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We consider here a nonlinear elliptic equation in an unbounded sectorial domain of the plane. We prove the existence of a minimal solution to this equation and study its properties. We infer from this analysis some asymptotics for the stationary solution of an equation arising in plasma physics.

Setting of the problem

Solving elliptic PDE in unbounded domains of R n such as half-spaces occurs naturally when using some blow-up argument to analyze the properties of a particular solution of a PDE in a bounded domain. We refer for instance to [START_REF] Angenent | Uniqueness of the solution of a semilinear boundary value problem[END_REF] where the analysis of the properties of the solution u ε to ε∆u ε + f (u ε ) = 0, u ε = 0 on the boundary (1.1) in a neighborhood of a point of the boundary, leads naturally to the study of an elliptic PDE in the half-space.

The nonlinear elliptic PDE

∆u + f (u) = 0, (1.2) 
has been widely studied in domains as half-spaces or cylindrical unbounded domains. We refer here to the articles [START_REF] Berestycki | Symmetry for Elliptic Equations in a Halfspace, Boundary value problems for partial differential equations and applications[END_REF][START_REF] Berestycki | Inequalities for second order elliptic equations with applications to unbounded domains I[END_REF][START_REF] Berestycki | Monotonicity for elliptic equations in unbounded Lipschitz domains[END_REF][START_REF] Berestycki | Further qualitative properties for elliptic equations in unbounded domains. Dedicated to Ennio De Giorgi[END_REF] which have been instrumental for any later results concerning the symmetry and monotonicity properties of solutions. In the literature, there are various results concerning the properties of bounded solutions to these equations, mainly using consequences of the maximum principle as the moving plane method or the sliding method (see [START_REF] Farina | Symmetry and uniqueness of nonnegative solutions of some problems in the halfspace[END_REF][START_REF] Esteban | Existence and nonexistence results for semilinear elliptic problems in unbounded domains[END_REF],. . . ) We also refer to [START_REF] Efendiev | Asymptotic behavior of solutions of semilinear elliptic equations in unbounded domains: two approaches[END_REF] where the properties of solutions in a quarter-space have been studied using tools from infinite-dimensional dynamical systems.

Let us now describe the equation we are interested in. Consider Ω a sectorial domain of R 2 defined in polar coordinates as:

Ω = {x(r, θ) ∈ R 2 ; |θ| < θ 0 ≤ π}.
We shall sometimes denote this set as Ω[θ 0 ] when we need to specify the opening. We are interested in the non-negative solutions to the problem:

-∆ϕ = e -ϕ in Ω, ϕ = 0 on ∂Ω.

(1.3)

Our motivation here comes from the article [START_REF] Karami | Singularities of Stationary solutions to the Vlasov-Poisson System in a Polygon[END_REF], where the authors study stationary solutions to the Vlasov-Poisson system in a polygon and link them to those of a non-linear elliptic equation. The singular limit of the latter while some scaling parameter converges towards 0 leads to (1.3). Our aim in analyzing this equation is to provide more insight on the solutions to the original Vlasov-Poisson equation.

More specifically, we shall look for two types of solutions to (1.3). Local variational solutions satisfy ϕ ∈ H 1 (O) for any bounded open set O ⊂ Ω. By the Trudinger inequality, this implies O exp(ϕ 2 ) < +∞, and thus e -ϕ ∈ L 2 (Ω). In this case the Dirichlet condition holds in the sense of the usual trace theory:

Ω ∇ϕ • ∇v = Ω e -ϕ v, ∀v ∈ H 1 0 (Ω) with bounded support. (1.4)
Very weak solutions are such that ϕ ∈ L 2 (O) and e -ϕ ∈ H -1 (O):

-

Ω ϕ ∆v = Ω e -ϕ v, ∀v ∈ H 2 ∩ H 1 0 (Ω) with bounded support. (1.5)
The trace is defined in a very weak sense on any bounded subset of each side of ∂Ω, by an immediate generalization of [START_REF] Grisvard | Singularities in Boundary Value Problems[END_REF]. Anyway, as we are interested in non-negative solutions, there automatically holds

e -ϕ ∈ L ∞ (O) ⊂ H -1 (O).
For both types of solutions, there obviously holds:

Lemma 1.1. Let ϕ be a solution to (1.3) on the sector Ω. For any isometry T of R 2 (translation, rotation, reflection), the function ϕ(T x) is a solution on the sector T -1 (Ω).

Since 0 is a subsolution to the problem (1.3), the existence of a solution is equivalent to that of a non-negative supersolution to the problem. We will develop this in the sequel. Furthermore, any non-negative solution to (1.3) in Ω[θ 0 ] is a supersolution in a smaller sector Ω[θ 1 ], θ 1 < θ 0 . Therefore, the existence of a solution in the split plane Ω[π] implies the solvability of (1.3) in any sector. By symmetry, it is enough to solve the mixed Dirichlet-Neumann problem in the upper half-plane

-∆ϕ * = e -ϕ * in R 2 + = [0 < θ < π], ϕ * = 0 on [θ = π], ∂ n ϕ * = 0 on [θ = 0]. (1.6) 
Glueing this ϕ * to its even reflection with respect to the axis [θ = 0] yields a solution to (1.3) on Ω[π].

Remark 1.2. It is worth pointing out that there exists no (non-negative, very weak) solution to (1.3) in the whole plane.

The article is written as follows. In a second section we construct a supersolution to the equation in the split plane. For this purpose we use a constructive method which relies on complex analysis. In a third section we discuss some properties, such as monotonicity, symmetry or regularity, of the minimal positive solution; this minimal solution is relevant for the Physics of the original problem. In a fourth section we prove the non-uniqueness of solutions and list some of their properties. Eventually, we discuss the application to the stationary Vlasov-Poisson system in a last section. In this last section, we also show the link between this asymptotic and the boundary blow-up solutions for ∆u = e u , see [START_REF] Bandle | Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior[END_REF][START_REF] Bandle | Asymptotic behaviour of solutions and their derivatives for seminlinear elliptic problems with blow-up on the boundary[END_REF][START_REF] Marcus | Existence and uniqueness results for large solutions of general nonlinear elliptic equations[END_REF][START_REF] Lazer | Asymptotic behavior of solutions to boundary blow-up problems[END_REF][START_REF] Dumont | Back to the Keller-Ossermann condition for boundary blow-up solutions[END_REF]. Boundary blow-up (or large) solutions were introduced in the seminal articles [START_REF] Keller | On solutions to ∆u = f (u)[END_REF][START_REF] Osserman | On the inequality ∆u ≥ f (u)[END_REF].

Construction of a solution in the split plane

We begin with a construction inherited from complex analysis. It is worth pointing out that this construction method works for any sectorial domain.

Proposition 2.1. There exists a solution ϕ * to equation (1.6) in the split plane.

Let z 2 = Φ(z 1 ) or z 1 = Ψ(z 2 ) be a conformal mapping between the complex z 1 and z 2 -planes, and let D 1 , D 2 be two domains conformally mapped to one another. Suppose we are given two functions w 1 , w 2 on D 1 and D 2 respectively, which are transformed into each other by the formulas:

w 2 (z 2 ) = log |Ψ ′ (z 2 )| + w 1 (Ψ(z 2 ));
(2.1)

w 1 (z 1 ) = log |Φ ′ (z 1 )| + w 2 (Φ(z 1 )).
(2.2)

Using ∆ = 4 ∂ z ∂ z and the fact that the logarithm of the modulus of an analytic function is harmonic, one easily checks the following lemma.

Lemma 2.2. Let ∆ i , i = 1, 2 be the Laplacian in the z i -plane, and let w 1 , w 2 be related by (2.1) or (2.2). Then,

w 1 satisfies ∆ 1 w 1 = 4e 2w 1 in D 1 if, and only if, w 2 satisfies ∆ 2 w 2 = 4e 2w 2 in D 2 .
In this section, we denote (x i , y i ) and (r i , θ i ) the Cartesian and polar coordinates in the z i -plane. We choose D 1 as the upper half-plane [0 < θ 1 < π] = [y 1 > 0], and we introduce the mixed Dirichlet-Neumann problem

∆ 1 w 1 = 4e 2w 1 in D 1 , w 1 = 0 on Γ D 1 , ∂ n 1 w 1 = 0 on Γ N 1 , (2.3) 
where

Γ D 1 = [θ 1 = π] = {(x 1 , 0) : x 1 < 0}, and Γ N 1 = [θ 1 = 0] = {(x 1 , 0) : x 1 > 0}. This is obviously related to (1.6) (set ϕ * (x) = -2w 1 (x/ √ 8)).
Consider now the conformal mapping

Φ(z 1 ) = 1 z 1 + i , Ψ(z 2 ) = 1 z 2 -i.
The half-plane is mapped by Φ onto the disk D 2 centered at 1 2i and of radius 

w 2 (z 2 ) = log |Ψ ′ (z 2 )| = -log |z 2 | 2 ≥ 0; (2.4)
it is worth observing that this function is non-negative and singular at z 2 = 0 (corresponding to z 1 = ∞) only. On the Neumann half-circle Γ N 2 , we compute as follows. In polar coordinates, we have:

w 2 (r 2 e iθ 2 ) = -2 log r 2 + w 1 cos θ 2 r 2 -i 1 + sin θ 2 r 2 .
(2.5)

Parametrizing the boundary as z 2 = 1 2 e iϑ -i , we observe that:

r 2 2 = 1 -sin ϑ 2 , r 2 cos θ 2 = 1 2 cos ϑ, r 2 sin θ 2 = -1 + sin ϑ 2 ; 2θ 2 = ϑ - π 2 , (cos ϑ, sin ϑ) = (-sin 2θ 2 , cos 2θ 2 ).
Recalling that ∂ y 1 w 1 = -∂ n 1 w 1 = 0 on Γ N 1 , we deduce:

∂ x 2 w 2 = - 2 cos θ 2 r 2 - cos 2θ 2 r 2 2 ∂ x 1 w 1 on Γ N 2 , ∂ y 2 w 2 = - 2 sin θ 2 r 2 - sin 2θ 2 r 2 2 ∂ x 1 w 1 on Γ N 2 . Therefore ∂ n 2 w 2 = 2 sin θ 2 r 2 = -2 on Γ N 2 .
(2.6)

Next, we proceed to a truncation on the boundary condition, setting g k 2 = min(k, -log |z 2 | 2 ), i.e., we solve the mixed Dirichlet-Neumann problem

∆ 2 w k 2 = 4e 2w k 2 in D 2 , w k 2 = g k 2 on Γ D 2 , ∂ n 2 w k 2 = -2 on Γ N 2 .
(2.7)

The unique variational solution minimizes the strictly convex l.s.c. functional

D 2 1 2 |∇w| 2 + 2 e 2w + Γ N 2 2 w on the affine space V (g k 2 ) := {w ∈ H 1 (D 2 ) : w = g k 2 on Γ D 2 }. We remark that w k 2 ∈ C(D 2 ): as argued in Section 1, ∆ 2 w k 2 = e 2w k 2 ∈ L 2 (D 2
) by the Trudinger inequality; as the boundary data are smooth enough (actually,

g k 2 ∈ H 3/2-ǫ (Γ D 2 )), one has w k 2 ∈ H 3/2-ǫ (D 2 ) ⊂ C(D 2 )
; the regularity is limited by the change of boundary conditions [START_REF] Grisvard | Singularities in Boundary Value Problems[END_REF].

We now state that u

2 (z 2 ) = -log |z 2 | 2 is a supersolution to (2.7). Lemma 2.3. For any z 2 in D 2 , w k 2 (z 2 ) ≤ -log |z 2 | 2 . Proof.
Computing as above, we see that u 2 solves the problem

∆ 2 u 2 = 0 in D 2 , u 2 = -log r 2 2 on Γ D 2 , ∂ n 2 u 2 = -2 on Γ N 2 .
It is not a variational solution, but it is smooth where it is bounded. Moreover, u 2 ≥ 0 in D 2 . As a consequence, there holds:

D 2 ∇u 2 • ∇v + Γ N 2 2 v = 0, for all v ∈ H 1 (D 2 ) such that v = 0 on Γ D
2 and u 2 is bounded above on supp v. On the other hand, the variational formulation of (2.7) reads

D 2 ∇w k 2 • ∇v + D 2 4e 2w k 2 v = -2 Γ N 2 v. (2.8) Therefore D 2 ∇(w k 2 -u 2 ) • ∇v + 4e 2w k 2 v = 0, for any admissible v. The function v = (w k 2 -u 2 ) + is admissible: it vanishes both on Γ D
2 and where u 2 ≥ max w k 2 , hence u 2 is bounded above on the support of v. One finds as usual (w k 2 -u 2 ) + = 0, i.e., w k 2 ≤ u 2 . Obviously, w K 2 also is a supersolution to (2.7) for K > k; therefore,

w 0 2 ≤ w k 2 ≤ w K 2 ≤ u 2 , for 0 ≤ k ≤ K. We deduce that, for all z 2 ∈ D 2 \ {0}, w k 2 (z 2 ) converges to a limit w 2 (z 2 ) ≤ u 2 (z 2 )
. By the monotone convergence theorem, w k 2 → w 2 and e 2w k 2 → e 2w 2 in L p (K), for any compact K ⊂ D 2 \{0} and p < ∞. This implies ∆ 2 w 2 = 4e 2w 2 in the sense of distributions in D 2 . Furthermore, one can consider boundary conditions in a very weak sense [START_REF] Grisvard | Singularities in Boundary Value Problems[END_REF]. Summing up, w 2 solves the problem:

∆ 2 w 2 = 4e 2w 2 in D 2 , w 2 = -log |z 2 | 2 on Γ D 2 , ∂ n 2 w 2 = -2 on Γ N 2 . As w 0 2 is bounded on D 2 , the limit is bounded below: w 2 ≥ m on D 2 .
Using the conformal mapping Φ, the function w 1 defined by (2.2) is a solution to (2.3) which satisfies the bounds

m + log |Φ ′ (z 1 )| = m -log(x 2 1 + (1 + y 1 ) 2 ) ≤ w 1 (z 1 ) ≤ 0 on D 1 .
(2.9)

The minimal solution

From the previous section, we have constructed a solution ϕ * to (1.6), which satisfies the bounds (cf. (2.9)):

0 ≤ ϕ * (x) ≤ 2 log(1 + √ 2 2 r sin θ + 1 8 r 2 ) -2 m (3.1)
Thus, ϕ * , extended by reflection to Ω[π], is bounded on any bounded subset of Ω[π]. We will provide a better version of this upper bound in the sequel. Also, notice that the conditions, valid for any bounded subset

O ⊂ Ω[π] ϕ * ∈ L ∞ (O), ∆ϕ * = e -ϕ * ∈ L ∞ (O), ϕ * = 0 on ∂Ω[π]
actually imply ϕ * ∈ H 1 (O) (see [START_REF] Grisvard | Singularities in Boundary Value Problems[END_REF] or Proposition 3.5 below);therefore ϕ * is a local variational solution to (1.3) in Ω[π].

A limiting process

Consider the truncated domain

Ω R = {x(r, θ) ∈ R 2 ; |θ| < θ 0 ≤ π, 0 < r < R}.
The proof of the following result is standard.

Lemma 3.1. There exists a unique variational solution u R to the problem

-∆u R = e -u R in Ω R , u R = 0 on ∂Ω R . (3.2)
This solution is positive and is symmetric with respect to θ → -θ.

Let us observe that, for R ′ ≥ R, both u R ′ and ϕ * are supersolutions to (3.2). Therefore, for any

x in Ω R u R (x) ≤ u R ′ (x) ≤ ϕ * (x).
Passing to the limit while R goes to the infinity, setting u(x) = sup R u R (x) we construct this way a solution u to the original problem. This solution is symmetric with respect to θ = 0. Moreover, u is the minimal solution, in the sense that any (non-negative) local variational solution ϕ to (1.3) satisfies u ≤ ϕ; (1 ) therefore, u is unique. Similarly, any non-negative supersolution ϕ of local variational regularity satisfies u ≤ ϕ. From (3.1), we deduce that there exists C ≥ 0 such that u(x) ≤ C + 4 log(1 + |x|), ∀x ∈ Ω.

(3.3) Remark 3.2. We can compute the minimal solution in the half-plane Ω[π/2], which reduces to a 1D problem on the half-line, that is 2 log(1

+ x 1 √ 2 ). Since the minimal solution u [θ 0 ] in Ω[θ 0 ] is a supersolution if θ 0 ≥ π/2, then u [θ 0 ]
cannot be bounded by above in that case.

Regularity

We introduce the following function spaces on a domain O:

Φ p (O) := w ∈ H 1 0 (O) : ∆w ∈ L p (O) , N(O) := orthogonal of ∆ H 2 (O) ∩ H 1 0 (O) within L 2 (O) = p ∈ L 2 (O) : ∆p = 0 in O and p = 0 on each side of ∂O .
In the first two lines, O is a bounded Lipschitz domain. The second characterisation of N(O), proved in [START_REF] Grisvard | Singularities in Boundary Value Problems[END_REF] for polygons, can be extended to curvilinear polygons2 such as Ω R , whose boundary is composed of smooth sides that meet at corners. To express the regularity of solutions and give asymptotic expansions, we shall generally make use of the parameter:

α = π/(2θ 0 ).
We introduce the well-known primal and dual harmonic singularities in Ω:

S(r, θ) := r α cos(αθ), S * (r, θ) := 1 π r -α cos(αθ), (3.4) 
From [START_REF] Grisvard | Singularities in Boundary Value Problems[END_REF], we know the following facts.

Proposition 3.3. Let χ be a fixed cutoff function equal to 1 for |x| ≤ 1 and 0 for |x| ≥ 2; for any B > 0 we write χ B (r) := χ(r/B).

• If the angle at the tip of the sector is salient or flat, then:

N(Ω R ) = {0}, Φ 2 (Ω R ) = H 2 ∩ H 1 0 (Ω R ), Φ p (Ω R ) ⊂ W 2,p (Ω R ),
for some p > 2.

• If the sector is reentrant, the space

N(Ω R ) is one-dimensional, spanned by P R s (r, θ) = χ R/2 (r) S * (r, θ) + P R , with P R ∈ H 1 0 (Ω R ). The spaces Φ p (Ω R ) for p ≥ 2 are embedded into u ∈ H s (Ω R ) ⊂ C(Ω R ),
for all s < 1+α; any w ∈ Φ 2 admits the regular-singular decomposition:

w = λ[w] χ R/2 S + w, with w ∈ H 2 ∩ H 1 0 (Ω R ),
where λ[w] is called the singularity coefficient of w.

Remark 3.4. Actually, P R s can be computed exactly in Ω R :

P R s (r, θ) = 1 π r -α - r R 2 α cos(αθ). (3.5) 
As a first step, we prove that the minimal solution is a local variational solution.

Proposition 3.5. Let R be an arbitrary positive number. The minimal solution u has the following regularity in Ω R .

1. If the sector is salient of flat (θ 0 ≤ π/2), u ∈ C 1 (Ω R ). 2. It the sector is reentrant (θ 0 > π/2), u ∈ H s (Ω R ) ⊂ C(Ω R
), for all s < 1 + α; and it admits the expansion u(r, θ) = Λ S(r, θ) + ũ(r, θ), with ũ ∈ H 2 (Ω R ) and Λ > 0.

Proof. It follows from (3.3) that u is bounded on Ω R for any R. Fix B > 0, and introduce v ∈ H 1 0 (Ω 2B ) which solves

∆v = f := ∆(χ B u) = -χ B e -u + 2 ∇χ B • ∇u + (∆χ B )u ∈ H -1 (Ω 2B ), (3.6) 
and set P := v-χ B u. There holds P ∈ L 2 (Ω 2B ), ∆P = 0 and P = 0 on each side of ∂Ω 2B ; so P ∈ N(Ω 2B ). Therefore, P = 0 and χ B u = v ∈ H 1 0 (Ω 2B ) in the salient case. In a reentrant sector, we have P = A P R s .

On the other hand, a Sobolev embedding gives v ∈ L p (Ω 2B ) for all p < +∞; as

χ B u ∈ L ∞ (Ω 2B ) by (3.3), one has P ∈ L p (Ω 2B ) for all p < +∞, which is only possible if A = 0, i.e., χ B u = v ∈ H 1 0 (Ω 2B ) again.
Thus, we have in all cases u ∈ H 1 (Ω B ); computing as in (3.6), we find ∆(χ B/2 u) ∈ L 2 (Ω B ), i.e., χ B/2 u ∈ Φ 2 (Ω B ). Invoking Proposition 3.3 again, this leads to:

• χ B/2 u ∈ H 2 (Ω B ) ⊂ W 1,p (Ω B
) for all p < +∞, in the salient case.

Bootstrapping again, we deduce ∆(χ B/2 u) ∈ L p (Ω B ), and

χ B/2 u ∈ Φ p (Ω B ) ⊂ W 2,p (Ω B ) for some p > 2. In other words, u ∈ W 2,p (Ω R ) ⊂ C 1 (Ω R ) as B is arbitrary.
• in the reentrant case, we get the expansion

(χ B/2 u)(r, θ) = Λ χ B/2 (r) S(r, θ) + ṽ(r, θ), with ṽ ∈ H 2 ∩ H 1 0 (Ω B ),
hence the decomposition of u as B is arbitrary.

To prove Λ > 0, we return to the solution u R on Ω R . Let Λ R be its singularity coefficient; it controls the dominant behaviour of u R near the corner, u R ∼ Λ R S(r, θ) as r → 0, uniformly in θ [START_REF] Karami | Singularities of Stationary solutions to the Vlasov-Poisson System in a Polygon[END_REF]. It is given by the formula [START_REF] Grisvard | Singularities in Boundary Value Problems[END_REF]:

Λ R = Ω R (-∆u R ) P R s = Ω R e -u R P R s .
From (3.5), we see that

P R s > 0 in Ω R .( 3 ) One infers that Λ R > 0. Yet, we have seen that u ≥ u R , thus Λ ≥ Λ R > 0.
Remark 3.6. Actually, there holds Λ = lim R→+∞ Λ R . In the fixed domain Ω 2B , the function v

R := χ B u R ∈ H 1 0 (Ω 2B ) solves ∆v R = f R := -χ B e -u R + 2 ∇χ B • ∇u R + (∆χ B )u R ∈ L 2 (Ω 2B ).
By the monotone convergence theorem, we know that u R → u and e

-u R → e -u in L 2 (Ω 2B ). Hence f R → f in H -1 (Ω 2B ) and v R → v in H 1 0 (Ω 2B ). In particular, u R → u in H 1 (Ω B ), and (as in Proposition 3.5), χ B/2 u R → χ B/2 u ∈ Φ 2 (Ω B ).
As the singularity coefficient is a continuous linear form on Φ 2 , one infers Λ R → Λ.

Monotonicity

We can now prove a monotonicity property. Standard results in the literature assert that bounded solutions to this type of PDE have some monotonicity properties. Our minimal solution is not bounded, see Remark 3.2. Proposition 3.7. Let u[θ] be the vector (cos θ, sin θ). For any θ such that |θ| ≤ θ 0 , t ≥ 0 and x ∈ Ω, there holds u(x) ≤ u(x + t u[θ]).

Remark 3.8. This implies that x • ∇u(x) ≥ 0 and ∂u ∂x 1 ≥ 0. Proof. We use Proposition 1.1 with T being the translation

T x = x + t u[θ].
The function u(T x) is a super-solution in Ω, as Ω ⊂ T -1 (Ω), so u(T x) ≥ u(x) and the result follows promptly. Lemma 3.9. The minimal solution satisfies

r ∂ r u(r, θ) = x • ∇u(x) ≤ 2.
(3.7)

Proof. We observe that for any λ ∈ (0, 1), u(λx) -2 log λ is a supersolution to the equation (1.3). Thus: (3.9)

u(x) ≤ u(λx) -2 log λ. (3.8) 
The equality of the two upper bounds follows from Proposition 3.7.

Symmetry

Proposition 3.11. Consider u R the solution of (3.2). Then θ → u R (r, θ) achieves its maximum at θ = 0.

Corollary 3.12. The minimal solution u of (1.3) satisfies that θ → u(r, θ) achieves its maximum at θ = 0.

Because of (3.3), there holds if µ -> 0, ϕ µ (r, θ) ∼ 1 π µ -r -α cos(αθ) as r → 0, θ = ±θ 0 fixed; if µ + > 0, ϕ µ (r, θ) ∼ µ + r α cos(αθ) as r → +∞, θ = ±θ 0 fixed.

Thus, solutions corresponding to different µ are distinct. They are local variational solutions if µ -= 0, and very weak solutions if µ -> 0 and the sector is reentrant (α < 1). In a flat or salient sector (α ≥ 1) the solutions corresponding to µ -> 0 are not L 2 in a neighbourhood of the origin, thus they do not qualify as very weak solutions.

Remark 4.1. One may wonder if there exists a solution to (1.3) that is not non-negative. Using the maximum principle in unbounded domains of R 2 (see [START_REF] Berestycki | Monotonicity for elliptic equations in unbounded Lipschitz domains[END_REF]) we can prove that any solution of (1.3) that is bounded from below is non-negative.

Local regularity near the tip of the sector

Using the tools of Proposition 3.5 (localization, bootstrapping, and regularity theory for the linear Poisson-Dirichlet problem), one obtains the following results.

Proposition 4.2. There holds:

1. Any solution to (1.3) belongs to C ∞ (K), for any compact subset K ⊂ Ω such that the origin 0 / ∈ K.

2.

If Ω is salient of flat (θ 0 ≤ π/2), any very weak solution ϕ is actually a local variational solution, and all solutions satisfy ϕ ∈ W 2,p (Ω R ) ⊂ C 1 (Ω R ) for some p > 2 and all finite R. 3. It Ω is reentrant (θ 0 > π/2), then:

• any local variational solution satisfies ϕ ∈ H s (Ω R ) ⊂ C(Ω R ), for
all s < 1+α, and admits the expansion ϕ(r, θ) = λ S(r, θ)+ φ(r, θ), with φ ∈ H 2 (Ω R ), and λ ≥ Λ if ϕ ≥ 0;

• any very weak solution admits the expansions

ϕ(r, θ) = λ * S * (r, θ) + φ(r, θ), φ ∈ H 1 (Ω R ) ; (4.2) = λ * S * (r, θ) + λ S(r, θ) + φ(r, θ), φ ∈ H 2 (Ω R ). (4.3)
for all finite R. The coefficient λ * is non-negative.

Proof. We only prove the last claim; the others are similar. By definition, a variational solution belongs to H 1 (Ω R ) for all finite R; computing as in (3.6) we see that χ B ϕ ∈ Φ 2 (Ω 2B ), hence the decomposition. As any solution ϕ ≥ 0 is larger than the minimal solution u, its singularity coefficient λ is larger than that of u, namely Λ.

If ϕ only is a very weak solution, one finds

∆(χ B ϕ) ∈ H -1 (Ω 2B ). Intro- ducing v ∈ H 1 0 (Ω 2B ) such that ∆v = ∆(χ B ϕ) and P := χ B ϕ -v, one finds P ∈ N(Ω 2B ); thus, there is λ * ∈ R such that P = λ * P 2B s = λ * (χ B S * + P 2B ) and χ B ϕ = λ * χ B S * +ϕ B , with ϕ B ∈ H 1 0 (Ω 2B ). As B is arbitrary, we deduce that for any R ϕ(r, θ) = λ * S * (r, θ) + φ(r, θ), φ ∈ H 1 (Ω R ).
As ∆ φ = ∆ϕ, one finds χ B φ ∈ Φ 2 (Ω 2B ), hence the second decomposition of ϕ. The condition λ * ≥ 0 is implied by the assumption e -ϕ ∈ H -1 (Ω R ).

Unboundedness

We know from Remark 3.2 that the minimal solution in a flat or reentrant sector is unbounded, hence all non-negative solutions are unbounded. Actually, the same holds in a salient sector. This solution can be computed explicitly:

ϕ(x) = log (A 2 -|x -x 0 | 2 ) 2 8 A 2 , with: A = √ 2 + √ 2 + R 2 .
On the other hand, ϕ is a supersolution to (4.5), and ϕ ≥ ϕ on D. In particular

ϕ(x 0 ) ≥ ϕ(x 0 ) = log R 2 + 4 + √ 8R 2 + 16 -log 8 ≥ log(1 + R 2 /8),
which is (4.4).

Remark 4.4. The same holds in a reentrant sector, with R = r sin(min(θ 0 -|θ|, π 2 )).

Application to plasma equilibria

In [START_REF] Karami | Singularities of Stationary solutions to the Vlasov-Poisson System in a Polygon[END_REF] the authors study the properties of the solution φ to the problem

-∆φ = κ exp(φ e -φ) := ρ in Υ 1 , with: Υ 1 ρ = M (5.1)
in a bounded polygonal (or curvilinear polygonal) domain

Υ 1 of R 2 .
The mass parameter M is a data of the problem; the normalization factor κ is an unknown which ensures that the constraint Υ 1 ρ = M is satisfied. The external potential φ e is fixed; it belongs to L ∞ (Υ 1 ).

We shall need the following assumptions.

1. Eq. (5.1) is supplemented with a homogeneous Dirichlet boundary condition. 2. If the domain Υ 1 has reentrant corners, it is contained in its local tangent cone at any of them.

The second condition is automatically satisfied when Υ 1 is a straight polygon with only one reentrant corner: then, it can be described as

Υ 1 = Υ C 1 \ (R 2 \ Ω) ⊂ Ω, where Υ C
1 is the convex envelope of Υ 1 , and Ω is the tangent cone at the reentrant corner.

We say that the domain Υ 1 is regular if it has no reentrant corner, i.e., it is smooth where it is not convex and convex where it is not smooth. Otherwise, it is singular. To simplify the exposition, we shall only consider singular domains with one reentrant corner of opening 2θ 0 = π/α, 1/2 < α < 1, and such that the two sides that meet there are locally straight. In that case, the decomposition of φ with respect to regularity writes as in §3.2:

φ = φ + λ χ(r) r α cos(αθ), φ ∈ H 2 ∩ H 1 0 (Υ 1 ), (5.2) 
assuming that the reentrant corner is located at 0 and the axes are suitably chosen. Notice, however, that these conditions are not essential as long as assumption (2) above is satisfied. If the sides are not locally straight, the expression of the singular part is modified; the case of multiple reentrant corners is treated by localization.

We shall generally discuss the cases of regular and singular domains together; statements about singularity coefficients are void for a regular domain. The goal of this section is to study the behaviour of the coefficients κ and λ as M → +∞. In [START_REF] Karami | Singularities of Stationary solutions to the Vlasov-Poisson System in a Polygon[END_REF] it was proved that:

M κ → 0 and λ κ → 0 and λ → +∞. (5.3) 
We want to refine the estimates (5.3) by obtaining explicit growth rates.

Getting rid of the external potential

For a fixed external potential φ e , the parameters M and κ are strictly increasing functions of each other [START_REF] Karami | Singularities of Stationary solutions to the Vlasov-Poisson System in a Polygon[END_REF]. Thus, the problem (5.1) can be parametrized by κ, even though M is the significant variable. Similarly, we know [START_REF] Karami | Singularities of Stationary solutions to the Vlasov-Poisson System in a Polygon[END_REF] that for two given external potentials (φ 1 e , φ 2 e ) and normalization factors (κ 1 , κ 2 ) the corresponding solutions (φ 1 , φ 2 ) and their singularity coefficients satisfy

φ 1 e + log κ 1 ≥ φ 2 e + log κ 2 in Υ 1 ⇒ φ 1 ≥ φ 2 in Υ 1 ⇒ λ 1 ≥ λ 2 .
So we deduce: 

Therefore, we shall mostly concentrate on the case φ e = 0. Using the physical scaling κ = ǫ -2 , with ǫ → 0, we shall denote by φ ǫ the solution to (5.1) with φ e = 0, i.e.:

-∆φ ǫ = ǫ -2 e -φǫ in Υ 1 , φ ǫ = 0 on ∂Υ 1 ;

(5.6)

the corresponding mass will be written M ǫ ; and λ ǫ is the singularity coefficient of φ ǫ .

Limit of φ ǫ and λ ǫ

Now we assume that the domain Υ 1 is singular, and we set the origin at the reentrant corner. First, we prove by some blow-up argument: Proposition 5.1. For any ξ in the unbounded sectorial domain Ω, the rescaled function v ǫ (ξ) = φ ǫ (ǫξ), defined for ǫ small enough, converges towards u(ξ), where u is the minimal solution to (1.3) in Ω.

Proof. Let Γ 1 be the union of the two sides that meet at the reentrant corner 0, and R the radius of the circle centered at 0 that is tangent to ∂Υ 1 \ Γ 1 ; in other words we consider R to be the maximum of r such that

Ω r = Ω[θ 0 ] ∩ {|x| < r} is included in Υ 1 .
We now perform the blow-up argument by a dilation of factor 1 ǫ . We obtain that v ǫ is the solution to the following problem in the dilated domain Υ 1 ǫ : 

-∆v ǫ = e -vǫ in Υ 1 ǫ , v ǫ = 0 on ∂Υ 1 ǫ , (5.7 
: u R ǫ (ξ) ≤ φ ǫ (ǫξ) = v ǫ (ξ) ≤ u [θ 0 ] (ξ), (5.8) 
and the result follows promptly from the results of Subsection 3.1.

Denoting the polar coordinates as (r, θ) for x, (ρ = ǫ -1 r, θ) for ξ, the regular-singular decomposition of v ǫ writes:

v ǫ (ρ, θ) = Λ ǫ ρ α cos(αθ) + ũǫ (ρ, θ), ũǫ ∈ H 2 (Υ 1 ǫ ) ;
(5.9) obviously, the singularity coefficient Λ ǫ is related to that of φ ǫ as: Λ ǫ = ǫ α λ ǫ .

On the other hand, Eq. (5.8) implies that Λ ǫ is bounded between the singularity coefficients of u R ǫ and u. By Remark 3.6, one deduces Λ ǫ → Λ. In other words, when φ e = 0, there holds:

λ ǫ ∼ Λ ǫ -α as ǫ → 0, i.e., λ[κ; 0] ∼ Λ κ α/2 as κ → +∞.
(5.10)

Limit of M ǫ

We now state and prove a result that complements the numerical evidence in [START_REF] Karami | Singularities of Stationary solutions to the Vlasov-Poisson System in a Polygon[END_REF].

Proposition 5.2. Let |∂Υ 1 | be the perimeter of Υ 1 . When ǫ → 0, there holds:

M ǫ ∼ √ 2|∂Υ 1 |ǫ -1 .
(5.11)

Proof. Consider φ ǫ solution to (5.6). The main idea is to write

M ǫ = Υ 1 -∆φ ǫ = -∂Υ 1 ∂ n φ ǫ
, and to derive an equivalent to ∂ n φ ǫ as ǫ → 0. Unfortunately, in a non-smooth domain this equivalent is not uniform along ∂Υ 1 , and cannot be straightforwardly integrated on this boundary; thus some technicalities are needed to overcome the difficulty.

Introduce the function w ǫ (x) := -2 log ǫ -φ ǫ (x), which solves:

∆w ǫ = e wǫ in Υ 1 , w ǫ = -2 log ǫ on ∂Υ 1 .
(5.12)

We know (see [START_REF] Karami | Singularities of Stationary solutions to the Vlasov-Poisson System in a Polygon[END_REF]) that w ǫ converges to the boundary blow-up solution (or large solution) to ∆w = e w in Υ 1 .

For almost every point x 0 on the boundary of Υ 1 (except the corners), we have the interior and exterior sphere condition: there is a (small) ball B that is included in Υ 1 (resp. R 2 \ Υ 1 ) and tangent at x 0 . We begin with a lower bound for M ǫ . Fix η > 0 small enough. We consider ∂Υ 1,η the set of x 0 ∈ ∂Υ 1 such that there exists a ball B of radius η, included in Υ 1 and tangent at x 0 .

0 c x 0 θ c a = r tan x 0 Υ 1 a = η Υ 1 Υ 1 π-θ 0 θ 0 π-θ 0 θ 0 a = r tan( ) = r tan θ 0 tan a > η
If Υ 1 is a straight polygon and 2θ c ∈ (0, π) is the angle at the corner c, the maximum radius of an interior sphere tangent at a nearby point x 0 is |x 0 -c| tan θ c ; see Figure 1 left. Elsewhere, this radius is bounded below by a constant. We deduce that there exists a constant K such that |∂Υ 1,η | ≥ |∂Υ 1 | -Kη. This extends to a curvilinear polygon by diffeomorphism; anyway, |∂Υ 1 | -|∂Υ 1,η | → 0 as η → 0.

Fix x 0 ∈ ∂Υ 1,η , and let B be the ball defined above. Solving the equation

∆v = e v in B, v = -2 log ǫ on ∂B, (5.13) 
we easily find that w ǫ is a subsolution to (5.13), so w ǫ (x) ≤ v(x) for any x in B, and then ∂ n w ǫ (x 0 ) ≥ ∂ n v(x 0 ).

We now compute the normal derivative of the solution to ∆v = e v in a given ball. Up to a translation assume that the ball is centered at the origin. The solution is radially symmetric, i.e. we solve (rv ′ (r)) ′ = re v(r) .

(5.14) for r < η; and ∂ n v = v ′ (η) ≥ 0. Multiplying this equation by rv ′ (r) and integrating between 0 and η, we find:

η 2 (v ′ (η)) 2 2 = η 2 e -2 log ε -2 η 0 re v(r) dr = η 2 ǫ 2 -2ηv ′ (η), (5.15) 
using once more re v(r) = (rv ′ (r)) ′ and the fact that v = -2 log ǫ on the boundary. We infer from this equality:

v ′ (η) ≥ 2ηǫ -2
2η 2 ǫ -2 + 2 .

(5.16)

We then have

M ǫ ≥ ∂Υ 1,η ∂ n w ǫ (x 0 ) ≥ 2ηǫ -2 2η 2 ǫ -2 + 2 (|∂Υ 1 | -Kη).
(5.17 (5.18)

We then let η go to zero to obtain the lower bound.

We now proceed to the upper bound. If x 0 is not a corner, we have another small ball B 1 included in R 2 \ Υ 1 that is tangent at x 0 . Introduce another ball B 2 , with the same center as B 1 , and large enough to have Υ 1 ⊂ B 2 . Then consider the annulus N = B 2 \ B 1 that contains Υ 1 , and solve the boundary-value problem: ∆v = e v in N, v = -2 log ǫ on ∂N.

(5.19)

The solution v ≤ -2 log ǫ, thus it appears as a subsolution to (5.12), and v ≤ w ǫ in Υ 1 ; at x 0 , we have

∂ n v ≥ ∂ n w ǫ .
The rest of the proof amounts to compute the normal derivative of the solution to ∆v = e v in an annulus of radii a < b. Once again, the solution is radially symmetric, i.e. we solve (5.14) for a < r < b. In the case of (5.19), we know that there exists c ∈ (a, b) such that v ′ (c) = 0, and that v ′ (a) ≤ 0. Multiplying (5.14) by rv ′ (r) and integrating between r = a and c, we have: ǫ . This estimate provides us with a sharp bound of ∂ n w, but it blows up near the reentrant corner in the singular case: in this case a → 0. From Figure 1 middle, we see that the maximum radius of an exterior sphere tangent at x 0 is |x 0 |/| tan θ 0 |, if the reentrant corner is located at 0. We overcome this difficulty as follows. For η > 0, consider a mollified/rounded domain Υ1 = Υ 1 \ B(0, η), see Figure 1 right. The maximum radius of the exterior sphere is equal to η on the rounded part of the boundary. As shown above, it is at least η/| tan θ 0 | on the remaining part of the sides that meet at the reentrant corner; elsewhere, it is bounded below by a constant.

-(av ′ (a)) 2 = 2
Then introduce wǫ solution to ∆ wǫ = e wǫ in Υ1 , wǫ = -2 log ǫ on ∂ Υ1 , (5.21) extended to -2 log ǫ outside Υ1 . As w ǫ is a subsolution to this problem, there holds w ǫ ≤ wǫ on Υ1 , and also on Υ 1 \ Υ1 . Setting Mǫ = Υ1 e wǫ , we then

Dividing the equation ( 3 . 8 )Remark 3 . 10 .

 38310 by 1 -λ and letting λ → 1 yields the result. Setting λ = |x| -1 in (3.8), we find a slightly improved version of (3.3): u(x) ≤ sup |y|=1 u(y) + 2 log |x| = sup |y|≤1 u(y) + 2 log |x|, ∀|x| ≥ 1.
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 43 Let Ω[θ 0 ] be a salient sector: θ 0 < π/2. Any non-negative solution to (1.3) satisfies:ϕ(r, θ) ≥ log(1 + 1 8 r 2 sin 2 (θ 0 -|θ|)). (4.4) Proof. Let x 0 (r, θ) ∈ Ω. The radius of the largest disk D centred at x 0 and contained in Ω is R = r sin(θ 0 -|θ|). We have ϕ ∈ H 1 (D) by Proposition 4.2. Introduce the variational solution ϕ to the problem -∆ϕ = e -ϕ in D, ϕ = 0. (4.5)

  For fixed κ and φ e , we provisionally denote M[κ; φ e ] = Υ 1 κ exp(φ e -φ), where φ solves (5.1), and λ[κ; φ e ] the singularity coefficient of φ. Let φ min e , φ max e be the lower and upper bounds of φ e . Obviously, for a given κ there holds: M[κ e φ min e ; 0] = M[κ; φ min e ] ≤ M[κ; φ e ] ≤ M[κ; φ max e ] = M[κ e φ max e ; 0]. (5.4)

  λ[κ e φ min e ; 0] = λ[κ; φ min e ] ≤ λ[κ; φ e ] ≤ λ[κ; φ max e ] = λ[κ e φ max e ; 0].

Figure 1 :

 1 Figure 1: Left : The interior sphere condition near a salient corner. Middle: The exterior sphere condition near a reentrant corner. Right : The mollified/rounded domain Υ1 .

) Therefore lim inf(ǫM ǫ ) ≥ √ 2 (

 2 |∂Υ 1 | -Kη).

c a r 2 4 a 2 + 2 ǫ 2 ≤ 4 a + √ 2

 2422 e v(r) ′ dr = 2c 2 e v(c) -2a 2 e -2 log ǫ + 4av ′ (a),(5.20) as in(5.15). We thus obtain |v ′ (a)| ≤ 2 a +

  ) while u [θ 0 ] is a supersolution -by assumption (2), the dilated domain is contained in Ω[θ 0 ]. Furthermore, we have ΩR

	solution to the same problem set in ΩR ǫ in ΩR ǫ	ǫ . Summarizing, we have for any ξ ⊂ Υ 1 ; therefore, v ǫ is a super-ǫ

This is also true for very weak solutions, as a consequence of Proposition 4.2 below.

A curvilinear polygon is an open set O ⊂ R 2 such that for any x 0 ∈ O and η sufficiently small, O ∩ B(x 0 , η) is C 2 -diffeomorphic, either to R 2 , or to a sector Ω[θ x 0 ], with 0 < θ x 0 < π. This definition includes both smooth domains and straight polygons, but excludes cusps and cracks.

This property is probably true for any curvilinear polygon. Anyway, it is easily seen that the dual singular function is strictly positive on some subdomain, which is enough.
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Remark 3.13. We reckon that the map θ → u(r, θ) is concave, but we do not have a proof of this fact.

General properties of solutions

Non-uniqueness

For any µ = (µ -, µ + )∈ (R + ) 2 , the function H µ := µ -S * + µ + S is nonnegative and harmonic in Ω, and vanishes on the boundary: it is a subsolution to (1.3). We shall construct a solution in the form

The corresponding problem in the truncated domain

is well-posed, and v µ R ′ is a supersolution when R ′ > R. The minimal solution u to (1.3) also is a supersolution, so v µ R ≤ v µ R ′ ≤ u, and passing to the limit we obtain a solution to (4.1). Thus we have constructed a solution ϕ µ = H µ + v µ to (1.3), which is bounded as

The second term belongs to H s (Ω R ) for s < 1 + α, and the first is treated as above.

have:

(5.22)

On the one hand, since each point of ∂ Υ1 satisfies the exterior sphere condition with a ball of radius proportional to η (for η small enough), we have:

On the other hand

and gathering these estimates, we obtain

+ Kǫ (5.24)

Therefore it follows straightforwardly that lim sup(ǫM ǫ ) ≤ √ 2 |∂Υ 1 |. This completes the proof of the proposition.

Conclusions

From Proposition 5.2 we know that, when φ e ≡ 0:

i.e., there are constants C 1 , C 2 such that (cf. (5.10)):

κ ∼ C 1 M 2 and λ ∼ C 2 M α as M → +∞.

(5.26)

When φ e = 0, it follows from §5.1 that

(5.27)