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Event-Triggered Observer-based Output-Feedback Stabilization of Linear System with Communication Delays in the Measurements

In this paper, an original framework is proposed for the stabilization of a linear system with delays in the measurements: i) an observer estimates the full state information of the plant from a partial measurement, ii) an event-based control technique computes and updates the control signal only when a certain condition is satisfied and iii) an event-based corrector updates the model used to calculate the control law when it deviates from the estimated state. It is notably proved that such a proposal renders the closed-loop system stable for larger delays in the measurements than in the classical continuoustime control case. Simulation results are provided.

INTRODUCTION

With the development of embedded, miniaturized and interconnected systems, there is a growing interest in Networked Control Systems (NCSs) where the control loop is closed over a communication link. A network has several advantages, like flexibility in the configuration of the communication structure and the number of interconnected systems. However, it also has a considerable impact on the performance, notably because of communication delays and packet losses (not considered here) which avoid realtime control constraints to be meet and can even cause the instability of the control loop. In this context, the eventbased paradigm appears as a mean to reduce the communication bandwidth in the network since, contrary to the classical (periodic) scheme, an event-based control invokes a communication between the different nodes only when a certain condition is satisfied. Typical detection mechanisms are function of the state variation of the system, like in [START_REF] Durand | Further results on event-based PID controller[END_REF], [START_REF] Sandee | Eventdriven control as an opportunity in the multidisciplinary development of embedded controllers[END_REF], [START_REF] Sánchez | On the application of different event-based sampling strategies to the control of a simple industrial process[END_REF], [START_REF] Åström | Comparison of Riemann and Lebesque sampling for first order stochastic systems[END_REF], [START_REF] Heemels | Analysis of event-driven controllers for linear systems[END_REF], [START_REF] Lunze | A state-feedback approach to event-based control[END_REF], [START_REF] Eqtami | Eventtriggered control for discrete-time systems[END_REF]. An alternative approach consists in taking events related to the variation of a Lyapunov function (and consequently to the state too) like in [START_REF] Velasco | On Lyapunov sampling for eventdriven controllers[END_REF], or in taking events related to the time derivative of the Lyapunov function, like in [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF], [START_REF] Marchand | A general formula for the stabilization of event-based controlled systems[END_REF]. In the latter references, the updates ensure the strict decrease of the Lyapunov function, and so is asymptotically stable the closed-loop system.

The references above deal with state-feedback control. This means that the full state information is considered as measurable although, in practice, this assumption is often violated because only a small number of outputs (corresponding to the sensors that are available) is really measurable. For this reason, an output-feedback method, or an observer-based strategy where the whole state information is estimated, is more interesting. Such an approach was notably treated in [START_REF] Lehmann | Event-based output-fedback control[END_REF]. Furthermore, only few works consider event-based control under delay constraints. In [START_REF] Lehmann | Event-based control with communication delays[END_REF] in particular, an eventbased mechanism allows to control a plant with reduced communications for the measurements, but the control is still time triggered. In the present paper, both latter proposals are combined in order to propose an event-based output-feedback control of linear system with delays in the measurements. Note that delays in the measurements means the input signal of the controller is delayed.

The rest of the document is organized as follows. In section I, an overview of the context is provided and the problem is stated. The system architecture is introduced in section II. The proposal is then formalized in section III and the stability is analyzed. Simulation results are provided in section IV to highlight the capabilities of the proposed approach. Some discussions conclude the paper.

I. CONTEXT DESCRIPTION

A. Event-based state-feedback

Let consider the linear time-invariant dynamical system

ẋ(t) = Ax(t) + Bu(t) (1) y(t) = Cx(t)
(2) with x(0) := x 0 with x ∈ R n , u ∈ R m and y ∈ R l are the state, input and output vectors. By event-based state-feedback we mean a set of two functions: i) an event function ξ : R n ×R n → R, that indicates if one needs (when ξ ≤ 0) or not (when ξ > 0) to recompute the control law, ii) a state-feedback function R n → R m in the form u(t) = -Kx(t), where the state-feedback matrix K is calculated to make the closed-loop system stable. The solution of (1) with an event-based state-feedback starting in x 0 at t = 0 is then defined as the solution of the differential system

ẋ(t) = Ax(t) -BKx(t i ) ∀t ∈ [t i , t i+1 [ (3) 
where the time instants t i , with i ∈ N (determined when the event function ξ vanishes) are considered as events and x(t i ) is the memory of the state value at the last event.

In [START_REF] Marchand | A general formula for the stabilization of event-based controlled systems[END_REF], [START_REF] Téllez-Guzmán | Event-based LQR control for attitude stabilization of a quadrotor[END_REF], it is proved that the linear system (1) can be asymptotically stabilized (as soon as (A, B) is a stabilizable pair) by means of a particular event-based state-feedback

u(t) = -Kx(t i ) ∀t ∈ [t i , t i+1 [ (4) 
with

K := 2R -1 B T P (5) ξ x(t), x(t i ) = (σ -1)x(t) T Q 1 x(t) -2x(t) T Q 2 σx(t) -x(t i ) (6) 
with Q 1 := P A + A T P and Q 2 := P BR -1 B T P where P , Q and R are positive definite matrix solution of the Riccati equation Q 1 -2Q 2 = -Q. Note that the tunable parameter σ ∈]0, 1[ changes the frequency of events: the higher σ, faster is the convergence but more frequent are events in return.

It is also proved in [START_REF] Marchand | A general formula for the stabilization of event-based controlled systems[END_REF] that the feedback ( 4)-( 6) is uniformly MSI (Minimal inter-Sampling Interval). That means it is a piecewise constant control with non zero sampling intervals, which is useful to avoid Zeno phenomena.

B. Event-based output-feedback

Whereas the full state information x is considered as measurable in a state-feedback approach, in practice, only a small number of outputs y is really available. The idea behind an output-feedback approach is to directly use the output in the feedback law, i.e. u(t) = -Ky(t), where K is the output-feedback matrix for y as defined in (2), or to apply a state observer in order to have an estimation of all the state information (possible as soon as (A, C) is an observable pair), and then build a state-feedback control law using the estimated state. Typical Luenberger state observer for linear system (1) is

ẋ(t) = Ax(t) + Bu(t) + L y(t) -C x(t) (7) 
with x(0) := x0 where x ∈ R n is the estimated state vector and L is calculated to make stable the observation error defined by

x(t) := x(t) -x(t) (8) 
Such an observer-based output-feedback method is considered here. By event-based output-feedback we mean a set of two functions: i) an event function ξ : R n × R n → R (defined as before), ii) an output-feedback function R n → R m in the form u(t) = -K x(t). The solution of (1)-( 2) with an event-based output-feedback based on the observer [START_REF] Heemels | Analysis of event-driven controllers for linear systems[END_REF] and starting in x 0 at t = 0 is then defined as the solution of the differential system

ẋ(t) = Ax(t) -BK x(t i ) + L y(t) -C x(t) (9) ẋ(t) = Ax(t) -BK x(t i ) ∀t ∈ [t i , t i+1 [
The extension from event-based state-feedback ( 4)-( 6) to an observer-based output-feedback version is easy. It only consists in applying x instead of x in the event function and the control law, and so is asymptotically stable and uniformly MSI the closed-loop system for a given K and L.

C. Event-based control in NCSs with delays

Event-based control allows computing savings in embedded systems for the same performance as in a periodic scheme [START_REF] Åström | Comparison of Riemann and Lebesque sampling for first order stochastic systems[END_REF]. Similarly, it allows to reduce the communications in NCSs by sending signals over the communication link only when a given condition is satisfied. Note that only a communication link from the plant to the controller is considered here (and not from the controller to the plant).

Furthermore, delays in the measurements can be induced by the network and, as a consequence, a disturbance in the controlled systems can be detected too late by the (deported) controller, which can lead to an unstable behavior. The control mechanism has hence to be robust to such disturbances. For this reason, an event-based corrector is also applied. Such a technique was initially suggested in [START_REF] Lehmann | Event-based control with communication delays[END_REF] for a classical (time-triggered) state-feedback control strategy and adapted in [START_REF] Durand | Event-based stabilization of linear system with communication delays in the measurements[END_REF] for the particular event-based statefeedback ( 4)-( 6) case. The principle is extended here to an output-feedback scheme using the observer [START_REF] Heemels | Analysis of event-driven controllers for linear systems[END_REF]. Outputfeedback was treated in [START_REF] Lehmann | Event-based output-fedback control[END_REF] in the case of a time-triggered control without delays, whereas event-based feedback and delays in the measurements are now considered. Finally, the idea is to make a copy of the undisturbed model (1) of the system to control, in both sides of the network, and correct them when they deviate too much from the estimated values, that is when a perturbation occurs if the observer is stable. The copy of the model in the control side is used to compute the control law and the measurement is sent over the communication link only when it has to be corrected.

Contributions of the paper

In this paper, a new setup is considered using i) an eventtriggered observer-based output-feedback controller and ii) an event-based corrector with communication delays in the measurements. Note that, whereas the event-based control strategy is dedicated to previous works [START_REF] Marchand | A general formula for the stabilization of event-based controlled systems[END_REF], [START_REF] Téllez-Guzmán | Event-based LQR control for attitude stabilization of a quadrotor[END_REF], the proposal can be easily generalized to other (similar) strategies.

II. SYSTEM FRAMEWORK

The system architecture is presented in Fig. 1. Eventbased mechanisms are used to minimize the computational cost and the sending of information over the communication link. They are in both the controller and the plant nodes: an event-based (output-feedback) technique updates the control signal based on a dynamical model of the plant, whereas an event-based (observer-based) corrector corrects this model when it deviates from the real measurements. The different events in both sides can occur at any time and independently, consequently, one needs to mark the time variable t ∈ R + with respect to the source of event in order to formalize such a framework next. Also, the varying communication delays τ (t) ∈ R + are marked. Two indexes are used herein:

• Let t i denote the time when an event is enforced for control, afterwards called control's event, with i ∈ N.

The delay from the controller to the plant is assumed to be null here.

• Let t j denote the time when an event is enforced for correction, afterwards called correction's event, with j ∈ N. Also, let τ j := τ (t j ) denote the delay in the measurements (since the state values of the plant will be sent over the communication link each time an event occurs for correction). Remember that both indexes are independent in the sense there is no chronological relation between t i and t j . 

A. Perturbed system to control

The plant is described by a linear perturbed model

ẋ(t) = Ax(t) + Bu(t) + Ed(t) (10) y(t) = Cx(t) (11) 
with x(0) := x 0 where d ∈ R p is the disturbance. Several conditions are assumed in the sequel: i) the dynamics of the plant as well as the initial conditions are accurately known (A, B, C and x 0 are known), all model uncertainties are lumped into the disturbance d; ii) matrices A and B are controllable; iii) matrices A and C are observable; iv) the output y and the time t are measurable; v) the disturbance is bounded by

d(t) ≤ d max (12) 
vi) the communication delays are bounded and are smaller than the minimum inter-sampling interval between two consecutive events, that is

τ j ≤ τj < t j+1 -t j ∀j ∈ N (13) 
vii) the plant and the controller nodes are synchronous in the sense they share a same clock, i.e.

t i (i = 0) = t j (j = 0) = 0
Then, considering the system [START_REF] Lehmann | Event-based output-fedback control[END_REF] and applying the undelayed event-based state-feedback ( 4)-( 6), the continuous-time closed-loop system becomes

ẋ(t) = Ax(t) -BK x(t i ) + Ed(t) ∀t ∈ [t i , t i+1 [ (14) 
with x(0) = x 0 where x ∈ R n is the undelayed event-based controlled closed-loop state, K is defined in [START_REF] Durand | Further results on event-based PID controller[END_REF].

As already explained, the seminal works developed in [START_REF] Lehmann | Event-based control with communication delays[END_REF], [START_REF] Lehmann | Event-based output-fedback control[END_REF] are adapted here for the proposed framework. The main difference is that the control law is now piecewise constant whereas it was continuously updated before. In the initial setups, the closed-loop system when applying the classical (time-triggered) state-feedback control was

ẋ(t) = A K x(t) + Ed(t) (15) 
with A K := A -BK where x ∈ R n is the undelayed (continuous-time controlled) closed-loop state and A K is the closed-loop matrix. The problem was highly simplified since one only needed to know the value of A K to make a copy of the (undisturbed) closed-loop system. However, making such a copy means that the state-feedback control in the copies is computed from the undisturbed copy state. In other words, the control is not the same than for the real controlled system (computed from the disturbed real state), which makes the copies are more unprecised. Here, the same control input is used for the copies than for the plant. One hence needs to know the estimated state value at the last control's event, i.e. x(t i ), or at least the control signal value u(t i ).

B. Observer

The observer determines an estimate x(t) of the plant state x(t). This observer is not event triggered because one needs a continuous estimation in order to then detect the event time instants. However, its input is piecewise constant due to the event-based control setup. Reformulating the original form [START_REF] Heemels | Analysis of event-driven controllers for linear systems[END_REF], the observer expression becomes

ẋ(t) = A L x(t) + Bu(t i ) + Ly(t) (16) 
with A L := A -LC and x(0) := x0

This model requires the control signal u(t i ) which is applied to the real system [START_REF] Lehmann | Event-based output-fedback control[END_REF] each time an event is enforced from the controller. This is discussed in the sequel.

C. Event-based corrector 1) Event generator for correction:

This part runs a copy of the closed-loop system model ( 14) without disturbance

ẋe (t) = Ax e (t) + Bu(t i ) ∀t ∈ [t i , t i+1 [ (17) 
with x e (0) = x 0

where x e ∈ R n is the state of the event generator. This model also requires the control signal u(t i ), as discussed in the sequel. An event is generated for correction when the difference between the estimated system state x(t) in ( 16) and the event generator state x e (t) in ( 17) reaches a given threshold ē, that is when

x(t j ) -x e (t - j ) = ē (18) 
where t - j is the time just before the event, and so is corrected the value of the event generator state such that

x e (t + j ) = x(t j ) (19) 
where t + j is the time just after the event. This defines the correction's event instant t j . The estimated system state x(t j ) and the event time t j are then sent to the corrector (in order its model is also corrected) over the communication link.

2) Corrector: The corrector also runs a copy of the undisturbed closed-loop system model [START_REF] Sánchez | On the application of different event-based sampling strategies to the control of a simple industrial process[END_REF], that is

ẋc (t) = Ax c (t) + Bu(t i ) ∀t ∈ [t i , t i+1 [ (20) 
with x c (0) = x 0 where x c ∈ R n is the state of the corrector. The control signal u(t i ) is also required here, it is directly obtained from the controller (since it is in the same network side).

Actually, this model has also to be updated when the condition ( 18) is satisfied but, due to the network, the corrector receives the information (x(t j ), t j ) at the delayed time t j + τ j . Fortunately, the communication delay τ j can be easily deduced (knowing the time of sending t j and the one when the data are received, since both nodes are synchronous). The update of the corrector state x c can hence be easily determined. This is detailed in subsection III-A.

D. Event-based controller

In fact, the event-based feedback ( 4)-( 6) is not directly computed for the system (10) to control, but for the copy of the model available in the controller node, that is the corrector model [START_REF] Walsh | Scheduling of networked control systems[END_REF]. The control's event instant t i is hence determined by the vanishing of the event function ( 6) applied to x c , that is when

ξ x c (t), x c (t i ) ≤ 0 (21)
Also, the control law (4) becomes

u(t) = -Kx c (t i ) ∀t ∈ [t i , t i+1 [ ( 22 
)
where K is defined in [START_REF] Durand | Further results on event-based PID controller[END_REF]. The control signal u(t i ) is then sent to the plant (without communication delay) in order to be applied to the plant, the observer and the event generator for correction, and so it is available in ( 16) and [START_REF] Téllez-Guzmán | Event-based LQR control for attitude stabilization of a quadrotor[END_REF]. Also, note that the state x c is updated using the estimated state x (see subsection III-A) and, for this reason, the control strategy is an observer-based output-feedback law.

III. ANALYSIS AND MAIN RESULTS

A. Determination of the corrector state update x c (t + j + τ j ) The corrector state [START_REF] Walsh | Scheduling of networked control systems[END_REF] is updated when data are received over the communication link from the event generator, that is at time t j + τ j . Nevertheless, in order the system (20) at time t j + τ j holds like the one in [START_REF] Téllez-Guzmán | Event-based LQR control for attitude stabilization of a quadrotor[END_REF] which was updated at time t j , one needs to know how it behaved during the elapsed time. The analysis is divided into two steps:

1) The control signal is not updated during the communication, i.e. t i ≤ t j < t j + τ j < t i+1 : The system trajectory update of the model ( 20) is

x c (t + j + τ j ) = e Aτj x(t j ) - τj 0 e As dsBKx c (t i ) (23) 
based on an extension of [START_REF] Velasco | Control-driven tasks: Modeling and analysis[END_REF], [START_REF] Durand | Selftriggered control for the stabilization of linear systems[END_REF] and using [START_REF] Velasco | On Lyapunov sampling for eventdriven controllers[END_REF].

2) The control signal is updated during the communication, i.e. t j < t i ≤ t j + τ j < t i+1 : The update of the corrector state depends on the state value of the model at the control's event time t i , which depends on its own on the system state value at the correction time t j . This gives

x c (t + j + τ j ) = e A(tj +τj -ti) x c (t i ) - tj +τj -ti 0 e As dsBKx c (t i ) (24) 
where x c (t i ) = e A(ti-tj ) x(t j ) -ti-tj 0 e As dsBKx c (t i-1 ) denotes the trajectory of the state x c if the corrected value x(t j ) is applied at the correction's event time t j .

Thus, x c (t) = x e (t) holds for t j + τ j ≤ t < t j+1 . At the end, one only needs to know x(t j ) and t j (which are sent over the communication link), τ j (which is deduced from the transmitting time t j and the receiving one) and t i (which is provided by the controller) to update the corrector state [START_REF] Walsh | Scheduling of networked control systems[END_REF]. Also, one could note that assumption [START_REF] Mazo | Input-to-state stability of self-triggered control systems[END_REF] has to be satisfied. This is discussed in next subsection.

B. Determination of the maximum error of observation

From ( 8), ( 10)-( 11), ( 16) and ( 17), the error of observation becomes

ẋ(t) = A L x(t) + Ed(t) (25) 
An upper bound of the error of observation x is obtained according to the relation (since the A L matrix is assumed to be Hurwitz)

x(t) ≤ xmax (26) with xmax := ∞ 0 e A L s E ds d max
where d max is the disturbance bound defined in [START_REF] Marchand | A general formula for the stabilization of event-based controlled systems[END_REF]. The same results were obtained in [START_REF] Lehmann | Event-based output-fedback control[END_REF] for the time-triggered control case without delays.

C. Determination of the maximum communication delay

A bound on the communication delays ensures that no event is enforced during the communication time intervals, as specified in [START_REF] Mazo | Input-to-state stability of self-triggered control systems[END_REF]. From ( 16), ( 17), ( 20), (22), one obtains

ẋ∆ (t) = Ax ∆ (t) + LC x(t) (27) with x∆ (t) := x(t) -x c (t)
where x is defined in [START_REF] Khalil | Nonlinear Systems, Third Edition[END_REF], and

ẋe∆ (t) = Ax e∆ (t) (28) with x e∆ (t) := x e (t) -x c (t)
whose solutions on the time interval t ∈ [t j , t j + τ j [ are

x∆ (t) = e A(t-tj ) x∆ (t j ) + t tj e A(t-s) LC x(s)ds x e∆ (t) = e A(t-tj ) x e∆ (t j ) = e A(t-tj ) x∆ (t j )
In the latter expression, x e (t j ) is replaced by x(t j ) thanks to [START_REF] Velasco | On Lyapunov sampling for eventdriven controllers[END_REF]. Then, as no correction's event should be enforced according to [START_REF] Velasco | Control-driven tasks: Modeling and analysis[END_REF], the inequality

x(t) -x e (t) = x∆ (t) -x e∆ (t) < ē
have to hold for all t ∈ [t j , t j + τ j [. This yields 

)
where xmax is defined in (26) as an upper bound for the error of estimation x(t), and so is satisfied the assumption ( 13) for all τ j ≤ τj . This expression also defines the minimum inter-sampling interval of the event-based corrector ( 17)-( 20), ( 23)-( 24) which, as a consequence, is uniformly MSI. Furthermore, as already observed in [START_REF] Durand | Event-based stabilization of linear system with communication delays in the measurements[END_REF] for the state-feedback case (without observer), the result in ( 29) is quite interesting since the achieved bound of the communication delay is larger than the one obtained in the original event-based corrector in [START_REF] Lehmann | Event-based control with communication delays[END_REF], and its observer-based version in [START_REF] Lehmann | Event-based output-fedback control[END_REF] (where there is no delay but the extension is intuitive using [START_REF] Lehmann | Event-based control with communication delays[END_REF], [START_REF] Lehmann | Event-based output-fedback control[END_REF], [START_REF] Durand | Event-based stabilization of linear system with communication delays in the measurements[END_REF]). This is thanks to the piecewise constant control ( 21)-( 22), because it allows that the plant runs without updating its input as often as in the original continuous-time case. Finally, as observed in [START_REF] Lehmann | Event-based output-fedback control[END_REF], the delay bound (29) does not directly depend on the disturbance limit d max but indirectly through the error of observation bound xmax .

D. Stability of the proposed framework

The stability property of the proposal comes from above results. Let first recall some definitions from [START_REF] Khalil | Nonlinear Systems, Third Edition[END_REF].

Definition 3.1: The solution x(t) of a continuous-time system is Globally Uniformly Ultimately Bounded (GUUB) if for every initial condition x(0) ∈ R n there exists a positive constant µ and time ν such that x(t) ≤ µ ∀t ≥ ν.

Definition 3.2: The solution of the disturbed continuoustime state-feedback system [START_REF] Sandee | Eventdriven control as an opportunity in the multidisciplinary development of embedded controllers[END_REF] is GUUB if the feedback matrix K renders the undisturbed system (3) stable and the disturbance d(t) is bounded.

Theorem 3.3 (Stability of the event-based framework): Consider the state observer [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF]. Consider the event-based corrector ( 17)-( 20), ( 23)-(24) affected by communication delays [START_REF] Mazo | Input-to-state stability of self-triggered control systems[END_REF] in the measurements, whose a bound is given in (29). Consider the event-based state-feedback (21)-( 22). Then, the output-feedback control loop for the disturbed linear system (10)- [START_REF] Lunze | A state-feedback approach to event-based control[END_REF], whose disturbance is bounded by [START_REF] Marchand | A general formula for the stabilization of event-based controlled systems[END_REF], is uniformly MSI and GUUB.

Proof: The undelayed event-based state-feedback ( 4)-( 6) renders the undisturbed linear system (3) asymptotically stable for a given feedback matrix K defined in [START_REF] Durand | Further results on event-based PID controller[END_REF]. This was proved in [START_REF] Marchand | A general formula for the stabilization of event-based controlled systems[END_REF], [START_REF] Téllez-Guzmán | Event-based LQR control for attitude stabilization of a quadrotor[END_REF]. From Definition 3.2, the undelayed continuous-time state-feedback system ( 14) is hence GUUB for a bounded disturbance [START_REF] Marchand | A general formula for the stabilization of event-based controlled systems[END_REF] and the stabilizing feedback ( 4)- [START_REF] Eqtami | Eventtriggered control for discrete-time systems[END_REF].

From the observer theory, the undelayed event-based output-feedback -replacing the state x in ( 4)-( 6) by its estimated value x obtained thanks to the state observer ( 16) -renders the undisturbed linear system (1) asymptotically stable for a given matrix of observation L if the corresponding state-feedback closed-loop system is stable [START_REF] Åström | Feedback Systems: An Introduction for Scientists and Engineers[END_REF].

On the other hand, let e(t) := x(t) -x(t) (30) be the approximation error, i.e. the difference between i) the state x(t) of the closed-loop system (10)-( 12), ( 16), ( 17)-( 20), ( 21)-( 22), ( 23)-( 24) with communication delay [START_REF] Mazo | Input-to-state stability of self-triggered control systems[END_REF] and ii) the state x(t) of the undelayed closed-loop system [START_REF] Sánchez | On the application of different event-based sampling strategies to the control of a simple industrial process[END_REF].

The derivative of e(t) gives since the feedback matrix K defined in (5) renders the "undisturbed" approximation error dynamics (31) asymptotically stable (where x ∆ can be seen as the disturbance), and so becomes null the first right-hand term in (31). This result is quite close to the original work [START_REF] Lehmann | Event-based control with communication delays[END_REF], [START_REF] Lehmann | Event-based output-fedback control[END_REF], the closedloop matrix A K is only replaced by A in (32) due to the piecewise constant control of the present paper. Therefore, an upper bound of x ∆ (t) is obtained with the same method (adapted here for the piecewise constant observerbased output-feedback control case). The study is divided into two parts: 1) Firstly, x c (t) = x e (t) holds for t j + τ j ≤ t < t j+1 whatever the last control's event time t i thanks to the update mechanism (23)-(24). The bound is hence obtained from the inequality

ė(t) = Ae(t) -BKe(t i ) + BKx ∆ (t i ) (31 
x ∆ (t) = x(t) -x c (t) ≤ x(t) -x(t) + x(t) -x e (t) + x e (t) -x c (t)
whose first right-hand term is limited by the error of estimation bound xmax previously obtained in (26), second one is bounded by the correction event threshold ē because of [START_REF] Velasco | Control-driven tasks: Modeling and analysis[END_REF], and the last right-hand side is zero. This gives

x ∆ (t) ≤ xmax + ē ∀t ∈ [t j + τ j , t j+1 [ (33) 
2) Then, the analyze of x∆ (t) in ( 27) easily gives its solution on the second interval t j+1 ≤ t < t j+1 + τ j+1 x∆ (t) = e A(t-tj+1) x∆ (t j+1 ) + where τj is the communication delay bound obtained in (29) and d max is the disturbance bound defined in [START_REF] Marchand | A general formula for the stabilization of event-based controlled systems[END_REF]. At the end, since c ≥ 1 and d ≥ 0 by definition, the expression (34) can be generalized for all t ∈ [t j + τ j , t j+1 + τ j+1 [, and so is upper-bounded e(t) in (32). Since the undelayed continuous-time state-feedback system ( 14) is GUUB and e(t) in (32)-( 34) is upper-bounded, one can conclude the proposed event-triggered observerbased output-feedback control with event-based correction and communication delays is GUUB.

Also, the MSI property was demonstrated in [START_REF] Marchand | A general formula for the stabilization of event-based controlled systems[END_REF] for the control case and in subsection III-C for the corrector one. This ends the proof.

IV. SIMULATION RESULTS

In this section, the proposal is tested in simulation, using the Matlab/Simulink environment. Firstly, the system is a double integrator, whose matrices in [START_REF] Lehmann | Event-based output-fedback control[END_REF] are given by

A = 0 1 0 0 , B = 0 1 , C = 1 0 and E = 1 0
The initial state and observer conditions are x 0 = x0 = 1 -3 T . The system is controllable and observable. The control parameters to calculate K in ( 5) are Q = 10 0 0 10 , R = 1 and σ = 0.8

The poles of the observer are chosen to converge 2 times faster than the poles of the controller, and so is obtained the matrix of observation L. The corrector parameter is ē = 0.05. Also, the bound of the communication delays is τj = 0.36 s, calculated using (29) (whereas it is 0.16 s when applying the original setup [START_REF] Lehmann | Event-based control with communication delays[END_REF]). A (randomly) varying disturbance whose maximum value is d max = 0.1 and constant communication delays τ j = 0.03 s ∀j ∈ N are considered. The simulation results of the whole proposal are compared in Fig. 2 with a state-feedback approach (see [START_REF] Durand | Event-based stabilization of linear system with communication delays in the measurements[END_REF] for further details). The system is stabilized in both cases (with only 18 and 16 events respectively) even in the present case of disturbances and delays. Moreover, the number of samples and the final error are lower with the output-feedback strategy than in the state-feedback case. This is probably because the observer estimates the plant state but not its disturbance, and the control law is based on the resulting undisturbed model. 

CONCLUSION AND FUTURE WORK

In this paper, it was proposed to combine i) a state observer, ii) an event-based control technique and iii) an eventbased corrector for the stabilization of a linear system with delays in the measurements. It was proved this framework is stable and works with delays larger than in the original continuous-time control [START_REF] Lehmann | Event-based control with communication delays[END_REF], [START_REF] Lehmann | Event-based output-fedback control[END_REF]. Future work is to test the proposal on a real-time implementation, like a minihelicopter with delays due to a vision-based measurement. Furthermore, next step is to consider packet losses and to add a disturbance observer, in order to use the estimation of the perturbations in the corrector to improve its accuracy.
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 2 Fig. 2. Simulation results of the double integrator: event-based statefeedback vs. (observer-based) output-feedback control, both with eventbased correction (and communication delays).