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Wave separation in non-uniform Hopkinson bars using
redundant measurements

R. Othman1

1 Institut de Recherche en Génie Civil, École Centrale de Nantes, 1 rue de la Noë,
BP. 92101, 44321 Nantes Cedex 3, France

Abstract. In this paper we generalize the BCGO-wave separation method (Bussac, 2002, J. Phys. Mech.
Solids, 50, 321-349) based on the maximum of likelihood principle to non-uniform rods. To achieve this
aim, the force and the particle velocity at any cross-section are expressed as functions of the force and
the particle velocity at the origin instead of the expressing them as function of the forward and downward
waves. Due to this generalisation, one can perform long duration and medium strain-rate (1-100/s) tests
using Hopkinson bars not only in the case of compression loadings but also for example dynamic bending
and high-temperature tests. The new method is checked numerically on a stepped elastic bar. It shows good
behaviour against noise.

1. INTRODUCTION

The Split Hopkinson bar apparatus is an unavoidable test in the dynamic characterization of materials.

This is due to the simple and accurate modelling of wave propagation in long elastic and viscoelastic

bars. For long time, this system is limited to the high strain-rate loading (approximately from 100 to

5000/s). The restriction origin is the wave separation technique which induces maximum test duration.

Many authors, mainly in the last decade, proposed alternative wave separation techniques with no

limitation on the test duration so to enlarge Hopkinson bar technique to the medium strain-rate loadings

[2-4, 6-9]. The most powerful method is the one proposed by Bussac et al. [2]. It is based on the analysis

of redundant measurements using the maximum of likelihood method which has the advantage to take

into account noise. All these techniques are based on the assumption that the involved bars are uniforms.

This is the case, when compressive load are applied. For other kinds of loading (for example tension

or bending), a device is needed between the bars and the tested sample. This device induces parasite

reflections of the wave in the bars due to mechanical impedance variation. Besides, when dynamic tests

are carried out at temperatures different of that of the room, it is necessary to cool or to heat so to

maintain the sample at the desired temperature. The bar sides are inescapably affected. An impedance

gradient takes place at the bar ends. Lundberg et al. [4] and Bacon & Brun [1] proposed wave separation

solutions taking into account the bar non-uniformity using a transfer matrix approach. In this paper,

we will couple this approach with the BCGO-method so to recover forces and particles velocities at

any-cross-section of a uniform bar without limitation on test duration.

2. THEORY

2.1 Wave propagation

Firstly, let’s consider a uniform viscoelastic bar. We assume that only the fist longitudinal mode was

excited. The Fourier components of the displacement at any cross-section are given by [1, 2]:

ũ (x, �) = F (�) e−I�(�)x
+ D (�) eI�(�)x , (1)

where I is such as I 2
= −1, x is the abscissa of the cross-section, � is the angular frequency, � (�) is

the dispersion relation of the bar and F (�) and D (�) are the Fourier transforms of the forward and
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downward waves at the origin. The Fourier components of the axial particle velocity and the normal

force are then obtained as follows:

Ṽ (x, �) = I�
(
F (�) e−I�(�)x

+ D (�) eI�(�)x
)

, (2.a)

Ñ (x, �) = I S� (�) E (�)
(
−F (�) e−I�(�)x

+ D (�) eI�(�)x
)

, (2.b)

where S is the cross-section area of the bar and E (�) is the complex Young’s modulus modelling the

viscoelastic behaviour of the material. Let’s consider these equations at the origin; we can recover the

forward and the downward waves:

F (�) =
1

2

(
Ṽ (0, �)

I�
−

Ñ (0, �)

I S� (�) E (�)

)
, (3.a)

D (�) =
1

2

(
Ṽ (0, �)

I�
+

Ñ (0, �)

I S� (�) E (�)

)
. (3.b)

Now, we can substitute the forward and the downward waves in eqs. (2) by their expression given in

eqs. (3). We get the following equation which relates the velocity and the force at any cross-section to

the force and the velocity at the origin:
[

Ñ (x, �)

Ṽ (x, �)

]
=

[
cos (� (�) x) I Z (�) sin (� (�) x)

I sin (� (�) x) /Z (�) cos (� (�) x)

] [
Ñ (0, �)

Ṽ (0, �)

]
, (4)

where Z (�) = S� (�) E (�)
/
� is the complex impedance of the bar. Eqn. (4) which is presented yet in

[1, 4] is very interesting. Knowing the particle velocity and the force at the origin one can recover these

two parameters at any cross-section. Chiefly, the particle velocity and the force at the end of the bar are

given by:
[

Ñ (L, �)

Ṽ (L, �)

]
=

[
cos (� (�) L) I Z (�) sin (� (�) L)

I sin (� (�) L)
/

Z (�) cos (� (�) L)

] [
Ñ (0, �)

Ṽ (0, �)

]
= [P ]

[
Ñ (0, �)

Ṽ (0, �)

]
, (5)

where L is the bar length. Following Bacon [1], the matrix [P ] will be called the transfer matrix of

the bar.

Let’s consider now a stepped bar made of n uniform segments as showed in figure 1. The origin of

the bar is taken at its left side. Assuming that the particle velocity and the force are continuous along the

bar, we get the following relation:
[

Ñ (xn = L, �)

Ṽ (xn = L, �)

]
= [Pn] ... [P2] [P1]

[
Ñ (0, �)

Ṽ (0, �)

]
. (6)

In eqn. (6), [Pi] denotes the transfer matrix of ith segment. Let be a cross-section labelled j which

belongs to the segment i and let yj ,i the distance between this cross-section and the left end of the

0 x1 xi xi +1 xn −1 xn

Li

( ) ( )iii ES ,, ( ) ( )��� iii ES ,,

Figure 1. Simplified scheme of a stepped bar.
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segments. The particle velocity and the force are deduced from the particle velocity and the force at the

left side of the whole bar as follows:
[

Ñ
(
yj ,i , �

)

Ṽ
(
yj ,i , �

)
]

=

[
cos

(
�i (�) yj ,i

)
I Zi (�) sin

(
�i (�) yj ,i

)

I sin
(
�i (�) yj ,i

)
/Zi (�) cos

(
�i (�) yj ,i

)
]

[Pi−1] ... [P2] [P1]

[
Ñ (0, �)

Ṽ (0, �)

]

(7)

which can also be rewritten:
[

Ñ
(
yj ,i, �

)

Ṽ
(
yj ,i, �

)
]

=

[
�j (�) �j (�)

�j (�) �j (�)

] [
Ñ (0, �)

Ṽ (0, �)

]
, (8)

where �j (�), �j (�), �j (�) and �j (�) are complex frequency-dependent functions.

2.2 Wave separation

Multiple strain measurements are supposed to be recorded at M cross-section yj ,i . Each measured strain

�̂j (t) is assumed to be the sum of the actual strain and a white Gaussian noise:

�̂j (t) = �(yj ,i , t) + wj (t) . (9)

To rebuild the particle velocity and the force at left side of the bar, we will apply the maximum

of likelihood method which is based on the assumption that, the observed phenomena (the measured

strains) correspond to the most probable event. We consider that noises are two-by-two independents;

this method is, in this case, equivalent to the least square method. The solution corresponds to the

minimum of the following function [2]:

E =

M∑

j=1

∥∥˜̂�j (�) − �j (�) Ñ (0, �) − �j (�) Ṽ (0, �)
∥∥2

. (10)

Therefore the particle velocity and the force satisfy a two-equation linear system:

[
� (�) � (�)

� (�) � (�)

]
=

[
Ñ (0, �)

Ṽ (0, �)

]
=

[
A (�)

B (�)

]
, (11)

where, � (�) =

M∑
j=1

∥∥�j (�)
∥∥2

, � (�) =

M∑
j=1

∥∥�j (�)
∥∥2

, � (�) =

M∑
j=1

�j (�) �̄j (�),

A (�) =

M∑
j=1

SiEi (�) �̄j (�) ˜̂�j (�) and B (�) =

M∑
j=1

SiEi (�) �̄j (�) ˜̂�j (�) and where z̄ denotes the

complex conjugate of z. The solution of the system (11), is:

Ñ (0, �) =
� (�) A (�) − � (�) B (�)

� (�) � (�) − � (�) � (�)
, (12.a)

Ṽ (0, �) =
� (�) A (�) − � (�) B (�)

� (�) � (�) − � (�) � (�)
. (12.a)

It is worth to notice here that, the denominator of the system (11) may become zero for some

frequencies. To avoid this problem, the integration of the Fourier transform will be carried out in the

lower half-plane of the complex frequency domain following [2].
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3. NUMERICAL VALIDATION

In this section the new method will be validated using a four-segment elastic bar which is presented

in figure 2. The characteristics of each segment are given in the table 1. An impulse load is applied

to the left side (the origin) of the bar (figure 3a). The right side is fixed. The impulse duration and

the rise-time are taken 46 �s and 4 �s, respectively. Wave propagation solution is computed using an

explicit commercial code (Abaqus 6.5-1). The duration of the simulation is 10ms. Looking for clarity, in

some figure only the beginning of the simulation is showed. The bar is meshed using one-dimensional

linear truss elements. The maximum element length is 1mm. The maximum time step is 1.07 �s. It

worth noticing, that the computed force, at the left side, is slightly different from the imposed perfect

impulse load as shown at the figure (figure 3.b). The strain was recorded at three cross-section of the

bar, y1,1 = 300 mm, y2,2 = 200mm and y3,3 = 100 mm, i.e. at the three segment interfaces. The cross-

second is taken to belong to the left segment. The recorded strains are showed in figures 4.

The force at the left side of the bar is then computed using eqs (13-14). In the figure 5.a, we superpose

the force at the origin computed with Abaqus and the force recovered using the wave separation

technique at the same cross-section. The slight difference between the two results is due to the numerical

S1 S2 S3 S4
1,1

y
2,2y 3,3

y
Impulse

load

S1 S2 S3 S4
1,1

y
2,2y 3,3

y

Figure 2. Simplified scheme of the modelled four-segment elastic bar.

Table 1. Characteristics of the modelled four-segment elastic bar.

Segment S1 S2 S3 S4

Material Steel Aluminium Titanium Steel

Young’s modulus (GPa) 200 70 120 200

Density 7800 2800 4400 7800

Cross-section diameter (mm) 10 10 10 10

Length (mm) 300 200 100 400

(a) (b)

Figure 3. The force at the bar left side : (a) Imposed impulse load, (b) Force as computed by Abaqus (only the first
300�s of the simulation are shown for both figures).
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Figure 4. The simulated strains in the bar (only the first 1ms is shown).

(a) (b)

Figure 5. Recovered force at the origin: (a) the first 300 �s (b) the first 9 ms.

(a) (b)

Figure 6. Error on the recovered force: (a) strains without added noise (b) noised strains.
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errors of the explicit code computation which are not taken into account in the wave propagation

model. In figure 5.b, we show the recovered force during 9 ms. The impulse load is well reconstructed.

The error (the algebraic difference between the Abaqus signal and the recovered one) is not important

(see figure 6.a).

The advantage of the redundant method is its strength against noise. To check this property, a random

noise is added to each simulated strain. The noised strains are now used to recover the force at the origin.

In Table 2, we present the variance of the error for different values of the variance of the added noise.

The wave separation method does not amplify noise much than three times. In figure 6.b, one example

is presented. It corresponds to 1.5%-variance added noise.

Table 2. Variation of the error with the added noise.

Variance of the added noise (%) 0 0.5 1.5 2.9 7.2

Variance of the error (%) 0.5 1.4 3.3 6.6 17

4. CONCLUSION

In this paper we presented an enlargement of the application of the BCGO-wave separation method to

non-uniform bars. The technique is valid for elastic and viscoelastic, dispersive and non-dispersive non-

uniform bars. It is based on the one-mode wave propagation assumption. Actually, the method is exact

for stepped bars. It can be extended to other kinds of non uniformity by sliding the bar in small uniform

segments. The method is validated on a numerical model. An experimental validation should follows.
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