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Abstract—Captures of IP traffic contain much information
on very different kinds of activities like file transfers, users
interacting with remote systems, automatic backups, or dis-
tributed computations. Identifying such activities is crucial for an
appropriate analysis, modeling and monitoring of the traffic. We
propose here a notion of density that captures both temporal and
structural features of interactions, and generalizes the classical
notion of clustering coefficient. We use it to point out important
differences between distinct parts of the traffic, and to identify
interesting nodes and groups of nodes in terms of roles in the
network.

I. INTRODUCTION

Measurement, analysis and modeling of network traffic at IP

level has now become a classical field in computer networking

research [10], [18], [15]. It relies on captures of traffic traces

on actual networks, leading to huge series of packets sent

by machines (identified by their IP adress) to others. It is

therefore natural to see such data as graphs where nodes

are IP adresses and links indicate that a packet exchange

was observed between the two corresponding machines. One

obtains this way large graphs which encode much information

on the structure of exchanges, and network science is a natural

framework for studying them [13], [8].

One key feature of network traffic is its intense dynamics.

It plays a crucial role for network optimization, fault/attack

detection and fighting, and many other applications. As a

consequence, much work is devoted to the analysis of this

dynamics [1], [9], [11], [7]. In network science, studying

such dynamics means that one studies the dynamics of the

associated graphs [5]. The most common approach relies on

series of snapshots: for a given ∆, one considers the graph

Gt induced by exchanges that occured in a time window from

t to t + ∆, then the graphs Gt+∆, Gt+2∆, and so on [17].

Many variants exist, but the baseline remains that one splits

time into (possibly overlapping) slices of given (but possibly

evolving) length ∆ [3].

Obviously, a key problem with this approach is that one

must choose appropriate values of ∆: too small ones lead to

trivial snapshots, while too large ones lead to important losses

of information on the dynamics. In addition, appropriate values

of ∆ may vary over time, for instance because of day-night

changes in activity. As a consequence, much work has been

done to design methods for choosing and assessing choices in

the value of ∆ [4], [6], [2]. In [6], [2], [12], the authors even

propose methods to choose values of ∆ that vary over time,

or to consider non-contiguous time windows. In all situations,

however, authors assume that merging all the events occurring

during a same time window is appropriate.

On the countrary, we argue that there are interactions in IP

traffic that occur concurently but at different time scales, and

that they should not be merged. For instance, users interacting

with a system will have a faster dynamics than a backup

service that automatically saves data every 24 hours, and a

slower dynamics than a P2P system or a large file transfer

between two machines. Likewise, attacks may have dynamics

that distinguish them from legitimate traffic [20]. This means

that different parts of the traffic may have different appropriate

values of ∆, even though they occur at the same time (or in

the same time window). These interactions are different in

nature; they reflect different roles for involved nodes (like an

end-user machine, or a backup server) that should be studied

separately to accurately reflect the actual activity occurring in

the network.

We propose in this paper an approach for doing so. It relies

on a notion of ∆-density that captures up to what point all

possible links occur all the time between nodes in a given set

(Section II). To this regard, it may be seen as a generalization

of classical graph density and its local version, clustering

coefficient. We show how this notion helps identifying one

or several appropriate time scales for various parts of the

traffic, and how mixing time and structure makes it possible

to identify (groups of) machines playing specific roles in a

network (Section III). All along this paper, we illustrate and

validate our approach using two real-world captures of traffic

on a firewall between a local network and the internet. It

consists of packets that were observed on the firewall in a

time period of one month.

II. NOTION OF ∆-DENSITY

We first present the framework and notations we use in the

whole paper. Then we define the ∆-density of one link and

finally we extend it to sets of links and nodes.

A. Framework

We model a trace of IP traffic as a link stream L = (li)i=1..n

where li = (ti, ui, vi) means that we observed at time ti a

packet from ui to vi. Such a stream comes from a capture

started at time α and stopped at time ω, and so α ≤ ti ≤
ω for all i. We consider here undirected links, i.e. we make



no distinction between (t, u, v) and (t, v, u). We assume in

addition that the stream is temporally ordered: for all i and j,

i < j implies ti ≤ tj . We call n the size of L and denote it

by |L|. We call L = ω − α its duration.

A link stream S is a substream of L if there exists a function

σ such that for all i = 1..|S|, si = lσ(i), and for all i =
1..|S| − 1, σ(i) < σ(i+ 1). In other words, all the links in S

also appear in L and they are in the same order. We denote

by S ⊆ L the fact that S is a substream of L.

Given a pair of nodes u and v, we denote by L(u, v)
the substream of L induced by (u, v), namely the largest

substream (ti, ui, vi) such that for all i, ui = u and vi = v.

By extension, given any set S of pairs of nodes we define the

substream L(S) induced by S as L(S) = ∪(u,v)∈SL(u, v).
For any given set of nodes S, we define L(S) the substream

induced by S, as L(S) = L(S × S).
The graph G(L) induced by stream L is defined by G(L) =

(V (L), E(L)), where V (L) = {ui, ∃(ui, vi, ti) ∈ L} and

E(L) = {(ui, vi), ∃(ui, vi, ti) ∈ L}. In our case, V (L) is

the set of observed IP adresses, and there is a link (u, v) in

E(L) if and only if we observed a packet from u to v. As

discussed in the introduction, IP traffic and other link streams

are often studied through this induced graph.

Let us consider a pair of nodes u and v occurring k times

(i.e. |L(u, v)| = k), and let us denote by ti the time at which

the i-th occurrence of (u, v) takes place. Then we define their

ith inter-contact time τi as τi = ti+1 − ti, for i from 1 to

k − 1. We define in addition τ0 = t1 − α and τk = ω − tk.

The distribution of inter-contact times is a key feature of

the dynamics of link streams, and has been widely studied

before [14]. We use it in the next section to define our notion

of density.

B. ∆-density of links

Suppose a duration ∆ between 0 and L is given. We first

define the ∆-density of a pair of nodes u and v, that we denote

by δ∆(u, v).
Density in a graph is the probability that a link exists

between two randomly chosen nodes. Similarily, we define

the ∆-density of (u, v) as the probability that a randomly

chosen time-interval of size ∆ contains (at least) an occurrence

of (u, v). In other words, the ∆-density of (u, v) measures

the extent at which (u, v) occurs (at least) every ∆ time, or

conversely the fraction of time-intervals of duration ∆ that

contain (at least) an occurrence of (u, v). this leads to the

following expression:

δ∆(u, v) = 1−
∑

i
max(τi−∆,0)

ω−α−∆ (1)

= 1−

∑
i

τi>∆
τi−∆

ω−α−∆ (2)

As illustrated in Figure 1, the numerator of the fraction

is global duration of all time intervals during which a time

interval of duration ∆ that contain no occurrence of (u, v)
starts. Similarily, the denominator is the duration of the time

interval during which a time interval of duration ∆ starts.

The fraction therefore is the fraction of all time intervals of

duration ∆ that contain no occurrence of (u, v), and so the

wanted probability is 1 minus this fraction.

The ∆-density reaches 1 if and only if a link between u and

v appears at least every ∆ time, and it is closer and closer to

0 as more and more intervals of size ∆ contain no such link.

It is exactly 0 when no link involving u and v occurs.

Fig. 1. Definition of the ∆-density. On the top line, the dots represent the
occurrences of a link (u, v), and the shaded intervals highlight where it is
possible to start an interval of duration ∆ containing no occurrence of (u, v).
The shaded part of the bottom line represents where it is possible to start an
interval of duration ∆.

In order to extend the notion of ∆-density to any set S

of links, we define it as the average of the ∆-density of the

elements of S:

δ∆(S) =

∑
(u,v)∈S δ∆(u, v)

|S|
(3)

This notion still captures no notion of structure and only

focuses on temporal aspects: it measures up to what point

interactions between links in S occur (at least) every ∆ time.

C. ∆-density of streams and sets of nodes

In a classical (undirected, simple) graph G = (V,E), the

density captures the extent at which every node is connected

to all others: δ(G) = 2·m
n·(n−1) where n = |V | is the number

of nodes and m = |E| is the number of links. In other words,

it measures the extent to which all possible links exist.

In a link stream L, we mix this structural point of view with

the temporal aspects captured above as follows:

δ∆(L) =
2 ·

∑
(u,v)∈V ×V δ∆(u, v)

|V | · (|V | − 1)
(4)

where V is the set of nodes involved in L. In other words,

the ∆-density of a link stream captures the extent at which all

possible links occur (at least) every ∆ time in the stream. It

is the average of the ∆-density of all possible pairs of nodes,

including the ones which do not interact in the stream.

Finally, just like one often studies the density of subgraphs

induced by a given set of nodes, we define the ∆-density of

any set V ′ ⊆ V of nodes as δ∆(L(V
′)), which captures both

the structural and temporal intensity of interactions among

nodes in this set. It is equal to 1 only if all nodes interact

with each another, and do so at least every ∆ time. It decreases

whenever two nodes in the set do not interact or a time interval

between two occurrences of a link is greater than ∆.



We then define ∆-cliques: just like cliques are graphs

with maximal density in classical graph theory, ∆-cliques are

streams with maximal ∆-density. Notice that the ∆-cliques of

a stream necessarily induce cliques in the graph induced by

the stream.

III. IDENTIFYING ROLES

We show in this section how our notion of ∆-density may

be used to identify distinct roles in a capture of IP traffic. We

typically aim at identifying backup servers, user machines,

or distributed applications. We first present the datasets we

use for our experimentations, then explain how to compute a

characteristic time for links and groups of links, and explore

a notion of clustering coefficient that combines time and

structure. We finally discuss how the obtained results may be

used for identifying roles in the network.

A. Our datasets

We rely for our experimentations on two datasets collected

in 2012. Both datasets consist of a one-month capture of the

headers of all IP packets managed by a firewall between a

large local network and the internet. They are however quite

different in their key features, which makes it interesting to

consider them jointly.

The first dataset, which we model by the link stream

A = (ai), contains 6 millions timestamped links, involving

183 distinct pairs of nodes, corresponding to 129 distinct

nodes. The second dataset, which we model by the link

stream B = (bi) contains 140 299 timestamped links. They

involve 60 330 distinct pairs of nodes, corresponding to 38 571

distinct nodes. It therefore appears clearly that, although more

exchanges occur in A than in B, these exchanges involve a

much smaller number of nodes than the ones in B.

B. Identifying relevant ∆

Our approach relies on the identification of relevant values

of ∆ that may reveal the dynamics of links, nodes, and larger

parts of the stream. To identify such values, we compute the

∆-density for various values of ∆ and observe the variations of

the ∆-density as a function of ∆. More precisely, we consider

∆ = 1.01i for all i such that ∆ is between 1 second and the

duration of the whole capture (namely ω − α = 2808927s).

The exponential growth in the considered values of ∆
deserves explanations. Indeed, we want to be able to identify

interesting values which are orders of magnitude of differ-

ences, such as one second and one day. In addition, there is a

significant difference between ∆ = 1s and ∆ = 30s, while we

make no significant distinction between ∆ = 24h = 86400s
and ∆ = 24h + 30s = 86430s. This is exactly what an

exponential growth of ∆ captures. We chose 1.01 to have a

large enough number of points in our plots to allow accurate

observation, while remaining reasonable (we obtain here 1118

points).

Notice that the ∆-density of a given pair of nodes (u, v)
necessarily grows to 1 when ∆ grows, as long as (u, v) occurs

at least once in the stream (otherwise the ∆-density is equal
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Fig. 2. ∆-density of streams A (blue circles) and B (red triangles) (vertical
axes) as a function of ∆ (horizontal axis, log scale). The horizontal lines
indicate the maximal reachable ∆-density, i.e. the density of the induced
graphs G(A) and G(B).

to 0 independently of ∆). Indeed, for small values of ∆, the

∆-density is close to 0, as almost no time interval of size ∆
contains an occurrence of the link. When ∆ grows, the number

of intervals with no such link decreases, and so the ∆-density

grows. When ∆ reaches its maximal value, i.e. the duration

of the whole stream, then clearly all intervals contain at least

one occurrence of the link, and so the ∆-density reaches 1.

When we consider the ∆-density of a set of pairs of nodes,

the same remarks hold. In the case of a link stream or the case

of a set of nodes, though, the situation is different. Indeed, in

these cases the pairs of nodes that never occur are taken into

account and lower the value of the ∆-density. Then, the ∆-

density still grows when ∆ grows, but its maximal value is the

(classical) density of the induced graph; it is reached when ∆
equals the whole duration of the stream. Then, the ∆-density

of each individual pair of nodes is either 0 (if it never occurs)

or 1 (if it occurs at least once), and the formulae defining the

∆-density are thenreduced to the formula for the density of

the graphs, see Section II. Figure 2 presents the evolution of

the ∆-density of link streams A and B presented above, as ∆
grows.

The plots show clearly that the ∆-density of A increases

sharply at ∆ ∼ 103 and ∆ ∼ 105, indicating that these

durations play an important role in this dataset. The plot for

B instead, grows smoothly towards its maximum. It increases

much faster by the end of the plot, indicating that many pairs

of nodes are seen only when one considers the whole stream’s

time span.

In order to gain more insight on these behaviors, we now

study the ∆-density of each single pair of nodes. We plot

the same quantities, namely the value of the ∆-density as a

function of ∆, for each pair of nodes (u, v). Figure 3 displays

two typical examples, one from A and the other from B.

Both plots display a sigmoid shape (dataset B features a
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Fig. 3. ∆-density (vertical axis) as a function of ∆ (horizontal axis, log
scale), for two typical links (one in A and one in B).

short but present plateau around ∆ = 106), indicating that

the ∆-density remains very small until a specific value of ∆,

and then it rapidly reaches its maximal value 1. Increasing

∆ further has no significant impact. This indicates that this

specific value plays a key role for this pair of nodes: it is

rare to have a longer time interval without an occurence of a

link involving them, while it is very frequent for shorter time

intervals.

In dataset A, we notice a sharp increase between ∆ = 104s
and ∆ = 105s, whereas in dataset B, the sharp increase is

close to the end of the plot. This indicates that unless ∆ is

very large, many intervals of size ∆ contain no occurrence of

the pair of nodes. In other words, all the occurrences of the

link fit in a small time interval, and studying the ∆-density of

this pair of nodes has little meaning, if any.

In order to build a more global view of a dataset, we apply

the following method. For each pair of nodes (u, v), we seek

the largest variation in the value of δ∆(u, v) as a function of

∆ (which corresponds to the sharpest increase in the plots of

Figure 3). To ensure that this variation is significant enough,

we discard the pairs for which it is lower than 15%. We

call the value of ∆ at which this largest variation occurs the

characteristic time of (u, v), and we denote it by τ(u, v).

We plot in Figure 4 the distribution of characteristic times

we obtain for each dataset. Of course, observing this distribu-

tion is very similar to observing the distribution of intercontact

times in a link stream. Nevertheless, we argue that observing

the variation of the ∆-density is simpler in this context,

and that observing intercontact times is only simpler when

considering a single pair of nodes (u, v), and not a subset of

pairs of nodes (or nodes).

It appears clearly that a large fraction of the links in A

have specific but distinct characteristic times: many have a

characteristic time close to 103s, many around 105s and most

others between 105s and 106s. This indicates three classes of

links (i.e. computer communications), which we will discuss
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Fig. 4. Complementary cumulative distribution of the characteristic time of
all pairs of nodes in our two datasets: for each value x on the horizontal axis,
we plot the number y of pairs having characteristic time larger than x.

in Section III-D. Notice however that large characteristic times

mean that all occurences of the corresponding links appear in a

very short period of time. This typically reveals pairs of nodes

that exchange packets during a connection that lasts only a few

seconds or minutes, but that do not exchange data on a regular

basis.

The situation for dataset B is quite different: a huge majority

of all characteristic times are close to the maximal possible

value, indicating that the occurrences of most links appear in

a very short period of time, and do not appear outside this

time interval. However, as displayed in the inset of Figure 4,

there is a non negligible number of links with a drastically

different behaviour, evidenced by much smaller characteristic

times. This shows that some links in the stream have a specific

role that distinguishes them from the vast majority of links.

C. Neighborhoods and clustering coefficient

We focused above on pairs of nodes. In order to gain insight

on more subtle structures, we study here the ∆-density of

nodes and their neighbors, and introduce a generalization of

the classical notion of clustering coefficient.

Let us first denote by N(v) the neighborhood of any node

v, i.e. the set nodes to which it is linked. Then the substream

L({v} × N(v)) is the stream of all the links between v and

its neighbors, while the substream L(N(v)) is the stream

of links involving two neighbors of v. The ∆-density of

these two substreams contains important information about v:

δ∆(L({v}×N(v)) indicates up to what extent the interactions

between v and its neighbors occurs at least once every ∆
seconds; δ∆(L(N(v)) indicates up to what extent all possible

pairs of neighbors of v interact at least once every ∆ seconds.

Notice that δ∆(L({v}×N(v)) captures the ∆-density of v’s

interactions. We therefore call it the ∆-density of v, and we

denote it by δ∆(v). Likewise, δ∆(L(N(v)) is the ∆-density of

the stream induced by the neighbors of v, just like the classical

clustering coefficient of a node in a graph is the density of

the subgraph induced by its neighbors [19]. For this reason,



we call it the ∆-clustering coefficient of v, we denote it by

∆-cc(v).
We now define for each node v its characteristic time τ(v)

in a way similar to previous section: we compute the variations

of δ∆(v) as a function of ∆ and select the value of ∆ at which

this variation is maximal. Figure 5 presents the distribution of

the characteristic times of all nodes.

Fig. 5. Complementary cumulative distribution of the characteristic time
τ(v) of each node v of both our datasets: for each value x we plot the
number of nodes v such that τ(v) is larger than x.

For both datasets, we observe a significant number of nodes

with non-trivial (i.e. much smaller than the whole duration

of the trace) ∆-density. This means that these nodes have

specific roles in the network, as we will discuss in next section.

We also observe that some values of characteristic times are

overrepresented, which is revealed by sharp decreases in the

plots. This indicates classes of nodes with similar behaviors

(at least regarding ∆-density).

When we turn to the computation of ∆-clustering coef-

ficient, we face a problem related to the way our data is

collected. Indeed, it consists in traffic managed by firewalls,

and so they mostly consist in packets exchanged between an

internal network and the rest of the internet. As a consequence,

the graph they induce between IP addresses is close to a

bipartite graph: nodes are separated into two distinct sets V1

and V2 and most links involve nodes in both sets. This implies

that there is only very rarely a link between two neighbors of

a same node. In our case, this happens for only 33 nodes in

dataset A, and this never happens in dataset B.

As the ∆-clustering coefficient of a node is 0 whenever there

is no link between its neighbors (like the classical clustering

coefficient in graphs), we focus here on the 33 nodes of A for

which the clustering coefficient is not 0. We compute for these

nodes their τ -clustering coefficient, i.e. for each node its ∆-

clustering coefficient when the value of ∆ is the characteristic

time of the node. These values are strongly influenced by the

degree of the nodes, and so we plot in Figure 6 for each node

its τ -clustering coefficientvs its degree.
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Fig. 6. For each node with nontrivial clustering coefficient, we plot its τ -
clustering coefficient (vertical axis) as a function of its degree (horizontal
axis).

This plot shows that most considered nodes have a signifi-

cant τ -clustering coefficient, much larger than 0 even for nodes

with large degree. This means that these nodes belong to very

structured substreams: many links exist among their neighbors,

and that the corresponding pairs of nodes are often observed at

least once in a time-interval of size τ . An exception is visible

on the plot: a node has degree over 100 but a τ -clustering

coefficient close to 0, meaning that this node belongs to a

star-like structure (almost none of its neighbors are linked

together).

D. Interpretation

In the previous sections, we have computed and observed

several statistics describing the temporal and structural behav-

iors of nodes and links in our datasets. We now turn to an

interpretation of these results in terms of the application area,

and in particular regarding the identification of links, nodes,

or groups of elements playing specific roles in the network.

We first identified in Section III-B three characteristic times

playing a key role in dataset A: around 1000 seconds (approxi-

mately 15 minutes), around 90000 seconds (approximately 24

hours), and around 500000 seconds (approximately 5 days).

Manual inspection of the data and discussion with network

operators revealed the presence of a backup server in the

local network, used by external machines, responsible for the

24h characteristic times. We also found, without being able to

identify their cause, regular communications every 15 minutes

from a subset of nodes. Finally, the largest characteristic time

is probably due to links appearing only a few times, and is

too large compared to the duration of the whole measurement

to be significant.

In dataset B, many pairs of nodes have a high characteristic

value which, as already said, has little significance. However,

a few pairs of nodes have a more interesting behaviour, as

seen on the inset of Figure 4. By inspecting the dataset, we



could identify from this a few servers with a regular pattern

of action: local backup servers and mail servers mostly.

The study of clustering coefficients revealed that some

nodes form groups which are densely connected: most of all

possible links among them appear, and do so on a regular

basis. This holds for a dozen groups of more than 5 nodes, and

even for a few groups of more than 10 nodes. This probably

reveals nodes involved in a common task distributed among

them, like a complex web service, a distributed computation,

or a distributed database.

We also noticed a node with high degree, above 100, but

very low clustering coefficient. This means that this machine

has many connections, but its neighbors are almost not linked

at all: we therefore have a star structure for this machine.

This information, added to the fact that this substructure has

a characteristic time close to 24 hours, makes it identifiable

as a backup server, periodically contacted by the same set of

nodes to save their data.

IV. CONCLUSION

In this paper, we have introduced the notion of ∆-density,

which captures up to what point links appear all the time

and/or all possible links between considered nodes occur all

the time. We illustrated the use of this notion on two real-

world captures of network traffic, and we have shown that

it allows to determine the characteristic times of parts of the

traffic in a simple manner. We have shown that many different

characteristic times coexist in such traffic, and we used them

to distinguish between nodes or sets of nodes playing specific

roles in the network. This includes for instance backup servers

or distributed applications. Such information is useful in two

means: to an attacker, who could identify relevant targets, and

to network operators, who could optimize services, improve

security, etc. It is also a contribution to our understanding of

real-world traffic, with applications to improved modeling and

simulation.

Our work may be extended in several ways. In particular,

we proposed one approach for quantifying the intuition behind

∆-density but variants may also be relevant. For instance, one

may slice the stream into pieces of duration ∆ and count the

fraction of slices containing the considered link. Although this

definition is very similar, it has small differences that should

be studied.

Our initial goal was to be able to identify distinct charac-

teristic times in a link stream, whereas most studies aggregate

information over a given time interval. There is still room

for significant progress in this direction. In particular, one

may identify several characteristic times for a same substream,

by detecting several sharp increases in the ∆-density as a

function of ∆ instead of only one. Going further, a node

may have a characteristic time that varies during time, like

the characteristic times between two connections during week

days and during week-ends, or characteristic times before and

after an intrusion. We think that ∆-density may easily be

extended to study such phenomena, and this is one of the

main directions of our future work.

In the context of IP traffic analysis and in other areas, an

important direction also is to extend our definitions to the case

of bipartite graphs, in particular the ones regarding clustering

coefficient. This may help in capturing more complex phe-

nomena and behaviors, and the notions defined in [16] could

certainly be useful for doing so.

Last but not least, the notions of ∆-density and τ -clustering

coefficient defined in this paper are very general, and may be

used to study any link stream like email exchanges, financial

transactions, and others. In all these cases, questions similar

to the ones addressed here arise.
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