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Abstract

The acoustic response associated with squeal noise radiations is a hard issue due to the
need to consider non-linearities of contact and friction, to solve the associated nonlinear
dynamic problem and to calculate the noise emissions due to self-excited vibrations. In this
work, the focus is on the calculation of the sound pressure in free space generated during
squeal events.

The calculation of the sound pressure can be performed by the Boundary Element
Method (BEM). The inputs of this method are a boundary element model, a field of nor-
mal velocity characterized by a unique frequency. However, the field of velocity associated
with friction-induced vibrations is composed of several harmonic components. So, the BEM
equation has to be solved for each frequencies and in most cases, the number of harmonic
component is significant. Therefore, the computation time can be prohibitive.

The reduction of the number of harmonic component is a key point for the quick estima-
tion of the squeal noise. The proposed approach is based on the detection and the selection
of the predominant harmonic components in the mean square velocity. It is applied on two
cases of squeal and allows us to consider only few frequencies.

In this study, a new method will be proposed in order to quickly well estimate the noise
emission in free space. This approach will be based on an approximated acoustic power of
brake system which is assumed to be a punctual source, an interpolated directivity and the
decrease of the acoustic power levels.

This method is applied on two classical cases of squeal with one and two unstable modes.
It allows us to well reconstruct the acoustic power levels map. Several error estimators are
introduced and show that the reconstructed field is close to the reference calculated with a
complete BEM.

1 Introduction

The brake squeal phenomenon is characterized by high frequency noise emissions due to friction-
induced self-excited vibrations. The prediction and the calculation of squeal noise are complex
tasks which are composed of several steps [1]. The first one deals with the nonlinear modeling
with the definition of the mechanical system geometry, the introduction of nonlinear laws corre-
sponding to the contact and friction phenomenon over the interface. Then, a stability analysis
is performed with respect to one or several parameters. This analysis allows us to detect the
unstable equilibrium configurations that may lead to squeal and provides the fundamental fre-
quencies of the unstable modes. The next step consists of calculating the time responses and
it has been shown in the literature that the stationary regime associated with the squeal has a
spectrum composed of fundamental frequencies (that should be different from the frequencies of
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the unstable modes [2]), their harmonic components and also their linear combinations. Then,
the calculation of the noise radiations during squeal event can be performed with the Boundary
Element Method [3, 4]. This is the classical way to well estimate the sound pressure. This nu-
merical method is based on the resolution of the Kirchhoff-Helmholtz equation which depends
on the wave frequency. Therefore, the sound pressure calculation has to be carried out for each
harmonic component of the velocity field.

In this aim, the multi-frequency acoustic calculation method has previously been developed
[1]. The method is based on the decomposition of the velocity into Fourier series. Therefore,
the global wave is decomposed into elementary waves with a unique frequency. The BEM is
then applied for each wave and the global sound pressure field is calculated by superposition.
The application of the BEM is composed of three steps. Firstly the boundary element model is
built and it is composed of the system skin. Secondly, the surface sound pressure is calculated
and finally, the sound pressure in the free space is evaluated by using the surface pressure.
So, the latter is calculated for each frequency and the free field pressure is calculated for each
frequency and each field plane. However, the number of frequencies can be significant making
the computation time prohibitive.

In a previous work [1], it has been shown that only few harmonic components are predom-
inant in the acoustic response. So it can be useful to determine these frequencies before the
application of the multi-frequency acoustic calculation method. The first aim of the current
paper is to develop a criterion based on the mean square velocity convergence (i.e. the dynamic
response) which allows us to detect the predominant frequencies.

The second objective of this work is to propose a new method which allows to quickly well
estimate the sound pressure in the free field. In order to calculate the radiations, the directivity
and a propagation model which describe the level decrease are required. The main idea is
to determine the directivity with the BEM and to determine an analytical function with an
interpolation. Finally, for each frequencies, the sound pressure can be evaluated at every field
points without the BEM.

The present paper is organized as follows. Firstly, the vibroacoustic of a squealing disc brake
system is presented. The brake system under study is detailed and the dynamic and acoustic
responses for two cases with one and two unstable modes are given. Secondly, the criterion
which allows us to detect the predominant frequencies in the dynamic response is presented and
applied for the two cases under study. Thirdly, the acoustic approximation method is presented
and several sound pressure error estimators are presented. Finally, the acoustic method is
applied and validated on the two cases.

2 Vibroacoustic of a squealing brake system

In this section, the simplified disc brake model under study is presented. The finite element
model, the modeling of the frictional interface and the stability results are detailed. Next, the
focus will be on the time responses associated with two classical cases of squeal with one and two
unstable modes. Finally, the multi-frequency acoustic calculation method is applied to calculate
the surface sound pressure and the sound pressure radiated in free space.

2.1 Brake system modeling

The two main components involved in the squeal are the disc and the pad which share a frictional
interface. This allows to focus on a simplified disc brake system composed of a circular disc
and a pad as illustrated in Figure 1. The inner radius of the disc is clamped due to the shaft
connection and the outline of the upper surface of the pad can only translate along the normal
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Figure 1: Brake system model and boundary element model. (a): Simplified disc brake system
and selected contact nodes •; (b): boundary element mesh used for the acoustic calculation.

z−direction to represent the caliper connection. In this work, automotive brake dimensions
have been used.

Contact and friction phenomenon occurs over the common frictional interface which is mod-
eled with nine uniformly spaced contact points as illustrated in Figure 1 (a).These contact
elements are arbitrarily chosen and these number and positions strongly influence the stability
analysis. However, increasing the number provides a better description of the interface but the
calculation performances can be much reduced. In this study, nine elements seem to be a good
compromise [2].

Between the previous selected points, nonlinear contact and friction forces are introduced.
The nonlinear contact force vector is described with linear and nonlinear stiffnesses and con-
tact/loss of contact configurations is considered. The cubic contact law associated with nonlinear
contact elements takes the following expression:

F d
contact,z =

{

kLδ + kNLδ
3 if δ < 0

0 otherwise
(1)

where δ = Xp −Xd is the relative displacement, Xp and Xd denote the normal displacements
of the pad and the disc respectively. kL and kNL are the linear and cubic stiffnesses, F p

contact,z

and F d
contact,z are the components of the normal contact force vector applied to the pad and the

disc respectively. It can be noted that F p
contact,z = −F d

contact,z. This contact force expression
has been chosen to fit experiments as explained in [5]. The main limitation of this formulation
is that it allows penetration between the disc and the pad due to the fact that the contact
stiffnesses are constant. A penalty algorithm which adjusts these stiffnesses can be used to
apply an impenetrability condition.

Involving friction, the friction coefficient µ is assumed to be constant for the sake of simplicity
and the classical Coulomb’s law is used to model the friction over the interface. Thus, the
nonlinear friction force vector over the frictional interface plane is defined by:







Fd
friction = µF d

contact,z

vr

||vr||

F
p
friction = − Fd

friction

(2)

where Fd
friction and Fd

friction are the friction force vectors applied to the disc and the pad respec-
tively. vr is the sliding velocity between the disc and the pad. A permanent sliding state is
considered. Finally, the braking pressure which activates the contact between the disc and the
pad is modeled with a constant uniform pressure applied over the back-plate of the pad.
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Case Friction coefficient Frequency f1 Hz Frequency f2 Hz Expected spectrum

1 0.72 929.8 - pf1, p ∈ N
∗

2 0.74 930.3 9418 ±mf1 ± nf2, m, n ∈ N

Table 1: List of cases under study. (1): One unstable mode; (2): two unstable modes.

This simplified modeling does not attempt to capture all the nonlinear effects but is suitable
for mode coupling instabilities. Moreover, it serves to illustrate the simplified approach for the
calculation of acoustic emission in the case of friction-induced noise and vibration.

A Craig and Bampton reduction method [6] is used to reduce the system size. The reduction
basis is composed of all the attachment modes and the first hundred eigenmodes of the structure
assuming the interface nodes are held fixed. This reduction provides a good correlation between
the whole and the reduced brake models until 20 kHz which is sufficient for the frequency range
of interest of the present study.

Finally, the equations of motion in the reduction space are given by Eq. 3:

MẌ+CẊ+KX = FNL(X) + F (3)

where M,C and K are mass, damping and stiffness matrices. X is the generalized displacement
vector and the dot denotes derivative with respect to the time. FNL defines the global nonlinear
force vector which contains linear and nonlinear parts of the contact force vector and also the
friction force vector applied to the disc and the pad. The vector F corresponds to the braking
pressure applied over the pad back-plate. Involving the damping matrix C, the following modal
damping is considered: a damping percentage ξ is used for stable modes and a damping rate ζi
for the ith coalescent modes, as explained in [1].

For the interested reader, extensive reviews about the modeling of the automotive disc brake
squeal can be found in [7, 8].

2.2 Stability analysis

The stability can now be estimated by analyzing the eigenvalues of the linearized equation of
motion. The linearization is performed near the sliding equilibrium configuration Xsliding which
corresponds to the quasi-static configuration of the rotating brake system under the braking
pressure. The eigenvalues and the eigenvectors of the linearized system are given by the following
equation:

(

λ
2M+ λC+ (K− JNL,Xsliding

)
)

Φ = 0 (4)

where λ is the diagonal matrix which contains the eigenvalues, Φ denotes the eigenvector matrix,
and JNL,Xsliding

is the Jacobian of the nonlinear force vector. The eigenvalues are complex due
to friction and if all the eigenvalues have a negative real part, the sliding equilibrium is stable
and the system reaches the sliding equilibrium configuration Xsliding. If at least one real part is
positive, then the sliding equilibrium is unstable, the system diverges and self-excited vibrations
are generated. In this work, this analysis is carried out with respect to the friction coefficient
µ. By analyzing the eigenvalues with respect to µ, two instabilities with one and two unstable
modes are detected. The two cases under study in this work are listed in Table 1.

The stability analysis, based on the associated linear system, allows to predict the squeal
onset and this ability has been experimentally validated by Massi et al. [9]. However, the authors
highlight the fact that a nonlinear model needs to be used to reproduce the squeal in the time
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domain. That is why a full time integration of the nonlinear system has to be performed to
calculate the nonlinear friction-induced squeal vibrations.

2.3 Self-excited vibrations

The time responses are calculated with a Runge-Kutta integration scheme for the cases 1 and
2. The initial conditions correspond to the associated sliding equilibrium configurations with a
slight disturbance. The results are similar with those shown in [1] and in order to condense the
contents of the present paper, only the spectrum of the stationary regimes for the two cases is
given.

For the case 1, Figure 2 (a) indicates that the harmonic components are composed of the
fundamental frequency f1 and several harmonic as 2f1 and 3f1.

The case 2 presents a more complex spectrum composed of the fundamental frequencies f1
and f2, several harmonic components 2f1, 3f1, 2f2, and also their linear combinations of the
form: ±mf1 ± nf2 where m and n are positive integers (see Figure 2 (b)).

These dynamics responses strongly depend on the contact status due to successive activa-
tion/deactivation of the contact stiffnesses during contact/loss of contact configurations. The
interface motion is therefore complex and the interested reader could find more details about
the contact status during squeal event in [2].

2.4 Noise emissions

The numerical study of acoustic radiations due to squeal events is a recent topic. In 2004, an
approach using a semi analytical plate kinematic has been used to estimate the noise radiations
due to modal force vibrations [10]. More recently, Oberst et al. [11] propose complete guidelines
for the numerical acoustic investigation of squeal. This study highlights the fact that the pad
geometry, the interface refinement and the contact/friction formulation have a strong impact on
the noise radiations in terms of both the levels and the directivity. The two mentioned papers
focus on the radiations generated with a forced dynamic response for a unique frequency. With
this method, it is possible to well estimate the radiations associated with a given mode. In
the present paper, the proposed approach involves the global radiations generated by the whole
dynamic responses i.e. with the whole nonlinear spectrum for a simplified phenomenological
brake model.

For this acoustic study, the boundary element model is composed of the upper part of the
system skin as illustrated in Figure 1 (b). Actually, it is assumed that these surface radiations
lead the outside global noise radiations. Moreover, over the connected points between the disc
and the pad (i.e. the red points in Figure 1 (a)), the normal velocities are averaged. Then
the multi-frequency acoustic calculation method allows us to estimate the noise levels over the
mesh and at every points in free space. The main idea of this approach is to apply the BEM
for each frequency and to calculate the global sound pressure by superposition. This method
has been developed in a previous work and the interested reader could refer to [1]. The BEM
contains two main steps: firstly the surface sound pressure calculation Pω

S which depends on
the surface normal velocity field Ẋn, then the free space sound pressure Pω is calculated with
the surface sound pressure. For more details about the Boundary Element Method, the reader
could refer to [3,4]. The previous fields depend on the wave frequency ω, that is why the BEM
has to be applied for each harmonic component. The global sound pressure field is calculated
by superposition and will be denoted by P in the free space and PS over the mesh. For the two
cases under study, the focus will be on the sound pressure levels Lp,bem = 10 log10(PP∗/P 2

ref),
where Pref = 20 µPa and the star denotes the conjugated.
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Figure 2: Nonlinear spectra and sound pressure levels in free space for the cases 1 and 2. (a):
Spectrum case 1; (b): Lp,bem case 1; (c): spectrum case 2; (d): Lp,bem case 2.

For the case 1, the total sound pressure levels radiated in free space are composed of one
main lobe along the z-direction, but four lobes are present over the (x, y) plane as indicated in
Figure 2 (c).

For the case 2, the free space radiations are more complex with several main directions of
propagation as illustrated in Figure 2 (d). This is due to the contribution of two unstable modes
in the dynamic response. Moreover, noise levels are also higher than for the case 1 due to the
higher amplitude of velocity.

It can be concluded that both the dynamic and acoustic responses are much complex for the
multi-instability case: the directivity presents several main propagation directions and higher
noise levels. The computation time of the surface pressure can be prohibitive due to the mesh
refinement and the frequency dependency. However, it can be noticed that the total surface
pressure is widely led by only few harmonic components. This feature has been investigated in
details in [1] where a convergence study of the sound pressure is carried out with respect to the
number of retained harmonic components. Therefore, if a criterion can be determined to select
the predominant harmonic components before solving the acoustic problem, it will be possible
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to quickly well estimate the sound pressure.
These numerical results are not experimentally confirmed but the main objective of the

present study is to propose a harmonic components selection method and an acoustic approx-
imation method. So, the development and the validation of the proposed simplified approach
are valid. However, squeal events with one or two unstable modes at the same time have been
experimentally reported in [12,13] respectively.

3 Harmonic components selection method

As explained in the previous section, the dynamic response associated with the squeal is com-
posed of several frequencies. These harmonic components can be numerous as for the case with
two unstable modes and the sound pressure has to be calculated for each frequency. However,
as previously explained, the total radiation is mainly led by few harmonic components. In this
section, a criterion which allows the detection of the predominant frequencies is presented. The
main idea is to select the harmonic components which “significantly” contribute to the mean
square surface normal velocity. By this way, an optimal Fourier basis is built with a limited
number of harmonic components.

3.1 Mean square velocity convergence

The initial Fourier basis is composed of all the detected harmonic components sorted by increas-
ing order. The detected components are linear combinations of the fundamental frequencies and
are of the form:

k1w1 + k2w2 + ...+ kiwi + ...+ kpwp (5)

with ki ∈ [−Nh, Nh], Nh is the highest order and p denotes the number of detected fundamen-
tal frequencies. Fourier transform of the surface normal velocity field provides the following
expression:

Ẋn(t) ≈

Nh
∑

k1=−Nh

...

Nh
∑

kp=−Nh

ak1, ..., kp cos(k1w1+ ...+kpwp)t+bk1, ..., kp sin(k1w1+ ...+kpwp)t (6)

where ak1, ..., kp and bk1, ..., kp are the Fourier coefficient vectors corresponding to the linear
combination of w1, ..., wp. By introducing the basis ω =[w1 ... wp]

T and the vector τ = ωt,
the approximated velocity takes the following form:

Ẋn(τ ) ≈ a0 +
∑

k∈Zp

ak cos(k.τ ) + bk sin(k.τ ) (7)

where the vector k contains the coefficients of all the linear combinations of the fundamental
pulsations ωj . It can be noticed that the velocity associated with the harmonic component m
is of the following form:

Ẋn,m(τ ) = akm cos(km.τ ) + bkm sin(km.τ ) (8)

The mean square velocity associated with a truncation N and denoted by Ek,N can now be
calculated:

Ek,N =

√

√

√

√

1

Ndof

[

a0 +

N
∑

m=1

Ẋn,m(τ )

]T [

a0 +

N
∑

m=1

Ẋn,m(τ )

]

(9)
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where N denotes the current truncation and Ndof is the number of degree of freedom of the
acoustic model. Then, the mean square velocity associated with the global response Ek,ref can
be calculated and used as a reference:

Ek,ref = Ek,Nmax
(10)

where Nmax denotes the number of harmonic components detected in the dynamic response.
Finally, the relative error ǫk,N is introduced to evaluate the convergence of the mean square
velocity with respect to the number of retained harmonic components:

ǫk,N =

∣

∣

∣

∣

∣

∣

∣

∣

Ek,N − Ek,ref

Ek,ref

∣

∣

∣

∣

∣

∣

∣

∣

with N = 1...Nmax (11)

3.2 Building of the optimized Fourier basis

The analysis of the previous error ǫk,N allows the detection of the predominant harmonic com-
ponents. The first step of this analysis is to introduce a target error Tole1. Then, the harmonic
components which “significantly” improve the mean square velocity are detected. As illustrated
in Figure 3, all the gaps di = |ǫk,i+1 − ǫk,i| are calculated and the highest correspond to the
predominant components (i.e. by introducing a threshold Tole2). The optimized Fourier ba-
sis is built by retaining only these predominant components. Then, the mean square velocity
associated with the optimized Fourier basis Ek,opt is calculated:

Ek,opt =
∑

m∈P

Ek,m (12)

where P denotes the current optimal basis defined by:

P = {i ∈ [1 ;Nmax]/di < Tole2} (13)

Ek,opt is compared with the reference mean square velocity Ek,ref with the following relative
error:

ǫk,opt =

∣

∣

∣

∣

∣

∣

∣

∣

Ek,opt − Ek,ref

Ek,ref

∣

∣

∣

∣

∣

∣

∣

∣

(14)

If the target Tole1 is not reached, the“less”predominant components associated with the“lower”
gaps di are added in the Fourier basis and P is updated. The final optimal Fourier basis Popt

corresponds to the following set:

Popt = {i ∈ [1 ;Nmax]/di < Tole2, ǫk,opt < Tole1} (15)

This method is illustrated in Figure 4.

3.3 Relevance of the optimized Fourier basis

In order to evaluate the relevance of the optimized Fourier basis, the surface acoustic power error
is also analyzed. This analysis is conducted by performing the complete direct BEM calculation
and is just presented to justify the use of the optimized basis. The main idea is to calculate the
relative error between the optimized surface acoustic power and the reference calculated with
all the harmonic components.

The surface acoustic power associated with the frequency ωi is of the following form:

WS(ωi) =
1

2
ℜ
[

PS(ωi)Ẋ
∗

n,i

]

(16)
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harmonic components sorted by order

i i + 1 i + 2 i + 3

di

di+1

di+2
ǫk,N

Figure 3: Detection of the predominant harmonic component

The surface acoustic power associated with the truncation N is given by:

WN =
N
∑

i=1

WS(ωi) (17)

The reference acoustic power Wref is calculated with all the harmonic components:

Wref = WNmax (18)

Then, the acoustic power convergence is studied with respect to the number of retained harmonic
component by introducing the following error:

ǫp,N =

∣

∣

∣

∣

WN −Wref

Wref

∣

∣

∣

∣

with N = 1...Nmax (19)

The optimized surface acoustic power Wopt is calculated with the optimized Fourier basis:

Wopt =
∑

i∈P

WS(ωi) (20)

The relevance of this basis in the acoustic problem is evaluated with the error between Wopt

and Wref:

ǫp,opt =

∣

∣

∣

∣

Wopt −Wref

Wref

∣

∣

∣

∣

(21)

3.4 Application to the single and multi-instability cases

In this section, the calculation of the optimal Fourier basis is conducted for the cases 1 and 2.
The dynamic response of the case 1 is composed of the fundamental frequency f1 and several

harmonic components 2f1, 3f1, 4f1, 5f1, 6f1 and 10f1. By using the method detailed in Figure 4
(a), the mean square velocity convergence can be analyzed as shown in Figure 5. The higher gaps
are detected for the zero order and for f1. By selecting these components, it is observed that
the optimized mean square velocity error ǫk,opt (i.e. the relative error between the reference
and the mean square velocity calculated with the optimized Fourier basis) reaches 0.48% as
illustrated in Figure 5 (a). In order to try to quantify the relevance of the optimized Fourier basis
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Tole1, Tole2

ǫk,opt = ∣

∣

∣

∣

∣

∣

Ek,opt−Ek,ref
Ek,ref ∣

∣

∣

∣

∣

∣

P = {i ∈ [1 ; Nmax] / di < Tole2}
Ek,opt = √

1

Ndof [a0 + ∑

m∈P

Ẋn,m(τ )]T [a0 + ∑

m∈P

Ẋn,m(τ )]

ǫk,opt < Tole1 ?
Popt : optimal Fourier basis

to add more omponentsDereasing of Tole2

Figure 4: Optimized Fourier basis calculation algorithm

over the acoustic response, the surface acoustic power error ǫp,opt is calculated with the same
components. It is observed in the Figure 5 (a) that the acoustic power is well estimated with
only few harmonic components with an error of 0.1%. Adding the less predominant harmonic
component 2f1 provides a final error ǫk,opt of 2× 10−2% as indicated in Figure 5 (a). Moreover,
the acoustic power error reaches 2× 10−4%. So, the convergence of the optimized mean square
velocity and acoustic power are in good agreement.

The focus is now on the optimal Fourier basis associated with the case 2 during the stationary
regime. As previously explained, the Fourier basis of this case is more complex than for the
single instability case. Figure 5 (b) shows the mean square velocity and the acoustic power errors
for the optimal Fourier basis. For this case, the optimized mean square velocity convergence is
slower due to the complexity of the spectrum. However, the iterative process allows to reach a
tolerance of about 0.5% for ǫk,opt with only five harmonic components. The optimized Fourier
basis is also suitable for the acoustic power with a final error of about 10−3%.

The optimal Fourier basis associated with the cases 1 and 2, calculated with a tolerance of
5× 10−2% and 0.5% respectively, is listed in Tables 2 and 3.

4 Acoustic approximation method

The second level of approximation involves the radiations in free space which are calculated with
the BEM for each frequency and each field plane. To avoid these calculations, an analytical
expression of 3-D directivity of the radiating structure is first determined and several indicators
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Figure 5: Iterative building of the optimized Fourier basis for the cases 1 and 2; black bar:
selected harmonic component; white bar: non selected harmonic component. (a): Case 1; (b):
case 2.

order f1 f2

0 0 0
1 1 0
2 2 0

Table 2: Optimal Fourier basis for the case 1 with Tole 1=5× 10−2%

are introduced to test its validity. Then, the acoustic power levels can be approximated with
an appropriated propagation model for every field planes without the BEM.

4.1 Calculation of the directivity

As previously explained, the first step of this approach is to well approximate the directivity. So,
the focus is on the approximation of the directivity over a sphere which contains the radiating
source. As seen in Figure 6 (a), the radiating source Ω is inside a sphere SR of radius R. The
sound pressure over SR is denoted by P (θ, φ, ω), where θ, φ and R are the spherical coordinates
of a point M over the sphere, and ω denotes the wave frequency. The acoustic intensity I is
defined by:

I(θ, φ, ω) =
P (θ, φ, ω)P ∗(θ, φ, ω)

ρc
(22)

where ρ is the density of the air, c denotes the speed of sound in dry air and the star corresponds
to the conjugate. The acoustic intensity along a given direction Iaxe is also introduced:

Iaxe = I(θ0, φ0, ω) (23)

where (θ0, φ0) denotes a given direction which will be used as a reference and it corresponds
to the direction along which the acoustic intensity I is maximum. Finally, the directivity h is

11



order f1 f2

0 0 0

1 0 1

2
-1 1
1 1

3
-2 1
2 1

Table 3: Optimal Fourier basis for the case 2 with Tole 1=0.5%

calculated by:

h(θ, φ, ω) =
I(θ, φ, ω)

Iaxe
(24)

The function h provides the directions along which the source can radiate. In order to eval-
uate this function, the Boundary Element Method is used. The sound pressure P (θi, φi, ω) is
calculated for all the points (θi, φi) ∈ SR and the discrete directivity hbem(θi, φi, ω) is calculated.

4.2 Directivity polynomial fitting

The main point of this approach is to calculate an analytical expression of the directivity which
can be evaluated for all points in free space. The previous BEM calculation only provides the
directivity values for a finite number of points over the sphere SR. A simple way to approxi-
mate this analytical function from its discrete values is to use a polynomial interpolation. The
interpolation problem is to determine the optimal degree which provides the best analytical
directivity function h:

h(θ, φ, ω) =
d

∑

i=0

i
∑

k=0

αikθ
kφi−k, with (θ, φ) ∈ R (25)

where αik denotes the unknown coefficients of the d-order polynomial. In such a problem, the use
of a high polynomial degree provides a well interpolated function over the calculation points but
in some case, it generates high oscillations between these points: this is the well known Runge
phenomenon. To avoid this phenomenon, the idea is to apply the polynomial interpolation over
a part of the known values and then to evaluate the analytical function over all the points. This
allows us to determine the best degree in which both minimize the interpolation error and avoid
the Runge phenomenon.

The directivity interpolation is performed over 80% of all the points divided in a random
set Mrand and a set composed of the directivity maximum points Mmax (Figure 6 (b)). Then,
the interpolated function h is evaluated over the whole set composed of the non selected points
MC, Mrand and Mmax. The optimal polynomial degree is then determined by minimizing the
error between the known values and the interpolated function. This problem takes the following
form:























Find d ∈ N minimizing

||h(M,ω)− hbem(M)||∞ = max
(θi,φi)∈SR

∣

∣

∣

∣

∣

d
∑

i=0

i
∑

k=0

αikθ
k
i φ

i−k
i − hbem(θi, φi, ω)

∣

∣

∣

∣

∣

with M = (θi, φi) ∈ SR

(26)
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Figure 6: (a): Draft of the radiating source Ω in the sphere SR; (b): illustration of the selected
points for the polynomial interpolation; (c)–(e): sphere refinement method; (c): SR,k, dθk, dφk;
(d): SR,k+1, dθk+1, dφk+1; (e): SR,k+2, dθk+2, dφk+2.

However, it is important to note that the interpolation strongly depends on the directivity
shape. In this paper, a preliminary work allows to use the polynomial fit. In the general
case, preliminary BEM calculations have to be performed to identify the global features of the
radiations. However, the previous method can still be applied by changing the interpolation
type.

4.3 Directivity convergence criteria

The previous method explains how to evaluate the polynomial interpolation quality but does
not provide information about the accuracy of the estimated directivity. By refining the sphere
SR (i.e. by adding more BEM calculation points), it is possible to improve the interpolated
directivity h. The issue is now to introduce a criterion to determine the optimal number of BEM
calculation points to reach the best directivity. In this section, the focus is on the directivity
convergence with respect to the number of BEM calculation points over SR.

4.3.1 Sphere refinement method

The first step consists of choosing an initial number of BEM calculation points. That is to say,
to fix the refinement of the first sphere denoted by SR,1 which contains a “small” number of
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points. For this first sphere, the directivity is calculated by using the interpolation processing
method previously defined. Then, the sphere is refined by adding points over SR,1. The k-th
sphere associated with the refinement k is denoted by SR,k and corresponds to the directivity
hωk . As illustrated in Figures 6 (c),(d) and (e), the successive sphere refinements are of the
following form:

• The sphere SR,k is built with the characteristic lengths: dθk; dφk

• The sphere SR,k+1 is built with the characteristic lengths: dθk+1 =
dθk
2 ; dφk+1 = dφk

• The sphere SR,k+2 is built with the characteristic lengths: dθk+2 = dθk+1; dφk+2 =
dφk+1

2

By successively decreasing the characteristic lengths dθk and dφk, the number of points growth
is not too fast and the optimal number of points is accurate. Moreover, it can be noticed that
the spheres are imbricated. Thus, the BEM calculations only involved the added points between
two refinement steps.

4.3.2 Global convergence

The directivity accuracy cannot be estimated over the current sphere because the interpolated
directivity minimizes the least square error between the interpolated function and the known
values over the sphere. That is why the directivity hωk is evaluated over an observation plane
Pobs as illustrated in Figure 9. For the k − 1-th sphere SR,k−1, the directivity hωk−1 is also
evaluated over Pobs. The global convergence criterion aims at evaluating the error between hωk
and hωk−1 over Pobs denoted by ǫωh,k. The sphere refinement is stopped when the previous error
reaches the initially fixed tolerance A1:

{

ǫωh,k = ||hωk (Mobs)− hωk−1(Mobs)||∞ < A1

with Mobs = (θobs, φobs) ∈ Pobs

(27)

4.3.3 Pattern convergence

The previous global criterion involves all the point of the observation plane Pobs. So, small
localized gaps between two successive interpolated directivity are considered and thus this cri-
terion is strict. A less restrictive way to estimate the directivity convergence is to analyze the
directivity pattern over the field plane Pobs. The directivity hωk is evaluated over Pobs and the
pattern C ω

k (which corresponds to the sphere SR,k) is detected:

C
ω
k (Mobs) =

{

1 if hωk (Mobs) ≥ h̄ωk (Mobs)

0 otherwise
(28)

where the bar denotes the mean. For the reader comprehension, a draft of the pattern detection
is given in Figure 9. The sphere refinement is stopped when the relative error between the
patterns C ω

k and C ω
k−1, denoted by ǫωC,k, reaches the tolerance γ% as illustrated in Figure 7 (a).

Moreover, the gradient of the relative error ǫωC,k must be less than the tolerance γδ to obtained
the stabilization of the solution (see Figure 7 (b)). The relative error between two successive
patterns takes the following form:

ǫωC,k =
card{(θobs, φobs) ∈ Pobs/|C

ω
k − C ω

k−1| = 1}

card(Pobs)
(29)

where card denotes the number of elements of a given set. ǫωC,k corresponds to the percentage
of added information between two successive refinements. It does not consider the values of the
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Figure 7: Illustration of the directivity convergence criterion involving the detected pattern.
(a): Relative error between two patterns ǫωC,k with respect to the number of added points ∆k;
(b): draft of the error gradient δωk

directivity but only its shape over a given plane: that is why it is less restrictive than the first
criterion. Therefore, the directivity convergence criterion has the following expression:

ǫωC,k ≤ γ% and δωk ≤ γδ with δωk =
ǫωC,k+1 − ǫωC,k

∆k+1 −∆k

(30)

where γ% and γδ denote the tolerance of the relative error and its gradient respectively, ∆k

corresponds to the number of added points between the sphere SR,k+1 and SR,k:

∆k = card(SR,k+1)− card(SR,k) (31)

These two criteria will be used to evaluate the directivity convergence for all the detected
harmonic components ωi. The comparison between the two convergence results will allow to
estimate the sensitivity of the approximated acoustic levels with respect to the convergence
criterion. An overview of the directivity calculation is given in Figure 8.

4.4 Acoustic power level reconstruction

The Boundary Element Method provides the sound pressure at every point in the free space.
So, it is possible to directly calculate the level of acoustic pressure Lω

p,bem for a given harmonic
component. In this simplified approach, the pressure is not known and the focus is on the
acoustic power W and its levels LW = 10 log10(W/Wref), where Wref = 10−12 watt denotes
the reference acoustic power. The aim of this method is to reconstruct the acoustic power and
to calculate the levels LW to estimate the noise radiations in free space. The acoustic power
of a given harmonic component ω associated with the directivity hωk is denoted by Wω

k . The
associated levels in decibels corresponds to the variable Lω

W,k. Three information are necessary
to calculate Wω

k at every points:

• the directivity hωk which is calculated with the previously presented polynomial fit

• the input surface acoustic power vector Φω which corresponds to Φω
i = 1

2ℜ
[

PS,iẊ
∗

n,i

]

,

where PS and Ẋn denote the surface pressure and the surface normal velocity vectors
respectively
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Figure 8: Calculation of the interpolated directivity: polynomial fitting and convergence test

• a propagation model describing the noise level decrease with the distance from the source

Involving the input surface acoustic power, it is directly obtained with the surface pressure
calculated by the Boundary Element Method, and the surface normal velocity field calculated
by temporal integration. The first approximation used in this approach is to consider that the
radiating source Ω is a punctual source Ωp. That is to say, the source Ω generating the acoustic
power vector Φω is replaced with a punctual source Ωp with the scalar acoustic power Φω

p . Ωp

is located at the mean position of Ω and Φω
p corresponds to the average of Φω.

Moreover, a classical propagation model is to consider that the acoustic power in free space Wω
k

decreases as 1
R2

obs

where Robs is the distance from the source Ωp. Then, the acoustic power in

free space is calculated with the following expression:

Wω
k (M) = Φω

pSΩ
hωk (M)

R2
obs

(32)

where SΩ denotes the surface of the source Ω. The variable M denotes a point in the free space
and Robs is the distance of M from the punctual source Ωp. Then, the acoustic power levels
Lω
W,k are calculated and compared with the sound pressure levels Lω

p,bem calculated with the
Boundary Element Method. The acoustic power is calculated for each harmonic components
and the global acoustic power field Wtot is obtained by superposition.
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Figure 9: Draft of the parameters used for the directivity convergence criteria

4.5 Solution accuracy: partial BEM

The presented method allows us to calculate the acoustic power but does not provide an error
estimation of the approximated solution. In this section, a method which allows us to quickly
estimate the accuracy of Lω

W,k is presented. The main idea is to use the Boundary Element
Method for a “small” set of points. The set of points is determined by detecting the pattern
C ω
W,k(M) of LW,k(M)ω over the observation plane under study:

CW,k(M)ω =

{

1 if Lω
W,k(M) ≥ L̄ω

W,k(M)

0 otherwise
(33)

Then, the BEM is used only over the boundary of CW,k(M)ω, denoted by ∂C ω
k , which is com-

posed of a small number of points. Finally, the error estimation consists of comparing Lω
W,k and

Lω
p,bem over this set of points denoted by Miso.
Another set of points is also used to quantify the quality of the approximated acoustic

power. It is composed of all the point inside a circular disc centered over the maximum of Lω
W,k

denoted by Mdisc. This set of points aims at locally evaluating the error near the main areas of
propagation.

Three relative errors will be used in the next section:

ǫωbem = ||Lω
W,k − Lω

p,bem||∞ (34)

ǫωdisc = ||Lω
W,k(Mdisc)− Lω

p,bem(Mdisc)||∞ (35)

ǫωiso = ||Lω
W,k(Miso)− Lω

p,bem(Miso)||∞ (36)

where ǫωbem denotes the relative error with the complete BEM solution, ǫωdisc corresponds to the
relative error with the partial BEM calculation for the disc and ǫωiso is the relative error with
the partial BEM calculation for the pattern boundary.

5 Application to single and multi-instability cases

In this section, the acoustic approximation method is applied for the optimized basis associated
with the cases 1 and 2. For the two cases under study, the directivity interpolation method
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Figure 10: Sound pressure levels in the free field calculated with the BEM. (a): Case 1-Lω1

p,bem;
(b): Case 1-Lω2

p,bem; (c): Case 2-Lω4

p,bem.

presented in Section 4.1 is applied for each harmonic component of the optimized Fourier basis.
The directivity convergence is investigated with the criteria defined in Section 4.3. Then, the
acoustic power levels are calculated with Equation 32 for a field plane of 1.5×1.5 m, located at
5 × 10−2 m centered over the disc and in the (x,y) plane. The reconstructed acoustic power
levels accuracy is estimated with the direct BEM results, and the two partial BEM solutions.

As previously explained, the focus is on the outside noise radiations. Therefore, the area of
interest is along the z-direction and this allows us to focus on a half sphere centered over the
disc with a radius R = 2 m. The directivity does not depend on the distance from the source
so the radius R can be arbitrarily chosen. The only limitation is the fact that the sphere must
enclose the source. Moreover, the initial number of points over the sphere is set to 256. By using
the sphere refinement method described in Section 4.3.1, several half spheres are generated and
their features are listed in Table 4.

iteration number k 1 2 3 4 5 6 7 8
sphere name SR,k SR,1 SR,2 SR,3 SR,4 SR,5 SR,6 SR,7 SR,8

number of points card(SR,k) 256 512 1024 2048 4096 8192 16384 32768

Table 4: Features of the half spheres generated with the sphere refinement process

The method will be applied on the cases 1 and 2 with the associated optimized Fourier
basis (see Tables 2 and 3). To validate the results, direct BEM calculations are performed over
the field plane and the targets are presented in Figure 10. Figures 10 (a) and (b) corresponds
to the sound pressure levels associated with the first and the second harmonic components
Lω1

p,bem and Lω2

p,bem respectively. It is observed the presence of four lobes for the two harmonic
components with different patterns and shapes. The sound pressure levels associated with the
fourth harmonic components of the case 2 Lω4

p,bem are presented in Figure 10 (c) . Six main
directions of propagation are observed. Therefore, the effectiveness of the method is tested by
trying to reconstruct the acoustic power level for a “simple” and“complex”propagation patterns
(i.e. cases 1 and 2 respectively).
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5.1 Single instability case

The optimized Fourier basis associated with this case is given in Table 2. In this simple case,
two harmonic components are sufficient to describe the dynamic response and thus the acoustic
approximation method is applied for these two frequencies. The directivity associated with the
component ω1, denoted by hω1

bem,k, is presented in Figure 11 (a). As expected, the directivity
shape over the sphere is quiet simple and smooth. The quality of the directivity hω1

bem,k seems
to be not significantly enhanced by refining the sphere. The directivity interpolation process
allows to well estimate the directivity as indicated in Figure 11 (b). It is observed that the
process is very efficient to interpolate this simple shape.

The convergence of the directivity (i.e. the criterion which allows to stop the sphere re-
finement process) is now investigated with the two directivity convergence criteria. For each
sphere the interpolated directivity is evaluated over a field plane as illustrated in Figure 12. It
can be seen that the pattern seems to be well established for a small number of points over the
sphere. Actually, it is possible to stop the refinement process at the fourth iteration (i.e. k = 5)
regarding the directivity shape. The first criterion which compares two successive directivities
over the field plane is used and indicates that the convergence is fast as illustrated in Figure
12 (c). Actually, the associated error ǫω1

h,k is near 0% for k = 5 (i.e. for the sphere SR,6 with
8192 points). The second criteria involves the pattern convergence. Figure 12 (b) shows the
successive detected patterns and it can be seen that the convergence is also fast. The four lobes
shape and orientation are quickly constant. This can also be seen in Figure 12 (d) where the
pattern error ǫω1

C,k is near 0% for k = 4 (i.e. for SR,5 with 4096 points). Moreover, the gradi-

ent of the previous error denoted by δω1

I quickly converges: δω1

3 is about 10−4 which indicates
that the solution is stabilized. To conclude this analysis, the convergence of the directivity has
been illustrated on two criteria and for this case, the pattern convergence seems to be the most
efficient.

The previous analysis is now performed for the second harmonic component of the optimized
Fourier basis associated with the case 1. The directivity is estimated with the BEM and presents
two main directions of propagation as indicated in Figure 13 (a). The interpolation process
associated with each sphere shows that this directivity can be well represented with few points
and the Figure 13 (b) indicates that the process is efficient.

Involving the directivity convergence, Figure 14 (a) shows that the shape is different from
the first harmonic components with two main areas of propagation. The associated global
error presents irregular variations as indicated in Figure 14 (c) and this criterion provides an
acceptable global error ǫω2

h,k of 2% for the seventh sphere (i.e SR,7 with 16384 points). Involving
the pattern convergence, the shape is well established at the sixth iteration associated with C

ω2

6

as indicated in Figure 14 (b). The analysis of the pattern error and its gradient shows that the
error evolution is smoothed by this criterion (see Figure 14 (d) top). It can be seen that the
pattern error associated with the fifth iteration is less than 2% and the associated gradient (i.e.
δω2

5 ) is about 10−4. So, the pattern error is still more efficient and provides a faster convergence.
As previously explained, the global error ǫωh,k is more strict than the pattern error and this

explains the fact that the pattern error has more regular variations and a faster convergence.
Moreover, it can be seen in Figure 14 (a), for hω2

4 , that high localized values are present and
disturb the global shape. This is a consequence of the interpolation process: in some cases a
minimal number of points over the sphere are needed to observe the start of the directivity
convergence. Moreover, the determination of the optimal interpolation degree is iteratively
performed and this process can be enhanced to improve the directivity convergence. The global
error considers those localized values and thus, its evolution is irregular. On the other hand,
the pattern error does not consider this numerical phenomenon and this is why its evolution is
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smooth. Therefore, it can be concluded that the pattern error is more efficient to evaluate the
directivity convergence.

Another interesting aspect of this method is the fact that the optimal number of BEM
calculation points which allows to reach a given error is automatically obtained. Moreover,
this optimal number of points can be different for each harmonic component: some frequencies
have a “simple” directivity (i.e. as for ω1) and others have a complex one (i.e. as for ω2). In
general, the higher the frequency is, the more complex the directivity pattern is. Therefore,
more BEM calculation points will be needed for the high frequency radiations than for the low.
However, to limit the number of calculation points, an interesting way is to link the tolerance
with the order of the component in the optimized Fourier basis: as the components are sorted
by predominance, the tolerance can be “high” for the first few ones and “low” for the last.

5.1.1 Acoustic power levels reconstruction in free space

In order to establish the relevance of the approximated directivity, the focus is now on the
acoustic power levels reconstruction. This section aims at calculating the levels of acoustic
power for each directivity associated with each sphere and for each frequency. The results will
allow us to highlight the effectiveness of the pattern convergence error. Moreover, to quantify the
accuracy of the reconstructed field, the results will be compared with a direct BEM calculation
and the two partial BEM criteria (i.e. the circular patch and the pattern boundary control
points).

As previously explained, the acoustic power levels are calculated with Equation 32 and
Figure 15 shows the reconstruction of the two harmonic components of the case 1. Involving
the levels Lω1

W,k of the first component ω1, Figure 15 (a) indicates that the convergence seems
to be fast as for the directivity convergence (see Figure 12). The four lobes quickly appear and
are well established since the fourth iteration. By analyzing the target level map (i.e. the direct
BEM calculation in Figure 10 (a)), it can be concluded that the target is reached in terms of
levels and pattern. The same analysis can be performed for the second harmonic component
ω2: the convergence is still fast, the shape is quickly well established as indicated in Figure 15
(c). Moreover the target presented in Figure 10 (b) is also reached.

5.1.2 Estimation of accuracy of the approximated solution

The solution accuracy is now estimated by performing a comparison with the direct BEM
calculation, and the two partial BEM solutions (see Equations 34, 35 and 36). Figure 16 (a)
shows the relative error between the reconstructed acoustic power levels and the BEM sound
pressure levels denoted by ǫωbem. It is observed that the error does not exceed 9% for all the
components and that the approximation converges. For the stabilized solution, the error is
about 6.5% for ω2 and 2.2% for ω1. Moreover, it is observed that the solution is stabilized since
SR,5 and SR,6 for ω1 and ω2 respectively. These two spheres correspond to the prediction given
by the directivity pattern error whereas the global directivity error provides an overestimation
of the number of BEM calculation points. Therefore, it can be concluded that the pattern error
and its gradient are a relevant and efficient to well estimate the directivity convergence.

However, the main idea of the proposed method is to avoid the use of the BEM. That is
why, the criteria involving the partial BEM indicators have been introduced. Involving the
circular patch centered over the maximum acoustic power level, the error ǫωdisc quickly converges
as indicated in Figure 16 (b). However, this error estimator provides an overestimation of the
final error. Involving the error given by the partial BEM calculation for the pattern boundary,
it is observed the same kind of convergence as for the two previous errors but the final value is
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close to the global BEM calculation. From this point of view, it can be concluded that the “iso-
value” error is the most efficient. This better error estimation is due to the fact that both the
levels and the iso-value shape are included in this indicator and that is why it is more relevant.
For the two harmonic components under study for the case 1, an overview of the associated
detected iso-value is presented in Figures 15 (b) and (d). For the reader comprehension, it can
be noticed that the number of BEM calculation points represents about 10% of the field points
for the two partial BEM criteria.

5.2 Multi-instability case

The global method has been applied on the case 1 and validated for two simple directivity
patterns. The focus is now on the cases 2 with two unstable modes. The associated optimized
Fourier basis is composed of five harmonic components and their radiations are complex. In
order to test the method on the most complex case, the focus is on the fourth harmonic com-
ponent ω4 associated with the frequency −2f1 + f2. The radiations over the field plane present
six lobes as indicated in Figure 10 (c).

5.2.1 Directivity calculation

The directivity interpolation process is applied and the BEM calculations over the spheres
highlight a complex directivity with small localized areas of propagation as illustrated in Figure
17 (a). Despite the complexity of the directivity, the polynomial interpolation process is efficient
as indicated in Figure 17 (b). However, more points are needed to well represent the directivity
shape than for the case 1. Therefore, a slower convergence can be expected.

The directivity function is now evaluated over the field plane and two convergence criteria
are analyzed. Firstly, a proper directivity shape appear only since the fourth iteration as
illustrated in Figure 18 (a). The global directivity error ǫω4

h,k presents irregular variations as for
the case 1. Moreover, in this case this indicator cannot be used due to the fact that it does
not converge. Involving the detected patterns, it is observed that the shape converges: five
directions of propagation clearly appear and the sixth appears at the last iteration (see Figure
18 (b)). The pattern error smoothly decreases and this indicator highlights the convergence
as indicated in figure 18 (d). The gradient also decreases and this shows the stabilization of
the solution. However, as expected, the convergence is slower than for the case due to the
complexity of the directivity.

The same analysis is performed for the other components (i.e. ω1 = 2πf2, ω2 = 2π(−f1+f2),
ω3 = 2π(f1 + f2) and ω5 = 2π(2f1 + f2)) and the global error does not allow us to stop the
sphere refinement process due to irregular variations (results not presented). However, the
pattern error and its gradient provide better indications about the directivity convergence as
indicated in Figure 19. The error evolution is more smooth for all the harmonic components.
Therefore, it is possible to set the tolerances to reach for the error ǫωC,k and its gradient δωI . For
this criterion, the convergence is still slow due to the complexity of the directivity.

5.2.2 Acoustic power levels reconstruction in free space

The focus is now on the acoustic power levels in free space and as previously, only the results
involving the fourth harmonic component ω4 are presented. Figure 20 (a) shows the reconstruc-
tion of Lω4

W,k for each iteration. It is observed that the shape presents four lobes for the five first
iterations, then a fifth appears and finally the six expected lobes are present. So, the method is
able of reconstructing the target BEM solution in terms of levels and shape (see Figure 10 (c)).
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However, as previously explained, the number of iterations is higher than for the case 1 but the
optimal number of calculation points is also well estimated.

The accuracy of the solution for each harmonic component is investigated by using the three
criteria involving the complete and the two partial BEM calculations. By using the complete
BEM calculation, it is observed that the error is less that 8% as indicated in Figure 21 (a).
Moreover, as expected, the error increases with the frequency. So, it can be concluded that the
method is efficient even for such a complex case.

The comparison with the partial BEM over the disc provides an error presenting irregular
variations as indicated in Figure 21 (b). However, the error values are in accordance with the
complete BEM error. Involving the pattern boundary, it is calculated with the BEM on the
field points of the pattern boundary ∂C ω

k as illustrated in Figure 20 (b). This error has the
same features as the error with the disc and provides similar values and evolution. Therefore,
in this case, it can be concluded that the two error indicators ǫωdisc and ǫωiso are equivalent and
both provide a good estimation of the error with the complete BEM calculation.

5.3 Effectiveness of the proposed approach

To conclude on the effectiveness of the proposed approach, it is important to note the following
points. Firstly, the field plane used in this study contains about 1000 points. The BEM
calculation time is about 1 s per points, i.e. about 16 min. With the proposed method, the
acoustic power level reconstruction is close to be instantaneously achieved in this case. Secondly,
even if the number of BEM calculation points can be large to achieve the directivity convergence,
this calculation is performed only one time per frequency. Moreover, it has been shown that
good results are obtained for tolerances which are not “too” strict (i.e. for a small number of
points). Finally, this approach needs more time computation for the directivity calculation,
but this field allows us to instantaneously reconstruct the free space noise levels without any
limitations on the number of field points.

6 Conclusion

This work proposes a simplified approach for the calculation of acoustic emission associated with
disc brake squeal events. A simplified disc brake model with nonlinear contact and friction laws
is investigated. This simplified brake is able of reproducing two classical cases of instabilities
with one and two unstable modes for which the noise radiations have been characterized with
the multi-frequency acoustic calculation method.

The selection of the predominant harmonic components in the dynamic response based on
the mean square velocity is applied on a single and a multi-instability cases. This criterion allows
to significantly reduce the number of harmonic components and guarantee the convergence of
the associated surface acoustic power. Only two components are needed to well describe the
mean square velocity and the surface acoustic power for the case 1 and only five for the second
case.

Therefore, the simplified acoustic method is applied for the optimal Fourier basis of each case.
For the first case, the directivity interpolation process allows us to well estimate the directivity
over a sphere with a “small” number of points. The directivity convergence criterion involving
the pattern is very efficient and allows us to stop the sphere refinement process for the optimal
number of point. The propagation model is then applied to reconstruct the acoustic power levels
in free space and the results are in good agreement with the direct BEM calculations. To control
the final error, BEM calculation points are used: a first set composed of a disc over the field
plane and another over the boundary of the detected pattern. It is shown that the second one

22



provides a better estimation of the solution accuracy for this case. For the two unstable modes
case, the directivity is more complex. However, the method is still efficient but the convergence
is slower. The directivity is well estimated and the reconstructed field has a excellent quality.
However, for this case, the two error indicators are equivalent.

Finally, the coupling between the harmonic component selection and the approximation of
the acoustic power in free field is very efficient. It allows us to well reduce the computation
time and guarantees a controlled accuracy of the solution.
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Figure 11: Directivity polynomial fit over the spheres SR,k for the single instability case: har-
monic component ω1 = 2πf1. (a): Directivity calculated with the BEM hω1

bem,k; (b): interpolated
directivity hω1
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Directivity over the field plane; (b): detected pattern; (c): global error ǫω1
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Figure 13: Directivity polynomial fit over the spheres SR,k for the single instability case:
harmonic component ω2 = 4πf1. (a): Directivity calculated with BEM hω2

bem,k; (b): interpolated
directivity hω2

k .

27



(a) e
(b)

256 2048 4096 8192 16385
0

10

20

30

40

50

60

70

80

number of added points

εω
2

h
,k

(c)

1 2 3 4 5 6
10

−8

10
−6

10
−4

10
−2

10
0

gradient indice

δω
2

I

δω2

1
δω2

2 δω2

3
δω2

4 δω2

5

δω2

6

256 2048 4096 8192 16385
0

2

4

6

8

10

12

number of added points

εω
2

c
,k

δω2

1

δω2

2

δω2

3

δω2

4
δω2

5 δω2

6

(d)
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Directivity over the field plan; (b): detected pattern; (c): global error ǫω2
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error ǫω2
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Figure 15: Acoustic power levels reconstruction for the case 1. (a), (b): Component ω1;
(c),(d): component ω2. (a): Acoustic power levels Lω1

W,k: case 1-ω1; (b): detected iso-value
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Figure 16: Accuracy estimation of the approximated acoustic power levels for the case 1. (a):
Comparison with the direct BEM calculation; (b): comparison with the partial BEM: disc; (c):
comparison with the partial BEM: iso-value.
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Figure 18: Directivity convergence with respect to the number of BEM calculation points for
the case 2: harmonic component ω4 = 2π(−2f1 + f2). (a): Directivity over the field plane; (b):
detected pattern; (c): global error ǫω4
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Figure 19: Directivity pattern relative error ǫωi

C,k for the component (a) ω1, (b) ω2, (c) ω3 and
(d) ω5.
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Figure 20: Acoustic power levels reconstruction for the case 2 associated with the harmonic
component ω4 = 2π(−2f1 + f2). (a): Reconstruction of the approximated acoustic power level
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Figure 21: Estimation of accuracy of the approximated acoustic power levels for the case 2.
(a): Comparison with the direct BEM calculation; (b): comparison with the partial BEM: disc;
(c): comparison with the partial BEM: iso-value
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