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Viscoelastic formulation for modeling of plate tectonics

The Earth's tectonic plates are strong, viscoelastic shells which make up the outermost part of a thermally convecting, predominantly viscous layer. In order to build a more realistic simulation of the planet's evolution, the complete viscoelastic convection system must be included. A particle-in-cell finite el ement method is demonstrated which can simulate very large deformation viscoelasticity. This is applied to a plate-deformation problem. Numerical accuracy is demonstrated relative to analytic benchmarks, and the characteristics of the method are discussed.

INTRODUCTION

Underneath the lithospheric plates of the Earth lies the mantle (Figure I). Approximately 3000km deep, it is composed of solid rock that is warm enough to deform like a viscous fluid, albeit at incredibly slow speeds of a few centimetres per year. The plates move because the mantle is forever stirring as heat gen erated by natural radioactive decay struggles to es cape via thermal convection. The plates which form the ocean floors are part of this circulation and are sucked down when they become old, cold and dense.

The continental crust is formed by lower density rock which remains buoyant despite being cold. In the lithosphere the rocks are significantly cooler and be have as a viscoelastic, brittle solid. In regions of high stress, brittle failure gives rise to earthquakes. This picture of the Earth's interior is widely ac cepted by geophysicists. It clearly indicates that the fundamental process is thermal convection; plate tec tonics is the manner in which the system organizes.

Therefore, a consistent model of plate behaviour must contain a description of the convection system of which the plate is a part.

There are some fundamental problems which need to be addressed before the routine application of en gineering principles to the lithosphere. The principle issues is that plate tectonics is itself only a kinematic description of the observations: a fully consistent dy namic description of the motion of the plates is still 

\i.u=f (1)
where u is the stress tensor and f a force term. As we are interested only in very slow deformations of highly viscous materials, (infinite Prandlt number) we have neglected all intertial terms in (I). It is conve nient to split the stress into a deviatoric part, r, and an isotropic pressure, p,

<T = T-pi ( 2 
)
where I is the identity tensor.

Viscoelasticity

There are a number of different viscoelastic models, we will use the Maxwell model which has been used in previous studies of lithospheric deformation where viscous and elastic effects are important such as post glacial rebound [START_REF] Peltier | The impluse response of a Maxwell Earth[END_REF]. This model assumes that the strain rate tensor, D, defined as:
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is the sum of an elastic strain rate tensor D • and a viscous strain rate tensor Dv. The velocity vector, V, is the fundamental unknown of our problem and all these entities are expressed in the fixed reference frame x;. Now we decompose each strain rate tensor and l .

Dv = 3tr(Dv)I + D,. 

where K. is the bulk modulus and ( is the bulk vis cosity. P = p as it p is a scalar.
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where W is the material spin tensor, W ; j = � (av; _ ai1 ) 2 OX j OX;

(9)

The W terms account for material spin during advec tion which reorients the elastic stored-stress tensor. We note that the form of equation ( 7) is unsuited to conventional fluids as the material has no long term resistance to compression. This behaviour is, how ever, relevant to the simulation of the coupled porous flow, matrix deformation problem. Here it is common to ascribe an apparent bulk viscosity to the matrix material in order to model compaction effects (e.g. [START_REF] Mckenzie | The generation and compaction of partially molten rock[END_REF], particularly for large scale geologi cal systems where the details of the pore network can not be measured directly.

Numerical implementation

As we are interested in solutions where very large de formations may occur -including thermally driven fluid convection, we would like to work with a fluid like system of equations. Hence we obtain a stress I strain-rate relation from ( 6) by expressing the Jau mann stress-rate in a difference form: (10) where the superscripts t, t + 2'.t indicate values at the current and future timestep respectively. ( 6) and ( 7 where a = 77/ µ is the shear relaxation time and , 8 = UK. is the bulk relaxation time. We can simplify the above equations by defining an effective viscosity T/eff and an effective compressibility (elf:
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Then the deviatoric stress is given by
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and the pressure by
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To model an incompressible material K. and ( are made very large such that Dkk � 0.

Our system of equations is thus composed of a quasi-Newtonian viscous part with modified mate-rial parameters and a right-hand-side term depend ing on values from the previous timestep. This ap proach minimizes the modification to the viscous flow code. Instead of using physical parameters for viscos ity and bulk modulus, we use effective material prop erties (13) to take into account elasticity. Then during computations for the force term, we add elastic inter nal stresses from the previous timestep or from initial conditions.
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We solve ( 15) and ( 14) and obtain a solution for v•+t>.t. From this solution we compute the new stress state due to the velocity field and previous stored stresses.

Stability

The approach outlined above is unconditionally stable only if the timestep is larger than the relaxation time for the material, i.e.

flt< !l µ (17)
in the case of the shear moduli. Alternatively, this means a Deborah number, D e < 1, indicating that the method is appropriate to the viscous, rather than the elastic, limit.

One difficulty is that the tirnestep is not necessar ily chosen to match the physical problem, but by the Courant condition for the chosen mesh. This means that a convergence demonstration for arbitrarily small elements may not be possible for the general case. We are currently addressing this issue.

In practice, however, for our area of research, vis cous flow drives the plate motions, and the litho spheric plates are embedded in a highly viscous ma terial. This may produce a situation where a system wide relaxation time is more important than the re laxation times of individual materials, since loading and unloading of the elastic materials happens almost exclusively through a low-viscosity medium. Under these circumstances, the relaxation time of an indi vidual layer (such as the lithosphere) may be much larger than the Courant timestep, but stresses are ei ther balanced, or relaxed by driving a flow in one of the viscous materials.

COMPUTATIONAL METHOD 3.1 Choice of Numerical Scheme

In fluid dynamics, where strains are generally very large, but not important in the constitutive relation ship of the material, it is common to transform the equations to an Eulerian mesh and deal with convec tive terms explicitly. Problems arise whenever advec tion becomes strongly dominant over diffusion since an erroneous numerical diffusion dominates. In our case, the advection of material boundaries and the stress tensor are particularly susceptible to this nu merical diffusion problem. Mesh-based Lagrangian formulations alleviate this difficulty, but at the ex pense of remeshing and the eventual development of a less-than optimal mesh configuration. This increases complexity and can hinder highly efficient solution methods such as multigrid iteration. The Natural El ement Method eliminates remeshing difficulties but is associated with considerable complexity of imple mentation, particularly in 3D.

A number of alternatives are available which dis pense with a mesh entirely: smooth particle hydro dynamics and discrete element methods are common examples from the fluid and solid mechanics fields respectively. These methods are extremely good at simulating the detailed behaviour of highly deform ing materials with complicated geometries (e.g. free surfaces, fracture development), and highly dynamic systems. They are, in general, formulated to cal culate explicitly the interactions between individual particles which ultimately means that a great many timesteps would be required to study creeping flow where the timescales associated with inertial effects are very many orders of magnitude smaller than typi cal flow times.

We have therefore developed a hybrid approacha particle in cell finite element method which uses a standard Eulerian finite element mesh (for fast, im plicit solution) and a Lagrangian particle framework for carrying details of interfaces, the stress history etc.

The Particle in Cell Approach

Our particle-in-cell finite element method is based closely on the standard finite element method, and is a direct development of the material point method of [START_REF] Sulsky | Application of a particle-in-cell method to solid mechanics[END_REF]. The standard mesh is used to discretize the domain into elements, and the shape functions interpolate node points in the mesh in the usual fashion. The problem is formulated in a weak form to give an integral equation, and the shape func tion expansion produces a discrete (matrix) equation. Equation ( 1) in weak form, using the notation of (2) becomes l N(i,j)Tijdnl N,;pdn = l Nif;dn (18) where the trial functions, N, are the shape functions defined by the mesh, and we have assumed no non zero traction boundary conditions are present. For the discretized problem, these integrals occur over sub domains (elements) and are calculated by summation over a finite number of sample points within each el ement. For example, in order to integrate a quantity, In standard finite elements, the positions of the sam ple points, xp, and the weighting, wp are optimized in advance. In our scheme, the Xp 's correspond pre cisely to the Lagrangian points embedded in the fluid, and wp must be recalculated at the end of a timestep for the new configuration of particles. Constraints on the values of wp come from the need to integrate poly nomials of a minimum degree related to the degree of the shape function interpolation, and the order of the underlying differential equation (e.g Hughes, 1987). These Lagrangian points carry the history variables which are therefore directly available for the element integrals without the need to interpolate from nodal points to fixed integration points. In our cas• e, the dis tribution of particles is usually not ideal, and a unique solution for wp cannot be found, or we may find we have negative weights which are not suitable for inte grating physical history variables. We therefore store an initial set of wp 's based on a measure of local vol ume and adjust the weights slightly to improve the integration scheme. Moresi et al. (2000) give a full discussion of the implementation of the particle-in-cell finite element scheme used here including full details of the inte gration scheme and its assumptions. They also dis cuss the specific modifications to the material point method required to handle a convecting fluid.

BENCHMARKS

We have benchmarked our numerical scheme against analytic solutions in order to characterize its strengths and weaknesses, and to quantify the likely level of ac curacy we can achieve with a given mesh/particle den sity. We first benchmark the purely viscous flow case to provide a baseline for comparison with viscoelastic cases.

Analytical solution

We study the spreading of a rectangular sample of ma terial under a constant downward velocity V applied on top (see Fig. 2).

The specified boundary conditions give: 
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We use this relationship to eliminate the pressure derivative from ( 21) and ( 7) and express the unknown The Eulerian mesh does not carry any information from timestep to timestep other than the boundary conditions. Therefore, when convenient, the mesh may be modified, replaced, and refined as necessary.

For this problem, compression is applied by a moving boundary condition which causes the mesh to com pact in one direction. For simplicity, the mesh is sim ply scaled to the new aspect ratio without altering the number of elements. In a more complicated situation, however, it would be possible to regrid completely without loss of accuracy. The only detail which needs to be observed is that the updating of the boundary node locations follows the same formulation as that of the particles (here, a second order Runge-Kutta inte gration procedure) to prevent the boundary conditions from drifting with respect to the stored information on the particles.

In the x-direction we have a free surface. In order to investigate the properties of a particle representaion of such interfaces, it is important not to simply use a mesh-based boundary condition. Instead we use a mesh (Fig. 2) larger than the specimen and fill the gap with a backgroun� material having (17 = 103 MPa.s and� = 105 MPa.s).

The square mesh is composed of 4096 elements.

Results

We have tested the code, ELLIPSIS, with three dif ferent type of materials: viscous and compressible 4). The numerical parameters for the viscous part of ( 15) and ( 14) are:

TJ = 106 MPa.s. and e = 4.106 MPa.s.

(
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Due to the mesh size and the prescribed velocity on top, the Courant condition requires 6.t < 5.10-3 s .. For our problem we take 6.t = 10-3 s ..

As an indicator of accuracy we compare analytical and numerical x-velocity at the point I (Fig. 2). The steps in the numerical solutions are related to the the motion of the material interface relative to the element edges. When the interface between the specimen and the background material crosses into a new element there is an immediate discontinuous contribution to the element equations from the sample material. We have verified that jump tends to zero as we increase the element and particle densities.

In the viscoelastic case, in Fig. ( 4) we can see that, for different relaxation time, the error against the an alytical solution remains below 3%. Some steps are still present, but in the viscoelastic case the veloc ity is considerably more noisy. What is most clear is that the computations with larger relaxation time have greater fluctuation in accuracy. The problem be comes more acute in this case when the Courant time (decreasing due to the compression of the background mesh) becomes comparable to the relaxation time. This can result in a loss of stability which is entirely an artefact of the discretization. The most promising solution to this issue is to compute the time-derivative of the stress tensor over a physically relevant inter val, rather than that imposed by the mesh. This is a particular focus of our current research. 1) is a gravitational body force due to density changes. We assume that these arise, for any given material, through temperature effects:

v • r -V"p = gpo ( I -aT)z ( 28 
)
where g is the acceleration due to gravity, Po is mate rial density at a reference temperature, a is the coef ficient of thermal expansivity, and T is temperature.

z is a unit vector in the vertical direction. We have also assumed that the variation in density only needs to be considered in the driving term (the Boussinesq approximation).

The equation of motion is then

( [ r1 W1r1 r1W']) V T/eff --+ ----- µ f:l.t µ µ (29) 
The velocity field u and pressure at t + 6.t can be solved for a given temperature distribution and the stress history from the previous step. Motion is driven by the heat escaping from the inte rior. The energy equation governs the evolution of the temperature in response to diffusion of heat through the fluid. For a given element of fluid, (30) where" is the thermal diffusivity of the material.

So far, all equations have been written in a purely Lagrangian framework. The time derivate of temper ature and the Jaumann stress rate refer to a frame of reference which is carried by the fluid. In choosing a solution method, it is necessary to choose whether to honour the Lagrangian formulation, or to work with a fixed reference frame and introduce additional terms to compensate for the advection of temperature and stress by the fluid.

Brittle failure

As we discussed above, plate models need to in clude a description of the brittle nature of the cold est part of the lithosphere. Geologists use this term quite loosely to distinguish fault-dominated deforma tion which may result in seismic activity, from ductile creep which occurs at higher temperature and pres sure. In all recent studies of mantle convection where the brittle lithospheric rheology has been taken into account, the brittle behaviour has been parameterized using a non-linear effective viscosity which is intro duced whenever the stress would otherwise exceed the yield value Tyield• This approach ignores details of individual faults, and treats only the influence of fault systems on the large-scale convective flow.

To determine the effective viscosity we extend (6)

by introducing a von Mises plastic flow rule:
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where A is a parameter to be determined such that the stress remains on the yield surface, and lrl = The value of ,X or 171 is iterated to allow stress to redistribute from particles which become unloaded. The iteration is repeated until the velocity solution is unchanged to within the error tolerance required for the solution as a whole.

The value of the yield stress is, in principle, a func tion of strain, yield history, and temperature, and can be distinct for different materials.

PLATE MODELING

As a simple example, we demonstrate the compres sion of a viscoelastic-brittle layer which lies on top of a slightly less dense viscous fluid layer (Figure 5). This system is an analogue of the cool oceanic lithosphere which rests upon the warm asthenosphere (though we do not solve the temperature equation in this case). The viscoelastic layer is initially split to provide an initiation point for a model subduc tion zone. The vertical boundaries are free-slip, and the right hand edge is given a horizontal velocity to shorten the system. There is a layer of highly com pressible material of very low viscosity above the elastic layer which accomodates the volume change associated with shortening of the mesh, and mimics a free surface boundary condition on the upper surface of the elastic layer. As compression proceeds, the vis coelastic layer flexes and the viscous layer flows to accomodate the deformation. As stresses build up in the model lithosphere, a second failure point develops allowing one half of the material to fold up under the other half. Further compression forces the two halves of the lithosphere layer to slide past each other along a zone of material failure. After this point, the pres-ence of the bottom boundary begins to interfere with the evolution of the system. This particular simulation demonstrates the capa bility of the algorithm in the simulation of subduction zone geometry in the style of [START_REF] Melosh | Dynamic support of the outer rise[END_REF] or Gur nis et al, ( 1996). The fact that the algorithm is imple mented within a fluid-dynamics framework suggests that a viscoelastic analysis of convection with strong temperature dependence of viscosity and a yield stress is now possible.

DISCUSSION

The algorithm described above is designed to intro duce elastic effects into convection simulations where temperature-dependent viscosity and yielding domi nate the mechanical behaviour. The viscosity of the mantle and the mantle lithosphere is very strongly de pendent on temperature (several orders of magnitude variation over 1000°C) whereas the shear modulus is not strongly affected (there is only a modest change in seismic wavespeed due to temperature). Therefore, elastic effects become unimportant outside the cold thermal boundary layer where viscosity is extremely large.

The influence of elastic stresses is likely to be felt at the subduction zones where the lithosphere is bent into the interior of the Earth. In these regions stresses are typically close to the yield stress -a fact which allows the plates to move in the first place. The ad dition of elasticity is likely to complicate the simple picture presented by [START_REF] Tackley | Self-consistent generation of tec tonic plates in three dimensional mantle convection[END_REF] and Moresi & Solomatov (1998) for viscous materials with a yield stress.

Our methodology is limited to a coarse continuum description of the subduction zone system at a resolu tion of a few km. This may be able to give us valu able information into the nature of plate tectonics, the thermal conditions in and around subducting litho sphere, and the stress state of the system. However, the resolution is too coarse to say anything about the detailed mechanics of the failure of lithospheric fault zones and the conditions for major failure. to occur. For this we require a coupling of the large-scale code with an engineering-scale code (e.g. DEM or small deformation Lagrangian FEM) using the large-scale to provide boundary conditions for the small scale. The issue of scale-bridging is important in many ar eas of numerical simulation. Essentially the same dif ficulties arise in material science where the atomic scale is best treated by molecular dynamics codes but the large scale must be treated as a continuum (e.g. Bernholc, 1999).

  Figure I: A simplified cross section of the Earth with major layerings shown to scale except for the upper boundary layer which is exaggerated in thickness by a factor of roughly two.
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 4 Figure 4: Viscoelastic material a. Numerical solution, b. µ = 104 MPa., c. µ = 1Cl5 MPa.
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 5 Figure 5: Example: compression of a viscoelastic plate with yield stress overlying a low viscosity fluid of equal density D.
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