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Abstract

Background: V(D)J recombinations in lymphocytes are essential for immunological diversity. They are also useful
markers of pathologies. In leukemia, they are used to quantify the minimal residual disease during patient follow-up.
However, the full breadth of lymphocyte diversity is not fully understood.

Results: We propose new algorithms that process high-throughput sequencing (HTS) data to extract unnamed V(D)J
junctions and gather them into clones for quantification. This analysis is based on a seed heuristic and is fast and
scalable because in the first phase, no alignment is performed with germline database sequences. The algorithms
were applied to TRγ HTS data from a patient with acute lymphoblastic leukemia, and also on data simulating
hypermutations. Our methods identified the main clone, as well as additional clones that were not identified with
standard protocols.

Conclusions: The proposed algorithms provide new insight into the analysis of high-throughput sequencing data
for leukemia, and also to the quantitative assessment of any immunological profile. The methods described here are
implemented in a C++ open-source program called Vidjil.

Keywords: Sequence analysis, High-throughput sequencing, V(D)J recombinations, Repertoire sequencing,
Immunology, Leukemia, Minimal residual disease follow-up

Background
V(D)J recombinations. V(D)J recombinations in lympho-

cytes are essential for immunological diversity because

they influence the production of antibodies and antigen

receptors [1,2]. VDJ recombinations occur in B-cell heavy

chains (IgH) and T-cell β and δ chains (TRβ and δ),

whereas VJ recombinations occur in B-cell light chains κ

(Igκ) and λ (Igλ), and T-cell α and γ chains (TRα and γ ).

The total repertoire of immunoglobulin (Ig) and T-cell

receptor (TR) molecules is estimated to include nearly

1012 molecules, resulting from combinatorics of V(D)J

recombinations, somatic mutations, deletions at junction
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sites, and the addition of N-diversity regions between the

rearranged genes [3] (see Figure 1). A study found at least

one million recombinations among the T cells in a single

blood sample from one patient [4].

Acute lymphoblastic leukemia (ALL). Acute lym-

phoblastic leukemia is a lymphoid malignancy mainly

affecting children. In more than 90% of cases, a recom-

bined Ig or TR junction fingerprint of the blastic cells

can be identified easily at diagnosis. This clonality marker

is used during patient follow-up to quantify the minimal

residual disease [3,5].

The survival rate of ALL patients has improved in

recent decades thanks to its accurate diagnosis and better

therapeutic stratification according to prognostic factors.

These prognostic factors can be determined at the time

of diagnosis, but also throughout the follow-up period

when the minimal residual disease is monitored after
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Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
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Figure 1 An V(D)J recombination in a lymphocyte derives from

two (or three) germline V, (D), and J genes that may have been

truncated or mutated. The N-diversity regions correspond to
random nucleotides inserted between the rearranged genes. Typical
V genes are between 250 and 310 bp, D genes between 10 and 35
bp, and J genes between 40 and 70 bp.

therapy. Monitoring requires the analysis of both lym-

phoid cells (lymphoblasts) and normal lymphocytes in the

peripheral blood, and these cells are counted according

to their V(D)J recombinations. For better follow-up effi-

cacy, clonal recombinations must be detected at lower

concentrations than are possible with current techniques

(Biomed-2 and qRT-PCR [3], or flow cytometry [6]). More

importantly, current techniques are not adapted to follow

populations of various clones [7]. Consequently, they are

unable to detect a relapse attributable to a clone other than

the one identified at diagnosis.

Software for V(D)J recombination analysis. The inter-

national ImMunoGeneTics information system (IMGT®)

has developed several tools for the in-depth analysis of

V(D)J recombinations [8-12]. Many software focuses on

V(D)J segmentation, identifying the V, D, and J regions

in a sequence. The available V(D)J segmenters per-

form sequence alignments against full germline databases

(JoinSolver [13], V-QUEST [9], HighV-QUEST [11]),

possibly with some alignment heuristic ([14], IgBlast

[15]), models such as hidden Markov models (HMMs)

(iHMMune-align [16], SoDA2 [17]), or maximum-

likelihood-based techniques (VDJSolver [18]). A short

benchmark of some of these tools has been published [19],

but there is the need for more complete and independent

evaluation.

V(D)J analysis of high-throughput sequencing data. Since

2009, several studies have investigated V(D)J repertoires

with high-throughput sequencing, in animals [20-22] and

humans, to explore repertoire diversity [4,14,23] or in

leukemia patients at follow-up [24-28].

Several of those studies used 454 pyrosequencers, which

produce long reads but with a lower throughput than

some other sequencers. Recently, the study [29] estimated

clonal diversity with a pipeline involving IMGT/HighV-

QUEST [11], gathering into a “IMGT clonotype (AA)”

sequences following a unique V(D)J rearrangement and a

unique junction sequence.

Studies that have taken advantage of the higher through-

puts available with some Illumina sequencers, such as

[4,30,31], had to deal with incomplete short reads that

did not contain the whole recombination. Several short

reads had to be assembled to obtain longer reads cov-

ering the whole recombination, requiring that the reads

were sufficiently redundant. One recent study that used

Illumina sequencing [26] focused on leukemia follow-up

on the human immunoglobulin heavy chain. The study

[26] accommodated the short reads by sequencing 115

bp from J to V and then 95 bp inside the V region. It is

unclear whether such a strategy can be extended to all Igs

or TRs. Moreover, these researchers did not provide any

software.Wu et al focused on T cells to assess theminimal

residual disease in leukemia patients, using an Illumina

Hi-seq [32].

Advances in high-throughput sequencing will allow the

detection of clones at lower concentrations than is pos-

sible with conventional techniques in the study of V(D)J

repertoires. More importantly, it will allow multiclone

follow-up and the detection of emerging subclones at

diagnostic concentrations far below that of the main

clone identified at diagnosis, as well as full repertoire

analysis [33-35]. However, these advances in “repertoire

sequencing” (Rep-Seq) make the development of algo-

rithms and software that can accommodate gigabytes of

data imperative [36]. The need for dedicated software is

all the more necessary because standard HTS read map-

ping tools are useless in this context. They cannot deal with

reads containing recombinations, somatic mutations, or

large insertions, and therefore a large amount of data —

the most useful! — is lost. Finally, the results expected of

such an analysis are not the raw V(D)J segmentations of

millions of reads; these sequences must be clustered for

clone quantification. Again, generic clustering tools can-

not be used, because sequences with very small differences

can be derived from different clones, especially if these

differences occur in N-diversity regions.

A solution is to cluster sequences taking advantage

of the V(D)J segmentation. On immunoglobulin heavy

chains, Chen et al proposed a clustering based on the

results of iHMMune-align, implemented in the Clon-

alRelate software [37]. The clustering is based on a

Levenshtein distance between CDR3 sequences that fur-

ther takes into account the VJ assignation produced by

iHMMune-align. The complete method has a quadratic

time complexity in the input size. In another study,

Laserson et al followed the dynamics of the immune

response after vaccination, by partitioning the reads on

the VJ recombinations (obtained with IMGT/V-QUEST),

and by using a sequence-based clustering [38].

Our contribution. The tools cited above were primar-

ily designed to study a few V(D)J sequences, and some

of them take several hours to process millions of reads.

We argue that full V(D)J segmentation on these quan-

tities of reads is unnecessary, and that a better strategy

for clonality studies is to first cluster the reads derived
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from the same clone before the time-consuming V(D)J

segmentation.

Therefore, we propose a two-stage strategy. We first use

an ultra-fast window prediction, where a heuristic analysis

outputs a window overlapping the third complementarity-

determining region (CDR3) with the V(D)J junction. We

then produce a clustering of the clones, based on the simi-

larity of their windows, and then compute a representative

sequence for each clone. This sequence can be further

processed, possibly with existing analysis software, to

obtain its full V(D)J segmentation and other noteworthy

information.

This strategy is implemented in an open-source soft-

ware called Vidjil. Not computing the complete segmenta-

tion on each read allows huge time gains. Vidjil processes

datasets with 100,000 reads in less than 1 minute on a lap-

top computer, including the de novo quantification of all

themain clones.We also show that the predicted windows

are specific enough for individual VJ recombinations to

be safely clustered. They ensure a high-qualitymulticlonal

analysis: We provide evidence for this quality on TRγ

chains. We further test simulated data with additional

mutations. Indeed, extracting such windows corresponds

to what is done with conventional PCR primers specif-

ically designed for one recombination. The method is

independent of the number of reads, but the more reads

that are sequenced, the lower the detection threshold

will be.

Note also that the read length from a high-throughput

sequencer with sufficient throughput for studying V(D)J

diversity does not always cover the full V(D)J rearrange-

ment (more than 400 bp). This problem might be cir-

cumvented by randomly fragmenting full-length DNA

segments. Our method allows us to analyze randomly

fragmented PCR products by focusing on windows rather

than on the full read length.

Methods

Dataset preparation and sequencing

Bone-marrow samples taken from a patient at diagno-

sis and after treatment were obtained from the tissue

bank “Tumorothèque du Centre de Référence Régional en

Cancérologie de Lille (CRRC)” which certified cell cryop-

reservation quality. Approval for this study was obtained

from the Institutional Review Board of CHRU of Lille

(CSTMT093) and was in accordance with the Declaration

of Helsinki regarding the informed consent of patients.

A written informed consent was obtained from the

patient.

DNA extraction and PCR

We sequenced the bone-marrow samples taken from a

patient with B-cell acute lymphoblastic leukemia (B-ALL)

showing a TRγ rearrangement. The samples were taken

at diagnosis and at three different points during the

therapeutic follow-up: Fu-1 (35 days), Fu-2 (122 days) and

Fu-4 (207 days). Mononuclear cells were isolated from

the bone marrow with a Ficoll system, and the genomic

DNA was extracted from the lymphoblastic cells with

the QIAamp® Mini Kit. DNA was quantified with the

NanoDrop 2000 system®. We also constructed a dilution

scale, starting with the sample taken at diagnosis and

serially diluting it 10-fold five times. The PCR used was

based on the Biomed-2 guidelines [3]. The IgH, Igκ , and

TRγ and δ recombinations were explored with multiplex

PCR (but not the Igλ or TRα and β recombinations).

Because the TRγ PCR Vg1-10 was positive at diagno-

sis, we used the primer set {Vg1, Vg10, J1J2, JP1/2} for

this study (Vg1 5’-GGAAGGCCCCACAGCRTCTT-3’, Vg10

5’-AGCATGGGTAAGACAAGCAA-3’, J1J2 5’-GTGTTGTTCC

ACTGCCAAAGAG-3’, JP1/2 5’-TTACCAGGCGAAGTTACTA

TGAGC-3’). 500 ng of DNA was used for the amplifica-

tion of each target in a 96-well GeneAmp® PCR System

9700 thermocycler controlled by agarose gel electrophore-

sis. The PCR products ranged in size from 100 bp

to 390 bp.

Library preparation

The amplicons were first purified with Qiagen PCR

MinElute. We then applied the Amplicon Concatenation

Protocol 03/2012 from Life Technologies included with

the SOLiD Fragment Library Construction Kit. We end-

repaired 300 ng of each amplicon, and then purified them

with the SOLiD Library Column Purification Kit. The

amplicons were then ligated with T4 ligase and puri-

fied with the SOLiD Library Column Purification Kit.

The concatenated amplicons (100 ng) were then sonicated

with the Covaris system (six cycles, 10% duty cycles, inten-

sity 5, 100 cycles per burst, time 60 s). The fragmented

DNA was then processed with the Ion Xpress Plus gDNA

and Amplicon Library (01/31/2012), with slight modifi-

cations. The SizeSelect Gel (from Life Technologies) was

cut at 330 bp and the amplification step was performed

with eight cycles. Independent samples were pooled in dif-

ferent amounts to achieve different sensitivities and then

processed with PCR on the OneTouch system from Life

Technologies. The libraries were sequenced on a Ion Per-

sonal Genome Machine (PGM) system with 200-bp kit

chemistry.

Primary analysis

The raw Ion Torrent flow was transformed to demul-

tiplexed sequences with the Torrent Server from Life

Technologies. As PCR Biomed-2 PCR fragments were

concatenated by ligation, each sequence was then split

into subfragments based on the identification of a known

multiplex PCR primer.
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Algorithm overview

To quantify the clonotype abundances starting from a set

of reads, the method proceeds through the following two

stages:

• the ultrafast prediction of short zones called

w-windows, which are regions of length w

overlapping the third complementarity-determining

region (CDR3); this prediction is based on substrings

(“k-words”);
• the identification and clusterization of the clones

(relying solely on these w-windows), followed by a

refined V(D)J segmentation on a representative read

inside each clone.

Note that the “sequence assignment” of [14] also used

a step based on substrings. However, in that study, the

authors eventually computed a full alignment of each gene

to the corresponding germline database.

Ultrafast CDR3 prediction

The purpose of this heuristic analysis is to extract from

a read a sequence of length w, called the w-window,

that overlaps the actual CDR3. Our goal is to center the

w-window as much as possible on the junction region,

predicting a window that also contains the 3’ extremity of

the V region and the 5’ extremity of the J region.

This analysis is performed in two steps. The first con-

sists of indexing the germline V and J gene databases, and

the second is performed on each read and extracts the w-

window using the information stored in the index. This

analysis is very fast and scalable, because no alignment

with germline sequences is required.

Indexing step

This index is built once at runtime. It could be precom-

puted and loaded from disk when necessary. Because the

germline databases are very small (a few hundred thou-

sand base pairs, at most), it is not difficult to recompute

them, and takes only a few seconds.

The index is built on subsequences of length k, called “k-

words”. Every k-word from the germline genes is indexed

with a specific label: either V (or J), when the k-word is

unique to the V (or J) germline (possibly occurring in dis-

tinct sequences from the same germline), or ambiguous

when the k-word is common to both V and J germline

genes. The value of k is chosen so that such ambiguous

words are very rare; by default, k is between 10 and 13,

depending on the germline. For these small values of k, the

index can be stored as a flat table of size 4k . Therefore, the

index creation runs in time O(r + 4k), where r is the total

size of the germline database. For larger values of k, the

index is stored as a hash table.

Prediction step

During the second step, each read is considered sep-

arately (see Figure 2). We start with the first k-word

from the read and using the index, we retrieve the value

corresponding to that k-word and to its reverse comple-

ment. We do so for each k-word in the read, determin-

ing whether the k-word is in the V germline, in the J

germline, in both, or in neither of them, and on which

strand.

At this point, we discard any reads that show an ambigu-

ity, namely reads containing many k-words from forward

and reverse strands, or reads whose k-words are on the

forward strand but where V k-words appear after J k-

words (and conversely for the reverse strand). To work

properly, this rule requires that the V and J germline

genes do not share any k-words. Hence this constraints

the choice of k. We must also discard reads for which we

have insufficient information: reads that do not have k-

words found in both the V and J germline genes (Figure 2,

lower middle).

Finally, the w-window must lie between the last V k-

word and the first J k-word (Figure 2, top and middle).

Therefore, we extract a w-length region centered on that

position. The length of the extracted region is a parameter

that can be modified by the user. It is set at 40 by default

for VJ recombinations. Altogether, the w-window predic-

tion step extracts a window in a time that is proportional

to the size of the read.

Spaced seeds

A further optimization strategy involves using spaced

k-words, which improve the sensitivity for a fixed

specificity [39]. For example, in the spaced 10-word

#####-#####, the dash corresponds to a don’t-care sym-

bol. When extracting a subsequence of length k + 1 =

11, the middle letter is ignored to form a sequence of

length k = 10. This spaced 10-wordminimizes the predic-

tion error in the center of the window when there is one

substitution (Figure 2, bottom).

Read clusterization usingw-windows

Clonal windows clusterization

The prediction step extracts one w-window per read, at

most. If there is no sequencing error, all the extracted w-

windows for the same clone are strictly identical (Figure 2,

top). However, they may not be exactly centered on the

actual V(D)J recombination if there are some variants

compared with the germline database.

The extracted w-windows are then sorted and counted.

The relative abundance of each clonotype is then esti-

mated using the number of reads with the same w-

window. The most abundant clones are kept for detailed

analysis.
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Figure 2 Heuristic finding aw-window on the forward strand from a scan of k-words in VJ recombinations. Detection on the reverse strand
is done in a similar way, and detection in VDJ recombinations is also based on the V and J genes. The labels V and J indicate the beginning of
matching k-words in the index. (Top). The window is correctly centered on the N region (which is between the actual V and the actual J regions).
There is one mutation (or sequencing error), denoted by ×, far from the 3’ end of the V region. (Upper middle). A mutation or an error in the k
rightmost base pairs from the V region leads to a small error in the w-window prediction. However, the end of the V region is predicted with an error
that is less than or equal to k. Because we use large values of w, parts of the V and J regions are still contained within the extracted w-window.
(Lower middle). When there are too many errors compared with the size of the germline gene, the heuristic is unable to predict a w-window. This
may happen particularly with the J gene, which is shorter than the V gene. For this to occur, mutations must be separated from each other by less
than k bp. (Bottom). Spaced seeds improve the sensitivity of the heuristic. The spaced 10-word #####-##### leads to the recognition of k-words
as soon as the mutations are separated by at least k/2 bp.

Additional clusterization

Sequencing errors may lead to different w-windows that

should be gathered in a unique clone (Figure 2, top and

upper middle). We recommend the manual inspection

of the most abundant clones, because it is then possi-

ble to specify in the software pairs of similar windows

that must be gathered for analysis. We also provide, as

an option, automatic clustering, where two junctions are

considered similar if their edit distance is bounded by

some parameters.

Computation of representative sequences

The previous steps identified clones as a set of reads

sharing the samew-window (or similarw-windows if addi-

tional clusterization has been used). We then select one

representative sequence per clone, and thus compute only

one V(D)J segmentation per clone. Because this segmen-

tation will be used to label all the reads of the clone, we

must select the representative sequence carefully.

To do so, we start by counting all the k-mers of reads

belonging to a given clone. This is done using a hash

table. We call any subsequence of a read whose k-mers are

present above a relative threshold (e.g. 50% of the number

of sequences in the clone) a representative region. Reads

are considered one by one, and we output the longest rep-

resentative region among all the clone’s reads. Obviously,

this representative region must overlap the w-window

that has been formerly detected. This computation is lin-

ear time in the number of nucleotides in the sequences

belonging to that clone. Therefore the bigger the clone,

the more time it will take. Computing this region further

allows us to check the consistency of the reads assigned to

the same clone.

Refined V(D)J segmentation

The representative sequence identified for each clone

can be segmented into V(D)J regions using any avail-

able segmenter [9,11,13,15-18]. To give a first hint on the

V(D)J segmentation, we also implemented a basic seg-

menter using dynamic programming against a database of

germline genes. This segmentation runs, for each repre-

sentative sequence of length ℓ, in O(ℓr) time, where r is

the size of the database of the germline gene. This seg-

mentation is not at the core of the read clusterization and

is provided only for convenience.

Time complexity

The prediction of junctions is in linear time, so the whole

algorithm is very scalable because there are often very

few w-windows of interest that are left to the most time

consuming steps – the computation of the representative

sequence and the full V(D)J segmentation.

Software

The algorithms were implemented in C++ in an open-

source software called Vidjil. The software can be down-

loaded from http://www.vidjil.org. The software takes as

the input a set of reads and a database of germline genes.

http://www.vidjil.org
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In all our experiments, we used the IMGT/GENE-DB

database [40] downloaded from http://www.imgt.org.

Vidjil outputs the list of w-windows detected and the

most frequent clones. As explained above, the detec-

tion of w-windows is based on spaced k-mers extracted

with seeds. By default the seed used for TRγ germline

is #####-##### of weight 10. On this germline, there

is no spaced k-word with this seed common to both V

and J genes: There is thus very few chances to falsely dis-

card reads. Depending on the receptor, there can be more

overlap between k-mers of V and J genes. In this case, or

when there are more mutations or errors in the dataset,

longer seeds should be used to improve the ratio of w-

windows detected. By default, Vidjil uses a seed of weight

12 for TRβ and IgH and a seed of weight 13 for TRα. The

user can also specify his own seed, or any value of k for a

contiguous seed.

Vidjil will output the 20most abundant clones with their

representative sequence and their refined V(D)J segmen-

tation. It will not process clones with less than 10 reads.

These parameters can be changed by the user. The user

can also follow other clones, even if they are not among

the most frequent ones, by specifying their w-window.

The user can define the maximum number of sub-

stitutions, indels, and homopolymer errors that can be

accepted between two similar windows. By default, we tol-

erate none. These parameters should be set depending on

the sequencer used and should be very conservative to

prevent any false clustering of different clones.

Table 1 compares the running times of Vidjil and other

programs. Vidjil is very fast and further produces clusters

whereas other methods output information at the read

level. Note that it is also possible to launch the programs

on a set of unique reads (between 61% and 81% of the

reads in our samples). In this case, the running times of the

three programs stay in the same proportions, Vidjil still

being the fastest.

Results

Dataset

The bone-marrow samples were obtained from a patient

with B-ALL showing a TRγ rearrangement. The sam-

ples were taken at diagnosis (Diag) and at three follow-up

Table 1 Running times of the different programs on a test

set of 100,000 reads

Vidjil HighV-QUEST IgBlast

time 18s 1 hour 3m 50s

availability standalone website website, standalone

Vidjil (version 2013.10) and IgBlast (version 1.2.0) were launched on a laptop

with a 2 GHz processor (1 core used) and 8 GB of memory. IMGT/HighV-QUEST

(version 3.2.31) was launched on the IMGT web server. The web server of

IMGT/HighV-QUEST is limited to 500,000 sequences.

points (Fu-1, Fu-2, and Fu-4, collected at 35, 122, and 207

days after diagnosis, respectively). A standard curve was

established from serial dilutions of the diagnosis samples

in a peripheral blood lymphocyte (PBL) solution mixed

from five healthy donors, producing samples Scale-10−2,

Scale-10−3, Scale-10−4, and Scale-10−5.

Those eight samples were sequenced as described in

methods and can be accessed at http://www.vidjil.org/

data. In Additional file 1: Table S1, we provide statis-

tics on these samples. We recall that on the TRγ chain,

recombinations are in the VJ form. The number of reads

differed for each dataset because the same coverage was

not required for each of them for validation purpose. For

instance, we need better coverage for the 10−5 dilution

than for the diagnosis sample, where the majority of the

sequences are expected to correspond to one clone. The

DNA fragments were previously concatenated and ran-

domly fragmented. Note that the goal of this sequencing

is to assess the speed and robustness of Vidjil and not

to achieve the lowest possible detection threshold, which

depends on the number of reads and the sequencing

protocol used.

Evaluation of the window prediction

The window prediction phase is a heuristic that does

not rely on dynamic programming and may therefore be

less accurate than a more time-consuming algorithm. We

assess the accuracy of the Vidjil heuristic on our datasets

by comparing the location of the detected w-window

with the ones predicted by IMGT/HighV-QUEST [11] and

IgBlast [15]. Our goal is not to assess the IMGT/HighV-

QUEST and IgBlast software, but to verify that the Vidjil’s

heuristic is sufficiently accurate. Even if ClonalRelate [37]

is of interest we could not compare to it since it builds

upon results provided by iHMMuneAlign, that is specifi-

cally dedicated to immunoglobulin heavy chain analysis.

We selected two datasets for this comparison: Diag,

which contains high redundancy and a lower number of

reads; and Scale-10−5, which is supposed to have much

greater diversity.

IgBlast (version 1.2.0) was launched in its stand-alone

version. We launched IgBlast using the TRγ germline

database downloaded from IMGT/GENE-DB [40]. The

other parameters were left at the default settings.

Only the “top segmentation” returned by IgBlast was

kept, consisting of the top V and J gene matches.

IMGT/HighV-QUEST was launched by specifying the

organism (Human) and the locus (TRγ ); by specifying

that the sequences originate from a single individual; and

by allowing indels. The other parameters were left at the

default settings.

What was compared among these three tools was the

position of the center of the window. IMGT/HighV-

QUEST and IgBlast do not give this position, but it can be

http://www.imgt.org
http://www.vidjil.org/data
http://www.vidjil.org/data
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computed easily from the 3’ position of the V region and

the 5’ position of the J region, which are given.

• The results for the actually sequenced dataset (see

Figure 3) show that the center of the window

predicted by Vidjil differed from those predicted by

IMGT/HighV-QUEST and IgBlast by less than 10

positions in more than 97% of cases, and by less than

15 positions in about 99% of cases. Vidjil shows a

greater concordance with IgBlast than with

IMGT/HighV-QUEST. The reason may be that

IMGT/HighV-QUEST is conceived for longer

sequences. Our dataset may contain short sequences

that Vidjil is also able to process.
• As B cells are subject to somatic hypermutations, it is

more difficult to segment their sequences. We can

assess the robustness of the method against

mutations by adding substitutions to our sequenced

dataset. In the literature, estimates of the rate of

sequence substitutions arising from somatic

hypermutation are around 2% [41,42]. Arnaout et al
empirically estimated hypermutations in humans to

be about 5% to 8% [14]. We generated datasets with

2%, 4%, 6% and 9% random substitutions along each

read. Those datasets can be accessed at http://www.

vidjil.org/data. Note that those substitutions are

added to the errors that may have been produced by

the sequencers. The results for the mutated datasets

(see Figure 4) show that on reads with 6% additional

mutations, the center of the window predicted by

Vidjil differed from that predicted by the other

programs by less than 15 positions in about 99.4% of

the cases. Vidjil shows again a greater concordance

with IgBlast than with IMGT/HighV-QUEST.

For VJ recombinations, such as in TRγ , a positional

inaccuracy of up to 14 bp is not a problem because we are

using 40 bp w-windows. The predicted window will still

contain the N-diversity region, allowing the correct iden-

tification of the clones. However, a window lying only in

a V region or a J region would be problematic. In that

case, the window would be overrepresented and would

lead to the detection of false clones. For VDJ recombi-

nations, Vidjil predicts 60 bp windows to ensure that the

complete N-diversity regions are included in the detected

w-window.

Therefore, the window prediction accuracy of Vidjil is

such that just a small fraction of sequences may have a

wrong window. It is noteworthy that when IMGT/HighV-

QUEST and IgBlast are compared, the difference between

them is similar to the difference between them and the

prediction heuristic of Vidjil.

Evaluation of Vidjil sensitivity

Note that the detection threshold depends directly on

the number of reads actually sequenced. A recent study,

Figure 3 Comparison of the predictions of the center of the windowmade with IgBlast, IMGT/HighV-QUEST, and the heuristic of Vidjil, on

the 100,000 first reads of a diagnosis sample (Diag, top) of a patient with ALL and on a dilution (Scale-10−5, lower table and graph). For
each pair of programs, the number shows the distance between the predictions of the center of the window overlapping the CDR3. These values
show that Vidjil successfully predicted the center of the windows. Note that the two other tools provided much more information, with alignments
to the germline databases, and in the case of IMGT/HighV-QUEST, further analysis of the junction sequence.

http://www.vidjil.org/data
http://www.vidjil.org/data
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Figure 4 Comparison of the predictions of the center of the window overlapping the CDR3made with IgBlast, IMGT/HighV-QUEST, and

the heuristic of Vidjil, on the 100,000 first reads on a dilution (Scale-10−5). Additional mutations (2%, 4%, 6%, 9%) are added by simulation.
Even with 6% mutations, the heuristic of Vidjil locates almost all the junction centers within 15 bp of the center found by other programs (99.4% of
the commonly segmented reads).

using a higher-throughput sequencer, reported a detec-

tion threshold of 10−6 [27,28]. Our goal is not to achieve

the lowest possible threshold, but to show that Vidjil

can correctly estimate the relative concentrations of the

clones.

Figure 5 shows the relative concentrations of the most

abundant clones in each sample. We launched Vidjil on

each of those eight samples, retrieving the five most abun-

dant w-windows in each sample, and manually reviewed

those windows to cluster them into clones. The plots rep-

resent the concentration ratios of those clones in any of

the samples.

Clones at diagnosis. Table 2 details the two most abun-

dant clones at diagnosis (Diag). The most abundant clone,

labeled #01, is the one with recombination TRGV5*
01 -5/CC/0 TRGJ1*02. This clone is exactly the one

that was followed in this patient with standard tech-

niques, and was observed by fluorescent multiplex PCR

analysis (Figure 6, top). As expected, this clone is most

abundant.

The second most abundant clone (#02), at approxi-

mately 1%, was identified as TRGV10*02 -5/AGAC/-3

TRGJP1*01. It was not initially detected at diagnosis with

standard procedures, and was consequently not followed

in this patient. A further fluorescent simplex PCR analy-

sis with specific primers showed several peaks, including

a major peak at 183 bp (Figure 6, bottom), similar in size

to that of clone #02 detected with Vidjil (182 bp).

The Table 2 also shows that the predictions made by

Vidjil are coherent with the ones made by IMGT/HighV-

QUEST or IgBlast. Note that Vidjil process slightly

less sequences that IgBlast: The main reason is that

IgBlast can provide J gene affectation with very few

nucleotides in the J gene, while Vidjil needs at least k con-

served nucleotides. Concerning quantification estimation,

IMGT/HighV-QUEST and IgBlast do not provide the raw

result of clone quantification but it can be easily com-

puted by gathering sequences with the same junction. We

emphasize on the fact that IMGT/HighV-QUEST works

better when processing longer sequences (e.g. reads from

0.001 %

0.01 %

0.1 %

1 %

10 %

100 %

Diag 10-2 10-3 10-4 10-5 Diag Fu 1 Fu 2 Fu 4
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Figure 5 Evolution of the main TRγ clones from a patient with ALL, starting at diagnosis and diluted to decreasing concentrations of

10−2, 10−3, 10−4, and 10−5 (left part of the plot); and when the patient is followed at three time points (Fu1, Fu2, and Fu4, right part).

Clones #01 and #02 are the two most abundant clones detected at diagnosis, and the other clones are among the five most abundant clones, for at
least one sample. Clones D-1 to D-6 are found in at least two of the dilutions, but are never found in any sample that is not a dilution. The black and
gray boxes below each point indicate the maximum resolution, depending on the number of reads of each sample (black: 1 read, absolute detection
threshold; gray: 5 reads, detection threshold to consider that the clone is significant). A sequencing with more reads will improve these thresholds.
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Table 2 Twomost abundant TRγ clones detected in 100,000 sequences fromdiagnosis sample (Diag) of a patientwith ALL

Vidjil IMGT/V-QUEST IgBlast

Clone #01 TRGV5*01 −5/CC/0 TRGJ1*02 9 204 reads 7 376 reads 11 319 reads

... GTGCCACCTGGG CC TTATTATAAGAA ... (31.9%) (42.1%) (36.3%)

Clone #02 TRGV10*02 −5/AGAC/−3 TRGJP1*01 253 reads 175 reads 353 reads

... TGTGCTGCGTGG AGAC CCACTGGTTGGT ... (0.88%) (0.80%) (1.1%)

In this sample, 28 809 reads have been segmented by Vidjil, 29 039 by IMGT/HighV-QUEST (and 21 876 when taking into account IMGT/JunctionAnalysis results) and 31

147 by IgBlast. For each method, the number of associated reads is given. The VJ segmentation proposed by Vidjil was manually checked against the analysis provided

by IMGT/V-QUEST and IgBlast. Clone #01 has the recombination TRGV5*01 -5/CC/0 TRGJ1*02, which means that the V gene is TRGV5*01, according to the IMGT

nomenclature, and its last five nucleotides have been deleted. The N-diversity region is composed of two inserted Cs, and the J gene is TRGJ1*02, which has no deletion.

454 sequencer). The two main clones are found at the

same level by the three softwares even if the number of

segmented sequences differ among them. Vidjil’s quick

heuristic does not prevent it from correctly clustering

reads coming from a same clone.

Dilution clones. The dilution samples (samples Scale-

10−2 to Scale-10−5) are composed from 99% to 99.999% of

the same PBL solution. It is thus meaningful that in these

samples, the concentration ratios of the most abundant

clones remain remarkably stable throughout the dilutions.

These clones should be specific to the PBL, and not to the

patient.

Generally, Vidjil can distinguish clones that are differ-

ent with great accuracy by focusing on the w-windows.

When there is no further window clusterization, the

reads reported to belong to the same clone share exactly

the same w-window. However, some clones were found

at similar concentration ratios in both the PBL and

patient samples, such as clone #15, identified as TRGV10*
02 -4//0 TRGJP1*01. This clone could be either

what was called a “public sequence” by [43], that is

a recombination being shared by different people or a

random recombination. There may be also some PCR

artifacts. Note that TRγ does not show great diversity

(18 distinct V genes and six distinct J genes according

to the IMGT germline databases) and this clone has no

inserted N-diversity region.

Follow-up points. The concentration of clone #01, mea-

sured with standard procedures (compared with the total

number of cells), was 94% for Diag, 0.5% for Fu-1, 0.05%

for Fu-2, and ≤ 0.5% for Fu-4. The ratios of the rear-

ranged TRγ sequences show a similar evolution, even if

there is some bias, which could be corrected with a better

calibration of the wet-lab protocol.

Discussion
High-throughput sequencers will eventually raise the

detection threshold, as already reported by several stud-

ies. They will also provide full insight into the whole

Figure 6 Fluorescent PCR of the diagnosis sample (Diag) of a patient with ALL. (Top) A 208-bp peak is detected with multiplex PCR of TRγ
Vg1-10, corresponding to the main #01 clone TRGV5*01 -5/CC/0 TRGJ1*02. (Bottom) A Vg10-JP1/2-specific PCR shows a 183 bp peak,
similar in size to clone #02 (185 bp) detected by Vidjil on the high-throughput sequencing data.
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population of lymphocytes, with multiclonal analyses of

such populations.We believe that these analyses will bring

a better understanding of lymphoid malignancies, and

more generally, of immunology. However, they require

specifically adapted mapping and clustering tools.

We have proposed new algorithms designed for data

from high-throughput sequencers. We have not focused

on the analysis of individual reads, but have instead based

themethod on the ultrafast detection of windows contain-

ing the actual recombination junctions. As a consequence,

the Vidjil program can process large datasets in a fewmin-

utes, outperforming other methods that are more adapted

to the full analysis of individual sequences. The method

applies to any number of reads: The more reads that are

sequenced, the lower the detection threshold will be.

Our window definition, used to define a clone, dif-

fers from what can be found elsewhere in the literature

[4,29,38] in that we do not rely on the VJ gene names

and we focus on the DNA sequence at the junction (while

some use the amino acids) without allowing any mis-

match by default (while others allow mismatches). Hence

we think that our definition appears to be more strin-

gent. Our belief is that we should avoid putting together

sequences that should not be together. On the other hand

our definition may split sequences that should be together

but if one wants to allow more errors the sequences can

be further clustered.

Our results for sequenced and artificially mutated data

show that the window prediction, clusterization, and rep-

resentative sequence selection are accurate enough for

clone tracking. This was confirmed both for raw TRγ

data and for mutated data, showing that the method can

gather clones with a dissimilarity of up to 6%, arising from

random mutations mimicking hypermutations. We tested

Vidjil on TRγ which is less diverse than other loci. Hence

if Vidjil had a lack of reliability, we would have been able

to identify it. On the contrary we observed that the results

are consistent both with conventional methods and with

software focusing on a more in-depth analysis.

As the Vidjil heuristic is fast and reliable, it could be

used as a pre-processing for other programs. Indeed the

purpose of Vidjil is not to provide detailed information on

a given sequence. Several software are designed for that

purpose: For example, one may launch IMGT/V-QUEST,

IgBlast, or, for IgH clones, iHMMune-align for an in-

depth analysis of the clones identified by Vidjil. Starting

from Vidjil strict definition of clones, one could also use

software such as ClonalRelate [37] to further gather these

clones and to study their relationship.

Note that all the ratios were computed by taking the

number of segmented reads as a reference, which ideally

corresponds to the number of rearranged T or B cells

in the studied system. This differs from the proportion

of the total cells used in current protocols, which also

include other mononucleic cells, such as precursor cells.

The inclusion of a standard of known concentration could

be used to calibrate these different ratios.

Conclusions
When used tomonitorminimal residual disease, Vidjil can

successfully follow the variations in the main clone. It also

identifies other stable clones that could be investigated

to determine whether they are pathological or physiolog-

ical. Given samples taken at different times, the method

enables to track the evolution of a population of clones

and to check the emergence of new clones. The method

could also be used for other immunological studies to

quantify more precisely the adaptive immune response

and the long-term immunological memory.
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