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Abstract

In this paper we focus on WENO-based methods for the simulation of the 1D Quasi-Relativistic Vlasov–Maxwell
(QRVM) model used to describe how a laser wave interacts with and heats a plasma by penetrating into it. We
propose several non-oscillatory methods based on either Runge–Kutta (explicit) or Time-Splitting (implicit) time
discretizations. We then show preliminary numerical experiments.

Résumé

Schémas WENO appliqués au modèle Vlasov–Maxwell quasi-relativiste pour l’interaction laser-

plasma. Dans cet article, nous nous intéressons aux méthodes de type WENO pour la simulation du modèle
Vlasov–Maxwell quasi-relativiste (QRVM) 1D, utilisé pour décrire la façon dont une onde laser interagit avec
un plasma et le réchauffe en le pénétrant. Nous proposons plusieurs méthodes non oscillatoires fondées sur des
discrétisations en temps soit Runge–Kutta (explicites) soit Time-Splitting (implicites). Ensuite, nous présentons
des expériences numériques préliminaires.
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1. Introduction

The object of our study is the dimensionless 1D quasi-relativistic Vlasov–Maxwell (QRVM) system:




∂f

∂t
+ v(p)

∂f

∂x
+ F (t, x)

∂f

∂p
= 0 (collisionless Vlasov), F = − (E +AB)

∂E

∂x
= η−2 (̺ext − ̺) (Poisson equation)

∂A

∂t
= −E , ∂E

∂t
= η−2A̺− ∂B

∂x
,

∂B

∂t
= −∂E

∂x
, (Maxwell equations)

v(p) =
p√

1 + p2
, ̺ =

ˆ

f dp (relativistic character)

(1)

solved for (t, x, p) ∈ [0,+∞[×[0, 1] × R, endowed with periodic boundary conditions in x. Problem (1)
needs several initial conditions: one for the distribution function f ; three for the magnetic potential A
and its derivatives, the magnetic field B and the transverse electric field E , which are related by

E = −∂A

∂t
and B =

∂A

∂x
. (2)

The quantity ̺ext represents the immobile ion background which keeps the plasma neutral. The interest
in this Vlasov–Maxwell system is motivated by its importance in plasma physics: it describes laser-plasma
interaction, i.e. the action of a laser wave, called pump, penetrating into a plasma and heating it, while
interacting with electrostatic waves and accelerating the electrons. This model, and its variants, have been
long known in the plasma physics community [1,2, and references therein]. Its derivation and a discussion
about the global existence and uniqueness of classical solutions can be found in [3].

In order to solve (1) numerically, one has to choose a time discretization method, a Vlasov solver and a
Maxwell solver. So far, characteristic solvers have been generally used for the Maxwell part, combined with
various semi-Lagrangian methods [1,2,4] for Vlasov, as well as wavelets [5]. Time-splitting methods were
often used for the quasi-relativistic model, though they are unstable with a fully relativistic model [2].

The goal of this article is to introduce several Weighted Essentially Non-Oscillatory (WENO) schemes
for the QRVM model, and to perform preliminary tests and comparisons, in order to decide which schemes
are more suitable. In Table 1 we summarize all the combinations we have considered and tested.

time integration RK TS

Vlasov equation FDWENO DSLWENO

CSLWENO

Maxwell equations RK RK

LF LF

Table 1

The overall integration strategy. The schemes in italic are implicit.

RK refers to the Total-Variation-Diminishing Runge–Kutta scheme [6].
TS refers to the Time-Splitting (Strang) scheme [7,8].
FDWENO stands for the Finite-Difference Weighted Essentially Non Oscillatory interpolator for the
approximation of partial derivatives [6].
DSLWENO stands for the non-conservative Direct Semi-Lagrangian scheme [8], coupled to the Point-
Value WENO interpolator [9,10,8].

2



CSLWENO stands for the Conservative Semi-Lagrangian scheme, based on the Flux-Balance-Method
(FBM) [11], coupled to the FBMWENO described later on.
LF stands for Leap-Frog scheme (aka Yee scheme).
For the sake of clarity, we shall make use of a three-word notation to describe the coupling: {time

discretization}-{Vlasov solver}-{Maxwell solver}, e.g., TS-DSLWENO-LF.

The outline of this paper is the following: in Section 2 we describe the initial and boundary conditions
and the discretization of the system; in Section 3 we describe the time-integration strategy; in Section 4
we show numerical experiments; and we conclude in Section 5.

2. Initial and boundary conditions, and discretization

2.1. Initialization

Problem (1) needs two initializations: one for the distribution function f(t, x, p), and one for the electro-
magnetic variables A(t, x), B(t, x) and E(t, x).

2.1.1. Initialization of the distribution function
We suppose that a proportion 1 − α of the electrons are thermalized at a (dimensionless) cold velocity
vcold, while the remaining proportion α are hot with (dimensionless) velocity vhot

G(p) = (1− α)Gcold(p) + αGhot(p),

where we have split the Maxwellian G(p) into a cold part Gcold(p), described by a classical Gaussian, and
a hot part Ghot(p), described by a Jüttner distribution:

Gcold(p) =
exp

(
− p2

2 v2
cold

)

√
2π vcold︸ ︷︷ ︸

normalized classical Gaussian

and Ghot(p) =

exp

(
−
√

1+p2−1

v2
hot

)

ˆ

R

exp

(
−
√

1+p2−1

v2
hot

)
dp

︸ ︷︷ ︸
normalized Jüttner distribution

.

We shall introduce a fluctuation for the initial density

̺(0, x) = 1 +
ε vcold (0.6 kpla)√

1 + 3 v2cold (0.6 kpla)
2
cos (2π kpla x) ,

for some spatial frequency kpla. Consequently, a fluctuation is also introduced for the Maxwellian, hence,
all in all, the initial distribution function reads

f(0, x, p) = ̺(0, x) ·G(p− ε vcold cos (2π kpla x)).

2.1.2. Initialization of the electro-magnetic field
The initial conditions for A, B and E describe the pump wave which is going to interact with the plasma
wave due to the density fluctuations.
Depending on the coupling we choose between the Vlasov and the Maxwell solvers, we shall need to

set A, B and E at different initial times and positions, which is why we keep the maximum generality by
writing them as (t, x)-dependent:
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A (t, x) = A0 sin (2π kpump x− ω0 t) , B (t, x) = 2π A0 kpump cos (2π kpump x− ω0 t) ,

E (t, x) = A0 ω0 cos (2π kpump x− ω0 t) .

One checks that the relation between A, B and E at any chosen initial time is given by (2).

2.1.3. Boundary conditions
Problem (1) is endowed with periodic boundary conditions in the x-dimension. To keep the computational
domain bounded and enforce mass conservation, we use Neumann boundary conditions in the p-dimension.
Actually, if the size of the domain is properly chosen, no electrons should reach the p-border. The boundary
conditions are implemented as:

f−i,j = fi+Nx,j for i = 1, . . . , Nghp, j = 1, . . . , Np − 1

fNx+i,j = fi,j for i = 1, . . . , Nghp, j = 1, . . . , Np − 1

fi,Np+j = fi,Np−1 for i = 0, . . . , Nx, j = 0, . . . , Nghp

fi,−j = fi,1 for i = 0, . . . , Nx, j = 0, . . . , Nghp.

2.2. Discretization

We mesh the computational domain Ω = [0, 1]× [−pmax, pmax] by uniform grids:

(xi, pj) = (i∆x, j∆p) , (∆x,∆p) =

(
1

Nx
,
2 pmax

Np

)
.

In order to take into account the boundary conditions, ghost points outside the physical domain are used.

3. Time integration

In this section, we take care of the time integration for the Vlasov equation

∂f

∂t
+ v(p)

∂f

∂x
+ F (t, x)

∂f

∂p
= 0, F = − (E +AB) (3)

and for the set of Maxwell equations

∂A

∂t
= −E , ∂E

∂t
= η−2A̺− ∂B

∂x
,

∂B

∂t
= −∂E

∂x
. (4)

As for the Poisson equation
∂E

∂x
= η−2 (̺ext − ̺) ,

we use the fast, spectrally-accurate solver, whose details can be found in [12].
We wish to test two different integration strategies, which are summarized in Table 1.
TS is implicit in the sense that it generally uses implicit schemes for advection, thus weakening the
constraints on the time step; on the other hand, RK is explicit, thus it requires a CFL condition.
This section is organized as follows: in Section 3.1 we introduce the Runge–Kutta based schemes; in
Section 3.2 we introduce the Strang-splitting based schemes; in Section 3.3 we introduce leap-frog and
multi-stage schemes to integrate (4); in Section 3.4 we summarize all the resulting schemes.
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3.1. RK-FDWENO scheme

The explicit third-order TVD Runge–Kutta strategy consists in integrating, from time tn to tn+1, the
Vlasov equation

∂f

∂t
= −v(p)

∂f

∂x
− F (t, x)

∂f

∂p
=: H [t, f ]

as

fn,1 = fn +∆tH [tn, fn] , fn,2 =
3

4
fn +

1

4
fn,1 +

1

4
∆tH

[
tn +∆t, fn,1

]
,

fn+1 =
1

3
fn +

2

3
fn,2 +

2

3
∆tH

[
tn +

∆t

2
, fn,2

]
. (5)

The partial derivatives are approximated through the fifth-order FDWENO routine for finite differences,
whose details can be found, for instance, in [13,14] and references therein. As this scheme is quite classical,
we believe it does not deserve further details here. The scheme is subject to a CFL constraint for stability:

∆t <
1

‖v(p)‖
∞

∆x
+

‖F‖
∞

∆p

.

Remark that we have to use the correct upwinding and that, with proper boundary conditions (see
Section 2.1.3), the scheme enforces mass conservation.
RK requires the calculation of the Lorentz force at three different times

F (tn) =: Fn, F (tn +∆t) =: Fn+1, F

(
tn +

1

2
∆t

)
=: Fn+1/2.

Computing the electrostatic field E(t) at the desired times is easy, because it is consistent with the
distribution function f(t); conversely, obtaining the magnetic variables A(t) and B(t) is slightly more
complicated, because they follow their own evolution equations. In case the time integrator for the Maxwell
equations does not provide us with A and B at the desired times, we can estimate them by interpolations.

3.2. TS-DSLWENO and TS-CSLWENO schemes

The (Strang) Time-Splitting strategy [7,15] approximates the integration of the Vlasov equation

∂f

∂t
+ v(p)

∂f

∂x
+ F (t, x)

∂f

∂p
= 0

as a combination of partial solutions along the x-dimension and the p-dimension:

∂f

∂t
+ v(p)

∂f

∂x
= 0 and

∂f

∂t
+ F (t, x)

∂f

∂p
= 0. (6)

We advect fn 7−→ fn+1 by means of the advection field evaluated at time tn+1/2, a strategy called
prediction/correction [16,17], summarized on Figure 1, which gives a scheme of order 2 in time as soon
as F (tn+1/2) is approximated at order 1.
In principle, the one-dimensional PDEs (6) can be solved by means of any time integrator; here we propose
a direct semi-Lagrangian (DSL) strategy (non-conservative), fully described in [12], and a conservative
semi-Lagrangian (CSL) strategy, described in Section 3.2.1; semi-Lagrangian means that the method is
characteristics-based.
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x

p

∆ ∆ t/2

∆ t/2

∆ t/2

t/2

t
n

t
n+1

t
n+1/2

first, we compute the
electro−magnetic fields
at this time (n+1/2)

(a) Prediction.

x

p

∆ t/2 ∆ t/2

t∆

f
n f

f
f

n+1

f
n+1/2

three 1D advections
is approximated by

the "true" 2D advection

n,1

n,2

(b) Correction.

Figure 1. Prediction/correction strategy.

3.2.1. CSL integration for 1D advection problems
The model equation which we solve is

∂u

∂t
+

∂

∂x
[a(t, x)u] = 0, u(t⋆, x) = u⋆(x), (t, x) ∈ [0,+∞[×I

(being a : [0,+∞[×I → R and I ⊆ R an interval) by means of a semi-Lagrangian conservative method;
this strategy is taken from [11]. To this end, we evolve approximated cell averages

un+1
i ≈ 1

∆x

ˆ xi+1/2

xi−1/2

u
(
tn+1, ξ

)
dξ

and use a semi-Lagrangian strategy by following the characteristics backward, along which J u is con-
served,

ˆ xi+1/2

xi−1/2

u
(
tn+1, ξ

)
dξ =

ˆ xi+1/2

xi−1/2

u
(
tn,X

(
tn; tn+1, ξ

))
J
(
tn; tn+1, ξ

)
dξ, (7)

with X (s; t, x) the characteristic and J(s; t, x) its Jacobian:

dX (s; t, x)

ds
= a (s,X (s; t, x)) , X (t; t, x) = x, J(s; t, x) := det

∂X (s; t, x)

∂x
.

If we change variables η = X
(
tn; tn+1, ξ

)
into (7), we get:

1

∆x

ˆ xi+1/2

xi−1/2

u
(
tn+1, ξ

)
dξ =

1

∆x

ˆ xback
i+1/2

xback
i−1/2

u (tn, η) dη =
Un

(
xback
i+1/2

)
− Un

(
xback
i−1/2

)

∆x
, (8)

where we have set xback := X
(
tn; tn+1, x

)
and Un is a primitive of u(tn, ·). This gives the following

scheme:

un+1
i =

Ũn
(
xback
i+1/2

)
− Ũn

(
xback
i−1/2

)

∆x
, (9)

where Ũn is an approximation of Un based on values of
(
un
j

)
j
. The scheme is conservative if u is compactly

supported or under periodic boundary conditions. In our application, the computations are simplified by
a being a real constant. 1 Therefore, we have explicit characteristics X (s; t, x) = x+ a(s− t), so

1. Recall that the advection field in the x-dimension is independent of x, and similarly in the p-dimension; furthermore
F (t, x) is approximated by F (tn+1/2, x) on the time interval [tn, tn+1].
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un+1
i =

Ũn
(
xi+1/2 − a∆t

)
− Ũn

(
xi−1/2 − a∆t

)

∆x
.

3.2.2. The WENO reconstruction for CSL (called FBMWENO)
In order to set up the scheme (9) we need an interpolator for the primitive U (dropping the time-
dependency notation from now on). In the WENO fashion, we shall perform a convex combination of
several Lagrange polynomials interpolating U at different substencils. We can adjust two parameters in
order to obtain all the possible combinations: the degree rtot of the Lagrange polynomial interpolating
U(x) in the whole stencil S (which thus contains rtot + 1 points), and the degree rsub of the Lagrange
polynomials in the substencils (each substencil contains rsub+1 points). Let us also introduce the number
of substencils Nsub := rtot − rsub + 1.
Let us denote P r

ν (x) the Lagrange polynomial interpolating the point values of the primitive U at points
{xν−r, . . . , xν}. If S = {xleft, . . . , xleft+rtot =: xright} is the big stencil used to approximate U(x), then

U(x) ≈ Ũ(x) :=

Nsub−1∑

ℓ=0

ωℓ(x)P
rsub
right−ℓ(x).

In order to define the weights

ωℓ(x) :=
ω̃ℓ(x)∑Nsub−1

ℓ′=0 ω̃ℓ′(x)
, ω̃ℓ(x) :=

Cℓ(x)

(10−6 + σℓ)
2 , ℓ = 0, . . . , Nsub − 1

we need two ingredients: the polynomials {Cℓ(x)}Nsub−1
ℓ=0 defined by the relation

P rtot
right(x) =

Nsub−1∑

ℓ=0

Cℓ(x)P
rsub
right−ℓ(x),

and the smoothness indicators {σℓ}Nsub−1
ℓ=0 , which we wish to define in such a way that the un+1

i given
by (9) is not polluted by spurious oscillations. To this end, we are not interested in the smoothness of U ,
rather in the smoothness of u.
Now, the derivative of P r

ν (x) is a lower-order approximation to u(x):

Pr
ν (x) :=

dP r
ν

dx
(x) ≈ u(x),

in the sense that if P r
ν (x) approximates U(x) at order r + 1, Pr

ν (x) approximates u(x) at order r. We
now fix the interval I :=

[
xi−1/2, xi+1/2

]
that contains the evaluation point and define the smoothness

measurement as in the Jiang–Shu fashion [18]: for ℓ = 0, . . . , Nsub − 1

σℓ :=

rsub−1∑

k=1

∆x2k−1

ˆ

I

[(
Prsub
right−ℓ

)(k)

(ξ)

]2
dξ.

The polynomials Cℓ(x) and constants σℓ for (rtot, rsub) = (5, 3) are given in Appendix B.

3.3. Integration of the Maxwell equations

We test two strategies: a leap-frog-type Yee scheme and a Runge–Kutta scheme. The Yee scheme will be
coupled to both schemes for the Vlasov equation and the Runge–Kutta scheme will only be coupled to
the Runge–Kutta scheme for the Vlasov equation.
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ε
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i+1/2

7→ Bn+1

i+1/2

xA, B  ,ρ

x−1/2 x0 x1/2 x 1 x3/2 x2

t
n

n+1/2
t

n+1
t

n+3/2
t

B

ε

(c) leap E
n+1/2
i 7→ E

n+3/2
i

x
−1/2

x
0

x
1/2

x
1

x
3/2

x
2

t
n

n+1/2
t

n+1

t

n+3/2
t

B

ε

A

(d) at time tn+1

Figure 2. Leap-frog strategy. The scheme is second-order in both time and space, because all the t- and x-derivatives are

approximated by centered differences. Inside the figure Ex :=
∂E

∂x
and Bx :=

∂B

∂x
.

In any case, once we have updated the ponderomotive force F = AB up to time tn, we impose it has
numerically zero average:

F̄n :=
1

Nx

Nx−1∑

i=0

Fn
i , then Fn

i 7−→ Fn
i − F̄n.

The LF scheme that we use for the Maxwell equations is second-order accurate in both space and time,
and is known as the Yee scheme. It is of the leap-frog type with half-shifted variables: see Figure 2 for a
sketch. Knowing ̺n+1, we advance in time

(
An, Bn, En+1/2

)
7−→

(
An+1, Bn+1, En+3/2

)
by centered finite

differences:
– The evolution of the vector potential A (Figure 2(a))

∂A

∂t
= −E gives An+1

i = An
i − En+1/2

i ∆t.

– The evolution of the magnetic field B (Figure 2(b)),

∂B

∂t
= −∂E

∂x
gives Bn+1

i+1/2 = Bn
i+1/2 −

∆t

∆x

(
En+1/2
i+1 − En+1/2

i

)
.

– The evolution of the transverse electric field E (Figure 2(c)),

∂E
∂t

= η−2A̺− ∂B

∂x
gives En+3/2

i = En+1/2
i + η−2An+1

i ̺n+1
i ∆t− ∆t

∆x

(
Bn+1

i+1/2 −Bn+1
i−1/2

)
.
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3.4. Summary of the schemes

In order to construct the schemes resulting from the different choices for the time integrators of the Vlasov
and the Maxwell equations (see Table 1), we have to be particularly careful in order to fit each block
properly within the coupling.

3.4.1. TS-DSLWENO-LF and TS-CSLWENO-LF schemes
The scheme to advance(

fn, An−1/2, Bn−1/2, En
)
7−→

(
fn+1, An+1/2, Bn+1/2, En+1

)

is sketched on Figure 3. Notice that the time indices of A, B, E have been shifted by one half w.r.t.
Section 3.3, so as to have the force at hand at time tn+1/2, as explained in Section 3.2. Thus, ̺ and E
must be available at tn+1/2. This is done by computing them after the first half-advection in x [15], see
Figure 1(b). The difference between the two schemes is how the steps in Figure 3(a) and Figure 3(c) are
performed, with a non-conservative method for DSLWENO and with a conservative one for CSLWENO.

BA ερ

n+1

n

n−1/2

n+1/2

(1)

(a) Strang 1/3

BA ερ

n+1

n

n−1/2

n+1/2

(2)

(b) leap-frog

BA ερ

n+1

n

n−1/2

n+1/2

(3)

(c) Strang 2/3, 3/3

BA ερ

n+1

n

n−1/2

n+1/2

(d) at time tn+1

Figure 3. TS-DSLWENO-LF and TS-CSLWENO-LF schemes. The schemes differ in how the Strang stages are
performed.

3.4.2. RK-FDWENO-RK scheme
This scheme is obtained by applying the third-order TVD Runge–Kutta ODE solver (5) to a discretiza-

tion in x and p of the Vlasov–Maxwell equations

∂

∂t




f

A

B

E




=




−v(p)∂f∂x − (E +AB)(t, x)∂f∂p

−E
−∂E

∂x

η−2A̺− ∂B
∂x




=: H



t,




f

A

B

E






,

where, as mentioned in Section 3.1, the x and p derivatives in the Vlasov equation are discretized by
WENO finite differences, the x derivatives in the Maxwell equations are discretized by linear finite dif-
ferences; ̺ is discretized by the midpoint quadrature rule, and E is computed by the Poisson solver.

3.4.3. RK-FDWENO-LF scheme
The resulting scheme is depicted in Figure 4. Remark that the Yee scheme forces the time step ∆t to be
kept fixed, despite the adaptive character of the Runge–Kutta scheme.
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BA ερ

n

n+1/2

n+1

n+3/2

(1)

(a) RK 1/3

BA ερ

n

n+1/2

n+1

n+3/2

(2)

(b) leap-frog

BA ερ

n

n+1/2

n+1

n+3/2

(3)

(c) RK 2/3

BA ερ

n

n+1/2

n+1

n+3/2

interpolate

(4)

(d) RK 3/3

Figure 4. RK-FDWENO-LF scheme. This scheme is second-order in time (because of the interpolation and the first-order
approximation of ̺ used to evolve E) and second-order in space.

4. Results for the quasi-relativistic Vlasov–Maxwell system

No WENO-based scheme has yet been extensively tested on the QRVM problem. Therefore, our first task
is to decide which among the overall integration strategies introduced in Table 1 are suitable.

4.1. Empirical stability results

All the schemes proposed in this article seem stable from empirical observation, but RK-FDWENO-LF
requires extremely small time steps in order not to blow up. A summary is given in Table 2.

Vlasov ↓ Maxwell → LF RK

RK-FDWENO- / ,

TS-DSLWENO- / not couplable

TS-CSLWENO- , not couplable

Table 2
Quality of the results.

The evolution equations for B and E can be rewritten as

∂ (B ± E)
∂t

± ∂ (B ± E)
∂x

= ±η−2 A̺,

therefore the condition

∆t < ∆x (10)

seems reasonable as constraint for stability of an explicit scheme.
If we take as reference a 400 × 400 mesh, ∆x would be equal to 0.0025. Notwithstanding, experiments
suggest the threshold ∆t should be of order 10−5 for RK-FDWENO-LF. In the other cases, the RK-
FDWENO-RK scheme, the TS-DSLWENO-LF scheme and the TS-CSLWENO-LF scheme, if the CFL
parameter or the ∆t are adapted so as to fulfill (10), the simulations appear stable.
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4.2. Quality of the results

On Figure 5 we compare at similar stages the evolution computed by the three most stable schemes.
The dynamic of laser-plasma interaction [1,2,5] is precisely captured. The plasma wave, initiated by the
initial fluctuations of the electron density, exchanges energy with the electrons and with the transverse
electromagnetic wave. Vortices appear in phase space, due to the particles getting trapped by the plasma
wave’s potential well and bouncing on its separatrices. The vortices show an oscillating behavior: they
periodically inflate and deflate. One observes the well-known “filamentation” phenomenon: thin structures
appear, then they are stretched thinner and folded, again and again.
We see that in the short term both the RK-based and the TS-based schemes behave well, but TS-

CSLWENO-LF diffuses the microscopic details more than RK-FDWENO-RK, as the long-time behavior
(t = 300) shows.
On Figure 6 we plot the conservation properties: the relative variation (w.r.t. time t = 0) of the mass,

of the L2-norm and of the total energy

W (t) =

WT(t):=transversal︷ ︸︸ ︷
1

2

ˆ 1

0

A2̺ dx

︸ ︷︷ ︸
WTK(t):=kinetic

+
η2

2

ˆ 1

0

[
E2 +B2

]
dx

︸ ︷︷ ︸
WTP(t):=potential

+

WL(t):=longitudinal︷ ︸︸ ︷
ˆ 1

0

ˆ

R

(√
1 + p2 − 1

)
f dp dx

︸ ︷︷ ︸
WLK(t):=kinetic

+
η2

2

ˆ 1

0

E2 dx

︸ ︷︷ ︸
WLP(t):=potential

, (11)

which is shown in [3] to be conserved by the system. We observe that around time 300 TS-DSLWENO-LF
has gained about 13 % w.r.t. the normalized mass, which means that the plasma is strongly non-neutral,
hence even the integration of the Poisson equation becomes meaningless because the periodicity is lost.
RK-FDWENO-RK conserves better the L2-norm, i.e. the microscopic details inside the computational
domain, and the total energy.

5. Conclusion

We have performed some preliminary tests of several WENO-based schemes to simulate the 1D quasi-
relativistic Vlasov–Maxwell system, which models laser-plasma interaction. WENO schemes, with their
high accuracy and robustness to the steep gradients created by filamentation, are ideally suited to capture
the dynamic of this interaction. Indeed, our test cases have reproduced the qualitative behavior known
from the literature since [1].
To decide which schemes are more suitable for the simulation of the QRVM problem, we tested the

various combinations of Table 1. Some of them immediately appear unsatisfactory, either because they
require ridiculously small time steps, or because they are strongly non-conservative. The two strategies
which show the best behavior are RK-FDWENO-RK and TS-CSLWENO-LF, which are both conservative;
the advantage of TS-CSLWENO-LF is its implicit character and weaker constraints on the time step, while
its drawback is that in the long time it shows a more diffusive behavior.

From the computational point of view, WENO-based schemes have several other advantages. They
are easily parallelizable: see for instance [19] for a parallel version of RK-FDWENO. They can be made
adaptive relatively easily: see [12] for an AMR version of TS-DSLWENO, or [20,21, and references therein]
for an AMR version of RK-FDWENO; the built-in computation of smoothness indicators points to the
regions which have to be refined (or de-refined). This will be presented in a future publication.

11



Figure 5. Comparison. Evolution of the system up to time ≈ 300, for a 400×400 mesh, using three different schemes. Left

column: the explicit conservative RK-FDWENO-RK. Central column: the implicit non-conservative TS-DSLWENO-LF.
Right column: the implicit conservative TS-CSLWENO-LF.
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Figure 6. Conservation properties. Top: the relative variation of total mass w.r.t. the initial condition. Center: the
relative variation of the L2-norm w.r.t. the initial condition. Bottom: the relative variation of the total energy (11) w.r.t.
the initial condition.
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Appendix A. Constants

The constants involved in the dimensionless system are:

η =
3

10π
, kpump = 4, kpla = 2, ω0 =

√
η−2 + k2pump, A0 =

2.5

ω0
,

α = 0.05, vcold =

√
15

511
, vhot =

√
100

511
, ε =

√
2

10
, pmax = 8.

Appendix B. Constants for FBMWENO

If we let x ∈
]
xi−1/2, xi+1/2

[
and the interpolant is centered in the stencil,

left = i− 5/2, right = i+ 5/2, Nsub = 3.

The polynomials {Cℓ(x)}Nsub−1
ℓ=0 are

C0 =

(
x− xi−5/2

) (
x− xi−3/2

)

20∆x2
, C1 = −

(
x− xi−5/2

) (
x− xi+5/2

)

10∆x2
, C2 =

(
x− xi+5/2

) (
x− xi+3/2

)

20∆x2
.

The smoothness indicators are

σ0 =
10

3

(
Ui−1/2

)2
− 17Ui−1/2 Ui+1/2 + 14Ui−1/2 Ui+3/2 −

11

3
Ui−1/2 Ui+5/2 + 22

(
Ui+1/2

)2

−
111

3
Ui+1/2 Ui+3/2 + 10Ui+1/2 Ui+5/2 + 16

(
Ui+3/2

)2
− 9Ui+3/2 Ui+5/2 +

4

3

(
Ui+5/2

)2
,

σ1 =
4

3

(
Ui−3/2

)2
− 7Ui−3/2 Ui−1/2 + 6Ui−3/2 Ui+1/2 −

5

3
Ui−3/2 Ui+3/2 + 10

(
Ui−1/2

)2

− 19Ui−1/2 Ui+1/2 + 6Ui−1/2 Ui+3/2 + 10
(
Ui+1/2

)2
− 7Ui+1/2 Ui+3/2 +

4

3

(
Ui+3/2

)2
,

σ2 =
10

3

(
Ui+1/2

)2
− 17Ui+1/2 Ui−1/2 + 14Ui+1/2 Ui−3/2 −

11

3
Ui+1/2 Ui−5/2 + 22

(
Ui−1/2

)2

−
111

3
Ui−1/2 Ui−3/2 + 10Ui−1/2Ui−5/2 + 16

(
Ui−3/2

)2
− 9Ui−5/2 Ui−3/2 +

4

3

(
Ui−5/2

)2
.
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[7] G. Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal. (5) (1968) 506–517.

[8] J. A. Carrillo, F. Vecil, Nonoscillatory interpolation methods applied to Vlasov-based models, SIAM J. Sci. Comput.
29 (3) (2007) 1179–1206 (electronic).
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