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Abstract. We illustrate the flow behaviour of fluids with isotropic
and anisotropic microstructure (internal length, layering with bending
stiffness) by means of numerical simulations of silo discharge and flow
alignment in simple shear. The Cosserat theory is used to provide an
internal length in the constitutive model through bending stiffness to
describe isotropic microstructure and this theory is coupled to a director
theory to add specific orientation of grains to describe anisotropic
microstructure. The numerical solution is based on an implicit form of
the Material Point Method developed by Moresi et al. [1].
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1 Introduction

The mechanics of granular materials has intrigued physicists and engineers for
well over two centuries. At low strain rates, particulates such as sand or cereals
behave like solids, but at high strain rates, the behaviour is fluid or gas like.

Computer simulations and specifically discrete element simulations [2] are
an important tool for exploring the fundamental behaviours of granular flows,
flow regimes, phase transitions, fluctuations etc. However computational require-
ments set strong limitations to the size of discrete element models. The much
simpler and (where applicable) much more efficient continuum models for granu-
lar flows are valid when the typical grain size is much smaller than characteristic
structural dimensions e.g. the outlet size in silo flows. Cosserat continuum the-
ory [3] considers some of the salient features of the discrete microstructure (e.g.
grain size, relative rotation between microstructure and the continuum) within
the framework of a continuum theory. Such a theory fits between detailed dis-
crete theories and the usual continuum theory.

The Cosserat- or micropolar theory may be employed for a variety of ap-
plications involving the need to describe the heterogenous microstructure of the
material such as granular materials [4], layered materials [5] or crystals [6] within
the framework of a continuum theory.



This class of theories can be implemented in the context of a classical finite
element method (FEM). However, very large deformations are sometimes diffi-
cult to handle elegantly within the FEM because mesh distortion and remeshing
can quickly present severe difficulties. The version of the Material Point Method
(MPM, [7] and [8]) applied here combines the versatility of the standard FEM
with the geometrical flexibility of pure particle schemes such as the Smooth
Particle Hydrodynanmics (SPH, [9]).

In MPM Lagrangian integration points move through a spatially fixed Eule-
rian mesh. MPM is inspired by particle-in-cell (PIC) finite difference methods,
originally designed for fluid mechanics, in which fluid velocities are solved on
the mesh, and material strains and material history variables are recorded by
Lagrangian particles. These particles serve as integration points for the stiff-
ness matrix and force vectors. The MPM method applied here is implicit [1] as
opposed to the explicit form proposed by Sulsky et al. [10].

We show simple simulations to illustrate the performance of the numerical
scheme and the constitutive theory.

2 Mathematical Formulation

2.1 Cosserat Deformation Measures

We assign a local rigid cross to every material point (z1,x2,x3) of the body
in a Cartesian coordinate system (X7, X2, X3). During deformation, the rigid
crosses rotate at a rate w{ about their axis ¢ and are translated according to
the conventional linear velocity vector u. The angular velocity wy is considered
to be independent of u and differs from the angular velocity of an infinitesimal
volume element of the continuum w;,

1
wi = —5 €k Wik (1)
where 1
Wik = 5 (ujn — uny) (2)

In (1) € designates the permutation symbol, and in (2) (.)r = 0(.)/0x) are
partial derivatives.
In the classical theory the stretching tensor is given by:

1
Dij = 5 (uij +ujs) (3)
In the Cosserat theory, as a rotational parameter has been added, in addition to

the classical strain rate tensor D, there is an additional rate measure,

el = s — (1)
which represents the relative angular velocity between the material element and

the associated rigid coordinate cross. In this case, the rate of the deformation



tensor can be expressed by the rate of the distortion tensor, =,
Yig = ui; — W (5)

where
Wi = —epijwy, (6)

and by the tensor representing the measure of relative angular velocity between
the neighbouring rigid crosses,

Kij = Wy ; (7)

The conventional strain rate tensor can be expressed as the symmetrical part of
the rate of the distortion tensor,

1
D;; = 5(%‘1‘ + i) (8)

and the relative angular velocity as the antisymmetrical part

re 1
Wt = 5(%‘ — Vi) 9)

We have 2 deformation rate measures i.e. v and k. Both measures are objective.
In a rotating observer frame v and s are obtained as QvQ” and QxQ” where
QQT = 1 describes the rotation of the moving -with respect to the fixed-observer
frame.

2.2 Constitutive Relationships for Granular Materials

In a 2D conventional continuum an isotropic material is characterised by a bulk
viscosity B and a shear viscosity 7, for a Cosserat continuum we also have a
Cosserat shear viscosity n¢ and a bending viscosity M. The constitutive relation
for a generalised Newtonian fluid can be written in the usual pseudo-vector form:

o=AD (10)

where the stress vector components are:
ol = {04s, Oyys Ozys Oyzs zz, fay b (11)

the deformation vector components are:

DT = {’Yzm;’}/yyaf)/xyaf)’yzv’izza”zy} (12)

and the matrix A is expressed as:

B+n B—n 0 0 00
B+n 0 0 00
n+n®n—nm°0 0

1

n+n° 0 0 (13)
symm. M 0
M



For benchmarking purposes, we use the simplest possible realisation of a gran-
ular, viscous medium. In the granular-elasticity model of Choi and Miihlhaus [11]
we replace the contact stiffnesses K,, and K, and relative displacements by con-
tact dashpots n,, and 7, and relative velocities and relative rotation rates and
obtain the relationships

1—n
== k(n, + 1 14
=1 (M + Nm) (14)
1—n
c kN, 15
n 5k (15)
1—n
B= knn, 16
5 kil (16)
M = 2n°R? (17)

2.3 Director Theory

The salient mechanical feature of layered geomaterials is the existence of a char-
acteristic orientation given by the normal vector field n;(xg, t) of the layer planes,
where (21, 22, x3) are Cartesian coordinates, and ¢ is the time. We assume linear
viscous behaviour and designate with n the normal viscosity and 7, the shear
viscosity in the layer planes normal to mn;. The orientation of the normal vec-
tor, or director as it is sometimes called in the literature on oriented materials,
changes with deformation. Using a standard result of continuum mechanics, the
evolution of the director of the layers is described by
hl‘ = WZJITLJ where W;jl = Wij — (Dki)\k:j — ij)\k:i)

and )\ij = n;n; (18)

where L = D + W is the velocity gradient, D is the stretching and W is the
spin. The superscript n distinguishes the spin W™ of the director N from the
spin W of an infinitesimal volume element dV of the continuum.

2.4 Specific Viscous Relationships

We consider layered materials. The layering may be in the form of an alternating
sequence of hard and soft materials or in the form of a superposition of layers of
equal width of one and the same material, which are weakly bonded along the
interface. In the following simple model for a layered viscous material we correct
the isotropic part 277D§j of the model by means of the tensor A to consider the
mechanical effect of the layering; thus

oij = 201D} — 2(n — 1) Aijim D}, — D03 (19)

where p is the pressure, D’ designates the deviator of D (i.e. D' = D —tr(D)),
and

1
Aijkl = <2(nink5lj + njnk.éil + nmlékj + njnl(;ik) — 2ninjnknl) (20)



3 Applications

3.1 Silo Discharge

We now consider the discharge of a Cosserat material from a model silo. In this
case we are interested in the influence of the internal length parameter on the
discharge velocity of a Cosserat fluid as described by (10-13)

Figure 1 shows the geometry of the model as well as different snapshots along
the computations. Heavy lines are free-slip boundaries. Flow is only due to the
downward gravity field. The grid drawn on the flowing material is a “dye” to
record deformation — it does not affect the material properties. Corridors along
the edges provide space where upward flow of the passive background material
can take place to equilibrate the pressure due to the downward flow of the
Cosserat viscous material. The mechanical characteristics of each material are
summarized in Fig. 2.

In Fig. 3 we plot the volume flowing out the reservoir versus time and for
different values of the ratio &« = R/a where a is the silo aperture. The flow rate
is almost identical for all values of o (Fig. 3d and 3e) larger than the aperture
(1.0) which corresponds, in the elastic case, to a situation in which no flow can
occur. Note that in purely viscous materials static equilibrium states do not
exist, ensuring that stable arches do not form. For 0 < a < 1.0, the smaller the
internal length the faster the outflow. As for the elastic case the internal length
provides a bending stiffness which slows down the flow.

@ ® © @ @

Fig. 1. Snapshots of the model. (a) Initial conditions, (b) t = 4.75 10™* sec., (c)
t=1.421072 sec., (d) t = 2.85 1073 sec. and (e) t = 3.8 10 3sec.

Granular material|Background
Internal length R 0
Shear viscosity 1000 1
Bulk viscosity 400 +o00
Density 10° 0

Fig. 2. Constant values.
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Fig. 3. Outgoing volume for (a) =0, (b) a=1/3, (¢) «=2/3, (d) «=5/3 and (e) a=10/3

3.2 Self-Alignment

In this example the flow of anisotropic particles (pencil-shaped) is modelled in
an infinite shearlayer. The normal viscosity 7 is set to 1000 Pa.s and the shear
viscosity 7s to 500 Pa.s. Each particle has an internal length R of 0.2 m. We
specify periodic boundary conditions along the vertical lines to model the infinite
dimension in the shear direction. Along the horizontal lines the cosserat rotation
and the normal velocity are set to zero and we specify a shear stress of 10* Pa
on top and —10* Pa at the bottom.

Initially (Fig. 4a), a random director orientation between —7 and 7 is set to
each particle. Thus the initial behaviour is isotropic. Particles along the central
vertical line are "dyed” to track the material motion through time (Fig. 4). To
each configuration (a), (b) and (c) corresponds a plot (a’), (b’) and (c’) of the
isovalues of n,. On the first profile (Fig. 4a’), we get a unique isovalue 0.64
which corresponds to average value of the cosinus of the orientation angle of the
director.

While the shear stress is applied, grains are reorientated parallely to the
shear direction (Fig. 4b’). Once they reach the weakest orientation (n, = 0),
they remain in that position. As shown on plot 4¢’, the material is now strongly
anisotropic due to the preferential orientation of interpolation points.

4 Conclusions

The Cosserat model shows the internal length effect on flow velocity. The
Cosserat theory coupled with the director theory in the shear model can ex-
plain qualitatively the anisotropy induced during strong shearing, for example
in a silo discharge of non-spherical grains.
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Fig. 4. (a) Initial conditions with random particle orientation, (b) beginning of the
anisotropic behaviour and (c) the material is oriented. Plots (a’), (b’) and (¢’) are the
isovalues of the director orientation respectively corresponding to configuration (a), (b)
and (c)
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