then 〈I,M, (Id − MΣ)
−1T 〉 (resp. 〈[IT (Id −

MΣ)
−1]T ,M, (Id − MΣ)

−1T 〉) is a minimal linear repre-

sentation of p (resp. of p̂). Any linear representation of

these variants of p can be reconstructed from the others.

For any integer k ≥ 1, let

S(k)
p =

∑

u1u2...uk∈Σ∗

p(u1u2 . . . uk) = IT (Id −MΣ)
−kT.

Clearly, p(Σ∗)=S
(1)
p =1, p(Σ∗)=S

(2)
p and p̂(Σ∗)=S

(3)
p .

Note that S
(2)
p = 1+

∑
u |u|p(u), where

∑
u |u|p(u) is the

average length of a string drawn according to p.

Let U, V ⊆ Σ∗. For any string w ∈ Σ∗, let us define the

matrices HU,V
w , H

U,V

w and ĤU,V
w by

• HU,V
w [u, v] = 1uv=w,

• H
U,V

w [u, v] = 1uv∈Pref(w) and

• ĤU,V
w [u, v] =

∑
x,y∈Σ∗ 1xuvy=w

for any (u, v) ∈ U × V . For any sample of strings S, let

HU,V
S = 1

|S|
∑

w∈S HU,V
w , H

U,V

S = 1
|S|
∑

w∈S H
U,V

w and

ĤU,V
S = 1

|S|
∑

w∈S ĤU,V
w .

For example, let S = {a, ab}, U = V = {ǫ, a, b}. We have

H
U,V
S

=




0 0.5 0
0.5 0 0.5
0 0 0



 , H
U,V
S

=




1 1 0
1 0 0.5
0 0 0



 , Ĥ
U,V
S

=




2.5 1 0.5
1 0 0.5
0.5 0 0



 .

2.3. Spectral Algorithm for Learning Rational

Stochastic Languages

Rational series admit a canonical linear representation de-

termined by their Hankel matrix. Let r be a rational series

of rank d and U ⊂ Σ∗ such that the matrix HU×Σ∗

r (de-

noted by H in the following) has rank d.

• For any string s, let Ts be the constant matrix whose

rows and columns are indexed by Σ∗ and defined by

Ts[u, v] = 1 if v = us and 0 otherwise.

• Let E be a vector indexed by Σ∗ whose coordinates

are all zero except the first one equals to 1: E[u] =
1u=ǫ and let P be the vector indexed by Σ∗ defined

by P [u] = r(u).

• Let H = LDRT be a reduced singular value decom-

position of H: R (resp. L) is a matrix whose columns

form a set of orthonormal vectors - the right (resp.

left) singular vectors of H - and D is a d × d diag-

onal matrix, composed of the singular values of H .

Then, 〈RTE, (RTTxR)x∈Σ, R
TP 〉 is a linear representa-

tion of r (Bailly et al., 2009; Bailly, 2011; Balle et al.,

2012). A quick proof can be found in (Denis et al., 2013).

The basic spectral algorithm for learning rational stochastic

languages aims at identifying the canonical linear represen-

tation of the target p determined by its Hankel matrix Hp.

Let S be a sample independently drawn according to p:

• Choose sets U, V ⊆ Σ∗ and build the Hankel matrix

HU×V
S ,

• choose a rank d and compute a reduced SVD of

HU×V
S truncated at rank d,

• build the canonical linear representation

〈RT
SE, (RT

STxRS)x∈Σ, R
T
SPS〉 from the right

singular vectors RS and the empirical distribution pS
defined from S.



Dimension-free Concentration Bounds on Hankel Matrices for Spectral Learning

Alternative learning strategies consist in learning p or p̂, us-

ing the same algorithm, and then to compute an estimate of

p. In all cases, the accuracy of the learned representation

mainly depends on the estimation of R. The Stewart for-

mula (Stewart, 1990) bounds the principle angle θ between

the spaces spanned by the right singular vectors of R and

RS :

|sin(θ)| ≤ ||HU×V
S −HU×V

r ||2
σmin(H

U×V
r )

.

According to this formula, the concentration of the Han-

kel matrix around its mean is critical and the question of

limiting the sizes of U and V naturally arises. Note that

the Stewart inequality does not give any clear indication

on the impact or on the interest of limiting these sets. In-

deed, Weyl’s inequalities can be used to show that both the

numerator and the denominator of the right part of the in-

equality increase with U and V .

3. Concentration Bounds for Hankel Matrices

Let p be a rational stochastic language over Σ∗, let ξ be a

random variable distributed according to p, let U, V ⊆ Σ∗

and let Z(ξ) ∈ R
|U |×|V | be a random matrix. For instance,

Z(ξ) may be equal to HU,V
ξ , H

U,V

ξ or ĤU,V
ξ .

Concentration bounds for sum of random matrices can be

used to estimate the spectral distance between the empir-

ical matrix ZS computed on the sample S and its mean

(see (Hsu et al., 2011) for references). However, most of

classical inequalities depend on the dimensions of the ma-

trices. For example, it can be proved that with probability

at least 1− δ (Kakade, 2010):

||ZS − EZ||2 ≤ 6M√
N

(
√
log d+

√
log

1

δ

)
(1)

where N is the size of S, d is the minimal dimension of the

matrix Z and ||Z||2 ≤ M almost surely. If Z = HU,V
ξ ,

then M = 1; if Z = H
U,V

ξ , M = Ω(D1/2) in the worst

case; if Z = ĤU,V
ξ , ||Z||2 is generally unbounded.

These concentration bounds get worse with both sizes of

the matrices. Coming back to the discussion at the end of

Section 2, they suggest to limit the size of the sets U and V ,

and therefore, to design strategies to choose optimal sets.

We then use recent results (Tropp, 2012; Hsu et al., 2011)

to obtain dimension-free concentration bounds for Hankel

matrices. More precisely, we extend a Bernstein bound for

unbounded random matrices from (Hsu et al., 2011) to non

symmetric random matrices by using the dilation principle

(Tropp, 2012).

Let Z be a random matrix, the dilation of Z is the symmet-

ric random matrix X defined by

X =

[
0 Z
ZT 0

]
. Then X2 =

[
ZZT 0
0 ZTZ

]

and ||X||2 = ||Z||2, tr(X2) = tr(ZZT ) + tr(ZTZ) and

||X2||2 ≤ Max(||ZZT ||2, ||ZTZ||2).
We can then reformulate the result that we use as fol-

lows (Denis et al., 2013).

Theorem 1. Let ξ1, . . . , ξN be i.i.d. random variables, and

for i = 1, . . . , N , let Zi = Z(ξi) be i.i.d. matrices and

Xi the dilation of Zi. If there exists b > 0, σ > 0, and

k > 0 such that E[X1] = 0, ||X1||2 ≤ b, ||E(X2
1 )||2 ≤

σ2 and tr(E(X2
1 )) ≤ σ2k almost surely, then for all t > 0,

Pr

[
|| 1
N

N∑

i=1

Xi||2 >

√
2σ2t

N
+

bt

3N

]
≤ k·t(et−t−1)−1.

We will then make use of this theorem to derive our new

concentration bounds. Section 3.1 deals with the standard

case, Section 3.2 with the prefix case and Section 3.3 with

the factor case.

3.1. Concentration Bound for the Hankel Matrix HU,V
p

Let p be a rational stochastic language over Σ∗, let S
be a sample independently drawn according to p, and let

U, V ⊆ Σ∗. In this section, we compute a bound on

||HU,V
S −HU,V

p ||2 which is independent from the sizes of

U and V and holds in particular when U = V = Σ∗.

Let ξ be a random variable distributed according to p, let

Z(ξ) = HU,V
ξ − HU,V

p be the random matrix defined by

Zu,v = 1ξ=uv − p(uv) and let X be the dilation of Z.

Clearly, E(X) = 0. In order to apply Theorem 1, it is nec-

essary to compute the parameters b, σ and k. We first prove

a technical lemma that will provide a bound on E(X2).

Lemma 1. For any u, u′ ∈ U , v, v′ ∈ V ,

|E(ZuvZu′v)| ≤ p(u′v) and |E(ZuvZuv′)| ≤ p(uv′).

Proof.

E(ZuvZu′v) = E(1ξ=uv1ξ=u′v)− p(uv)p(u′v)

=
∑

w∈Σ∗

p(w)1w=uv1w=u′v − p(uv)p(u′v)

= p(u′v)[1u=u′ − p(uv)]

and

|E(ZuvZu′v)| ≤ p(u′v).

The second inequality is proved in a similar way.

Next lemma provides parameters b, σ and k needed to apply

Theorem 1.
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Lemma 2. ||X||2 ≤ 2, E(Tr(X2)) ≤ 2S
(2)
p and

||E(X2)||2 ≤ S
(2)
p .

Proof. 1. ∀u ∈ U ,
∑

v∈V |Zu,v| =
∑

v∈V |1ξ=uv −
p(uv)| ≤ 1 + p(uΣ∗) ≤ 2. Therefore, ||Z||∞ ≤ 2. In

a similar way, it can be shown that ||Z||1 ≤ 2. Hence,

||X||2 = ||Z||2 ≤
√
||Z||∞||Z||1 ≤ 2.

2. For all (u, u′) ∈ U2 : ZZT [u, u′] =
∑

v∈V Zu,vZu′,v .

Therefore,

E(Tr(ZZT )) = E(
∑

u∈U

ZZT [u, u])

= E(
∑

u∈U,v∈V

Zu,vZu,v)

≤
∑

u∈U,v∈V

E(Zu,vZu,v)

≤ S(2)
p .

In a similar way, it can be proved that E(Tr(ZTZ)) ≤ S
(2)
p

and therefore, E(Tr(X2)) ≤ 2S
(2)
p .

3. For any u ∈ U ,

∑

u′∈U

|E(ZZT [u, u′])| ≤
∑

u′∈U,v∈V

|E(ZuvZu′v)|

≤
∑

u′∈U,v∈V

p(u′v)

≤ S(2)
p .

Hence, ||ZZT ||∞ ≤ S
(2)
p . It can be proved, in a sim-

ilar way, that ||ZTZ||∞ ≤ S
(2)
p , ||ZZT ||1 ≤ S

(2)
p and

||ZTZ||1 ≤ S
(2)
p . Therefore, ||X2||2 ≤ S

(2)
p .

We can now prove the main theorem of this section:

Theorem 2. Let p be a rational stochastic language and
let S be a sample of N strings drawn i.i.d. from p. For all
t > 0,

Pr



||HU,V
S −HU,V

p ||2 >

√
2S

(2)
p t

N
+

2t

3N



 ≤ 2t(et−t−1)−1.

Proof. Let ξ1, . . . , ξN be N independent copies of ξ, let

Zi = Z(ξi) and let Xi be the dilation of Zi for i =
1, . . . , N . Lemma 2 shows that the 4 conditions of The-

orem 1 are fulfilled with b = 2, σ2 = S
(2)
p and k = 2.

This bound is independent from U and V . It can be noticed

that the proof also provides a dimension dependent bound

by replacing S
(2)
p with

∑
(u,v)∈U×V p(uv), which may re-

sult in a significative improvement if U or V are small.

3.2. Bound for the prefix Hankel Matrix HU,V
p

The random matrix Z(ξ) = H
U,V

ξ − HU,V
p is defined

by Zu,v = 1uv∈Pref(ξ) − p(uv). It can easily be shown

that ||Z||2 may be unbounded if U or V are unbounded:

||Z||2 = Ω(|ξ|1/2). Hence, Theorem 1 cannot be directly

applied, which suggests that the concentration of Z around

its mean could be far weaker than the concentration of Z.

For any η ∈ [0, 1], we define a smoothed variant of p by

pη(u) =
∑

x∈Σ∗

η|x|p(ux) =
∑

n≥0

ηnp(uΣn).

Note that p1 = p, p0 = p and that p(u) ≤ pη(u) ≤ p(u)
for any string u. Therefore, the functions pη are natural in-

termediates between p and p. Moreover, when p is rational,

each pη is also rational.

Proposition 1. Let p be a rational stochastic language and

let 〈I, (Mx)x∈Σ, T 〉 be a minimal linear representation of

p. Let T η = (Id − ηMΣ)
−1T . Then, pη is rational and

〈I, (Mx)x∈Σ, T η〉 is a linear representation of pη .

Proof. For any string u, pη(u) =
∑

n≥0 I
TMuη

nMn
ΣT =

ITMu(
∑

n≥0 η
nMn

Σ)T = ITMuT η .

Note that T can be computed from T η when η and MΣ are

known and therefore, it is a consistent learning strategy to

learn pη from the data, for some η, and next, to derive p.

For any 0 ≤ η ≤ 1, let Zη(ξ) be the random matrix defined

by

Zη[u, v] =
∑

x∈Σ∗

η|x|1ξ=uvx − pη(uv)

=
∑

x∈Σ∗

η|x|(1ξ=uvx − p(uvx)).

for any (u, v) ∈ U × V . It is clear that E(Zη) = 0 and we

show below that ||Zη||2 is bounded if η < 1.

The moments S
(k)
pη

can naturally be associated with pη . For

any 0 ≤ η ≤ 1 and any k ≥ 1, let

S
(k)
pη

=
∑

u1u2...uk∈Σ∗

pη(u1u2 . . . uk).

We have S
(k)
pη

= IT (Id −MΣ)
−k(Id − ηMΣ)

−1T and it is

clear that S
(k)
p
0

= S
(k)
p and S

(k)
p
1

= S
(k+1)
p .

Lemma 3.

||Zη||2 ≤ 1

1− η
+ S

(1)
pη

.
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Proof. Indeed, let u ∈ U .

∑

v∈V

|Zη[u, v]| ≤
∑

v,x∈Σ∗

η|x|1ξ=uvx +
∑

v,x∈Σ∗

η|x|p(uvx)

≤ (1 + η + . . .+ η|ξ|−|u|) + S
(1)
pη

≤ 1

1− η
+ S

(1)
pη

.

Hence, ||Zη||∞ ≤ 1
1−η +S

(1)
pη

. Similarly, ||Zη||1 ≤ 1
1−η +

S
(1)
pη

, which completes the proof.

When U and V are bounded, let l be the maximal length

of a string in U ∪ V . It can easily be shown that ||Zη||2 ≤
l + 1 + S

(1)
pη

and therefore, in that case,

||Zη||2 ≤ Min(l + 1,
1

1− η
) + S

(1)
pη

(2)

which holds even if η = 1.

Lemma 4. |E(Zη[u, v]Zη[u
′, v])| ≤ pη(u

′v), for any

u, u′, v ∈ Σ∗.

Proof. We have E((1ξ=w − p(w))(1ξ=w′ − p(w′))) =

E(1ξ=w1ξ=w′)− p(w)p(w′). Therefore,

E(Zη[u, v]Zη[u
′, v])

=
∑

x,x′

η|xx′|[E(1ξ=uvx1ξ=u′vx′)− p(u′vx′)p(uvx)]

=
∑

x,x′,w

η|xx′|p(w)1w=u′vx′ [1w=uvx − p(uvx)]

=
∑

x,x′

η|xx′|p(u′vx′)[1u′vx′=uvx − p(uvx)]

=
∑

x′

η|x′|p(u′vx′)[
∑

x

η|x|(1u′vx′=uvx − p(uvx))]

and |E(Zη[u, v]Zη[u
′, v])| ≤

∑
x′ η

|x′|p(u′vx′) = pη(u
′v)

since −1 ≤ −pη(uv) ≤
∑

x η
|x|(1u′vx′=uvx − p(uvx)) ≤ 1

i.e. |∑x η
|x|(1u′vx′=uvx − p(uvx))| ≤ 1.

Lemma 5.

||E(Zη Z
T

η )||2 ≤ S
(2)
pη

and Tr(E(Zη Z
T

η )) ≤ S
(2)
pη

.

||E(ZT

η Zη)||2 ≤ S
(2)
pη

and Tr(E(Z
T

η Zη)) ≤ S
(2)
pη

.

Proof. Indeed,

||E(ZηZ
T

η )||∞ ≤ Maxu

∑

u′,v

|E(Zη[u, v]Zη[u
′, v])|

≤
∑

u′,v,x′

η|x
′|p(u′vx′) ≤ S

(2)
pη

.

In the same way,

Tr(E(ZηZ
T

η )) =
∑

u,v

E(Zη[u, v]Zη[u, v]) ≤ S
(2)
pη

.

Similar computations provide all the inequalities.

Therefore, we can apply the Theorem 1 with b = 1
1−η +

S
(1)
pη

, σ2 = S
(2)
pη

and k = 2.

Theorem 3. Let p be a rational stochastic language, let

S be a sample of N strings drawn i.i.d. from p and let

0 ≤ η < 1. For all t > 0,

Pr


||HU,V

η,S −HU,V
pη

||2 >

√
2S

(2)
pη

t

N
+

t

3N

[
1

1− η
+ S

(1)
pη

]



≤ 2t(et − t− 1)−1.

Remark that when η = 0 we find back the concentration

bound of Theorem 2, and that Inequality 2 provides a bound

when η = 1.

3.3. Bound for the factor Hankel Matrix Hp̂U,V

The random matrix Ẑ(ξ) = ĤU,V
ξ −Hp̂U,V is defined by

Ẑu,v =
∑

x,y∈Σ∗

1ξ=xuvy − p̂(uv).

||Ẑ||2 is generally unbounded. Moreover, unlike the prefix

case, ||Ẑ||2 can be unbounded even if U and V are finite.

Hence, the Theorem 1 cannot be directly applied either.

We can also define smoothed variants of p̂ by

p̂η(u) =
∑

x,y∈Σ∗

η|xy|p(xuy) =
∑

m,n≥0

ηm+np(ΣmuΣn)

which have properties similar to functions pη:

• p ≤ p̂η ≤ p̂, p̂1 = p̂ and p̂0 = p,

• if 〈I, (Mx)x∈Σ, T 〉 be a minimal linear representa-

tion of p then 〈Îη, (Mx)x∈Σ, T η〉, where Îη = (Id −
ηMT

Σ )−1I , is a linear representation of p̂η .

However, proofs of the previous Section cannot be directly

extended to p̂η because p is bounded by 1, a property which

is often used in the proofs, while p̂ is not. Next lemma

provides a tool which allows to bypass this difficulty.

Lemma 6. Let 0 < η ≤ 1. For any integer n, (n+1)ηn ≤
Kη where

Kη =

{
1 if η ≤ e−1

(−eη ln η)−1 otherwise.
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Proof. Let f(x) = (x + 1)ηx. We have f ′(x) = ηx(1 +
(x + 1) ln η) and f takes its maximum for xM = −1 −
1/ ln η, which is positive if and only if η > 1/e. We have

f(xM ) = (−eη ln η)−1.

Lemma 7. Let w, u ∈ Σ∗. Then,
∑

x,y∈Σ∗

η|xy|1w=xuy ≤ Kη and p̂(u) ≤ Kηp(Σ
∗uΣ∗).

Proof. Indeed, if w = xuy, then |xy| = |w| − |u| and u
appears at most |w| − |u|+ 1 times as a factor of w.

p̂(u) =
∑

x,y∈Σ∗

η|xy|p(xuy)

=
∑

w∈Σ∗uΣ∗

p(w)
∑

x,y∈Σ∗

η|xy|1w=xuvy

≤ Kηp(Σ
∗uΣ∗).

For η ∈ [0, 1], let Ẑη(ξ) be the random matrix defined by

Ẑη[u, v] =
∑

x,y∈Σ∗

η|xy|1ξ=xuvy − p̂η(uv)

=
∑

x,y∈Σ∗

η|xy|(1ξ=xuvy − p(xuvy)).

and, for any k ≥ 0, let

S
(k)
p̂η

=
∑

u1u2...uk∈Σ∗

p̂η(u1u2 . . . uk).

It can easily be shown that E(Ẑη) = 0, S
(k)
p̂η

= IT (Id −
ηMΣ)

−1(Id − MΣ)
−k(Id − ηMΣ)

−1T , S
(k)
p̂0

= S
(k)
p and

S
(k)
p̂1

= S
(k+2)
p .

It can be shown that ||Ẑη||2 is bounded if η < 1.

Lemma 8. (Denis et al., 2013)

||Ẑη||2 ≤ (1− η)−2 + S
(1)
p̂η

.

Eventually, we can apply the Theorem 1 with b = (1 −
η)−2 + S

(1)
p̂η

, σ2 = KηS
(2)
p̂η

and k = 2 (Denis et al., 2013).

Theorem 4. Let p be a rational stochastic language, let
S be a sample of N strings drawn i.i.d. from p and let
0 ≤ η < 1. For all t > 0,

Pr



||ĤU,V
η,S −HU,V

p̂η
||2 >

√
2KηS

(2)
p̂η

t

N
+

t

3N

[
1

(1− η)2
+ S

(1)
p̂η

]




≤ 2t(et − t− 1)−1.

Remark that when η = 0 we find back the concentration

bound of Theorem 2. We provide experimental evaluation

of the proposed bounds in the next Section.

4. Experiments

The proposed bounds are evaluated on the benchmark of

PAutomaC (Verwer et al., 2012) which provides sam-

ples of strings generated from several probabilistic au-

tomata, designed to evaluate probabilistic automata learn-

ing. Eleven problems have been selected from that bench-

mark for which sparsity of the Hankel matrices makes the

use of standard SVD algorithms available from NumPy or

SciPy possible. The size N of the samples is 20, 000 ex-

cept for the problem 4 where N = 100, 000. Table 1 shows

some target properties of the selected problems: the size of

the alphabets and the exact values of S
(k)
p computed for the

different targets p. Figure 1 shows the typical behavior of

S
(1)
pη

and S
(1)
p̂η

, similar for all the problems.

Figure 1. Behavior of S
(1)
pη

and S
(1)
p̂η

for η ∈ [0; 1].

For each problem, the exact value of ||HU,V
S − HU,V

p ||2
is computed for sets U and V of the form Σ≤l, trying to

maximize l according to our computing resources. It is

compared to the bounds provided by Theorem 2 and Equa-

tion (1), with δ = 0.05 (Table 2). The optimized bound

(”opt.”), refers to the case where σ2 has been calculated

over U × V rather than Σ∗ ×Σ∗ (see the remark at the end

of Section 3.1). Tables 3 and 4 show analog comparisons

for the prefix and the factor cases with different values of η.

Similar results have been obtained for all the problems of

PautomaC. We can remark that our dimension-free bounds

are significantly more accurate than the one provided by

Equation (1). Notice that in the prefix case, the dimension-

free bound has a better behavior in the limit case η = 1
than the bound from Eq. (1). This is due to the fact that

in our bound, the term that bounds ||Z||2 appears in the 1
N

term while it appears in the 1√
N

term in the other one.

Additional experiments confirm the implications of these

results for spectral learning (see (Denis et al., 2013)).
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Table 1. Properties of the problem set.

Problem number 3 4 7 15 25 29 31 38 39 40 42

|Σ| 4 4 13 14 10 6 5 10 14 14 9

S
(2)
p 8.23 6.25 6.52 13.40 10.65 6.35 6.97 8.09 8.82 9.74 7.39

S
(3)
p 57.84 31.06 29.61 160.92 93.34 38.11 43.53 65.87 90.81 111.84 62.11

Table 2. Concentration values from various bounds for ||HU,V
S −HU,V

p ||2 for U = V = Σ≤l.

Problem number 3 4 7 15 25 29 31 38 39 40 42

l 8 9 8 5 5 9 7 4 6 4 7

||HU,V
S −HU,V

p ||2 0.0052 0.0030 0.0064 0.0037 0.0033 0.0045 0.0051 0.0058 0.0049 0.0037 0.0054
Eq. (1) 0.1910 0.0857 0.1917 0.1909 0.1935 0.1908 0.1911 0.1852 0.1925 0.1829 0.1936

Th. 2 (dim. free) 0.0669 0.0260 0.0595 0.0853 0.0761 0.0588 0.0615 0.0663 0.0692 0.0728 0.0634
Th. 2 (opt. U, V ) 0.0475 0.0228 0.0527 0.0284 0.0323 0.0472 0.0437 0.0275 0.0325 0.0243 0.0378

Table 3. Concentration values from various bounds for ||H
U,V

S −HU,V
p,η ||2 (prefix case) for U = V = Σ≤l with η = 1

2
for the first four

lines and η = 1 for the last four lines.
Problem number 3 4 7 15 25 29 31 38 39 40 42

l 8 9 8 5 5 9 7 4 6 4 7

||H
U,V

S −HU,V
p,η ||2 0.0067 0.0035 0.0085 0.0043 0.0041 0.0055 0.0073 0.0059 0.0061 0.0044 0.0062

Eq. (1) 0.7463 0.3326 0.7545 0.7515 0.7626 0.7250 0.7369 0.7051 0.7068 0.6753 0.7146
Th. 3 (dim. free) 0.0890 0.0339 0.0777 0.1162 0.1026 0.0770 0.0811 0.0884 0.0931 0.0983 0.0844
Th. 3 (opt. U, V ) 0.0636 0.0299 0.0697 0.0398 0.0457 0.0621 0.0577 0.0366 0.0432 0.0317 0.0498

||H
U,V

S −HU,V
p,η ||2 0.0141 0.0059 0.0217 0.0124 0.0145 0.0116 0.0182 0.0132 0.0135 0.0089 0.0127

Eq. (1) 3.1011 1.3079 2.7839 3.5129 3.0283 2.9286 2.6695 2.2395 2.8524 2.5132 2.7863
Th. 3 (dim. free) 0.1784 0.0582 0.1279 0.2967 0.2261 0.1450 0.1547 0.1899 0.2230 0.2472 0.1846
Th. 3 (opt. U, V ) 0.1281 0.0518 0.1166 0.1062 0.1057 0.1175 0.1099 0.0778 0.1020 0.0761 0.1077

Table 4. Concentration values from various bounds for ||ĤU,V
S −HU,V

p̂,η ||2 (factor case) for U = V = Σ≤l and η = 1/e.

Problem number 3 4 7 15 25 29 31 38 39 40 42

l 6 7 5 4 4 6 6 4 4 4 5

||ĤU,V
S −HU,V

p̂,η ||2 0.0065 0.0031 0.0071 0.0042 0.0033 0.0051 0.0072 0.0061 0.0065 0.0047 0.0060

Eq. (1) 0.9134 0.4107 0.9196 0.9466 0.9152 0.9096 0.9219 0.8765 0.8292 0.8796 0.8565
Th. 4 (dim. free) 0.0985 0.0374 0.0858 0.1292 0.1139 0.0849 0.0895 0.0979 0.1033 0.1092 0.0934
Th. 4 (opt. U, V ) 0.0601 0.0300 0.0619 0.0364 0.0412 0.0559 0.0589 0.0405 0.0356 0.0349 0.0444

5. Conclusion

We have provided dimension-free concentration inequali-

ties for Hankel matrices in the context of spectral learn-

ing of rational stochastic languages. These bounds cover 3

cases, each one corresponding to a specific way to exploit

the strings under observation, paying attention to the strings

themselves, to their prefixes or to their factors. For the last

two cases, we introduced parametrized variants which al-

low a trade-off between the rate of the concentration and

the exploitation of the information contained in data.

A consequence of these results is that there is no a priori

good reason, aside from computing resources limitations,

to restrict the size of the Hankel matrices. This suggests

an immediate future work consisting in investigating recent

random techniques (Halko et al., 2011) to compute singu-

lar values decomposition on Hankel matrices in order to be

able to deal with huge matrices. Then, a second aspect is to

evaluate the impact of these methods on the quality of the

models, including an empirical evaluation of the behavior

of the standard approach and its prefix and factor exten-

sions, along with the influence of the parameter η.

Another research direction would be to link up the prefix

and factor cases to concentration bounds for sum of random

tensors and to generalize the results to the case where a

fixed number ≥ 1 of factors is considered for each string.
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