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ABSTRACT: The C-NEM is a new approach that we apply to solve mechanical problem in the context of

finite transformations as encountered in forming process simulation. The C-NEM (Constrained Natural Ele-

ment Method) is based on the Voronoi diagram associated to the nodes spread on the studied domain. The

Voronoi diagram is constrain to respect the geometry of the domain boundaries. Its ability for constructing

the interpolation when the domain becomes highly distorted makes of that approach an appealing choice for

simulation forming processes as for example 3D cutting and blanking. In this communication we present some

aspects related to the C-NEM approach and we show its ability to simulate kinematics encountered in high

velocity blanking process.
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1 INTRODUCTION

The C-NEM has still a number of common points

with the finite elements approach: the interpolation is

defined on a set of nodes, degrees of freedom (DOF)

are associated to the nodes, a localised in space shape

function is associated to each node, the interpolation

is nodal and is exact for linear fields. The C-NEM

interpolation uses the constrained Voronoi diagram

(dual of the constrained Delaunay’s tesselation) as-

sociated to the set of nodes and the boundaries of the

domain. The quality of the produced interpolation de-

pends primarily on the distribution of the nodes. The

presence of flat tetrahedrons in the dual mesh of De-

launay does not affect the interpolation quality.

In next paragraphs we initially reconsider the NEM

interpolation. We then focuse on the non-convex do-

mains for which the construction of a constrained

Voronoi diagram is needed. The aspects related to the

partitioning of the domain are then evoked. Finally

we give the example of a 3D simulation of blanking.

2 THE C-NEM INTERPOLANT

2.1 Headlines of the natural element method

The NEM (Natural Element Method) interpolant is

based on the Sibson’s natural neighbor coordinates

(shape functions) [3, 10] and is constructed on the

basis of the Voronoi diagram. For a set of nodes

S = {n1, n2, . . . , nN} in ℜdim, ( dim ∈ {2, 3}), the

Voronoi diagram is the subdivision of ℜdim into re-

gions Ti (Voronoi cells) defined by:

Ti = {x ∈ ℜdim : d(x,xi) < d(x,xj),∀j �= i} (1)

Sibson’s coordinates of x with respect to a natural

neighbor ni (see figure 1) are defined as the ratio of

the overlap area (volume in 3D) of their Voronoi cells

to the total area (volume in 3D) of the Voronoi cell

related to point x:

φi(x) =
Area(afghe)

Area(abcde)
(2)
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Figure 1: Sibson shape functions construction in 2D

If the point x coincides with the node ni, i.e. (x = xi),

φi(xi) = 1, and all other shape functions are zero,



i.e. φi(xj) = δij (δij being the Kronecker delta).

The properties of positivity, interpolation, partition of

unity [10] and local coordinate property [9] are veri-

fied :

⎧

⎪

⎨

⎪

⎩

0 ≤ φi(x) ≤ 1
φi(xj) = δij
∑n

i=1 φi(x) = 1
x =

n
∑

i=1

φi(x)xi (3)

It turns out that the support of φi(x) is the union of the

n circles (spheres in 3D) passing through the vertices

of the n Delaunay triangles (tetrahedrons) connecting

the node ni (in this case n is the number of natural

neighbors of node ni). Another important property of

the NEM interpolant is the ability to reproduce lin-

ear functions over the boundary of convex domains.

The proof can be found in Sukumar et al. [10]. This

is not true in the case of non convex boundaries, and

the next section focuses on an approach to circumvent

this difficulty.

2.2 The Constrained natural element method

In its original form [10], the NEM can only be applied

to strictly convex domains. For strongly non-convex

domains (cracks, auto-contact...) some spurious influ-

ences between nodes of the boundaries appear [11].

In order to avoid these drawbacks, we have proposed

in a previous paper [11] an extension of the NEM in

which a visibility criterion is introduced in order to

restrict influent nodes among natural neighbors.

The computation of the shape functions is done on

the basis of the so-called Constrained (or extended)

Voronoi diagram (CVD), which is the strict dual to

the constrained Delaunay triangulation introduced by

Seidel in [5] (see [11] for further details).

The new cells TC
i , called constrained Voronoi cells,

are defined formally by:

TC
i = {x ∈ ℜn : d(x,xi) < d(x,xj),∀j �= i,

Sx→ni
∩ Γ = ∅, Sx→nj

∩ Γ = ∅}
(4)

where Γ is the domain boundary, composed by a set

of segments in 2D (triangular plane facets in 3D) and

Sa→b denotes the segment between the points a and b.

In this framework, a point located inside a cell TC
i is

closer to the node ni than to any other visible node nj .

For both the trial and the test functions the new ap-

proximation is then :

u
h(x) =

∑

i∈V

φC
i (x)ui (5)

where V is the set of natural neighbors which are vis-

ible from point x and φC
i is the constrained natural

neighbor shape function related to the i-th node at

point x.

It was shown in [11] that the use of the constrained

Voronoi diagram does not affect the properties of the

NEM interpolation.

2.3 Constrained Delaunay tetraedrisation

The constrained Delaunay triangulation does not al-

ways exist in 3D without adding new nodes [4]. Some

techniques for constructing 3D constrained Delaunay

tessellations are available by adding Steiner points

[6, 7]. These points are always set on triangles be-

longing to the boundary of the domain. It is possi-

ble to connect each of these points to at most 3 ini-

tial nodes (those defining triangles containing the new

points). The new points are treated as Slave nodes, the

initial nodes being the Master nodes. For each Slave

node nS
i , we set the following kinematic linear con-

straint :

u
S
i =

3
∑

j=1

ηij . u
M(Si)
j (6)

where u
M(Si)
j are the nodal values at the 3 Master

nodes of nS
i , and ηij the reduced coordinates of the

Slave node on its supporting triangle. To keep the

NEM interpolation properties, the interpolation must

be built using all the Master and Slave nodes values.

With this partition, the interpolation becomes :

u
h(x) =

∑

i∈Mi

φC
i (x)uM

i +
∑

i∈Si

φC
i (x)uS

i (7)

Mi and Si being respectively the set of Master and

Slave natural neighbors which are visible from x.

The software TETGEN (Quality Tetrahedral Mesh

Generator and Three-Dimensional Delaunay Triangu-

lator, [8]) is currently used to build the constrained

Delaunay tetrahedrisation.

3 EXPLICIT LAGRANGIAN PROCEDURE

With the principle of virtual work as a basis of kine-

matically based C-NEM solution scheme, the cor-

responding continuum incremental boundary value

problem is formulated as follows:
∫

Ωt
ρ(t)ü · ηdΩt +

∫

Ωt
σ

t : ∇xηdΩt

=
∫

Ωt
ρ(t)b · ηdΩt +

∫

∂Ωt
σ

τ · ηdΓt ∀η ∈ ϑ
(8)



where ρ is the density, b and τ represent the body

forces and applied tractions respectively, and ϑ is

the space of virtual displacements. The properties

dΩt = J tdΩ0 and ρ0dΩ0 = ρ(t)dΩt are used, which

leads to:

∫

Ω0

ρ0ü · ηdΩ0 +
∫

Ω0

P
t : ∇XηdΩ0

=
∫

Ω0

ρ0b · ηdΩ0 +
∫

∂Ωt
σ

τ · ηdΓt ∀η ∈ ϑ
(9)

where P denotes the first Piola-Kirschhoff stress ten-

sor related to σ by P = JF
−1

σ. The C-NEM dis-

cretization (5) of the variational form (9) results in the

discrete set of algebraic time dependent equations, in

matrix form, as:

Mün+1(t) = F
ext
n (t) − F

int
n (un, t) (10)

where t is the time, M denotes the mass matrix,

F
int
n (u, t) the internal force vector, while F

ext
n (t) is

the external force vector.

As shown in the next section, the use of the SCNI

quadrature [1] results in a M matrix diagonal, whose

diagonal terms are given by mi = ρ0Ωi, with Ωi the

volume of the Voronoi cell related to node ni.

The velocity v = u̇ and acceleration ü = v̇ are ap-

proximated by using central differences with variable

time steps:

vn+1/2 = vn−1/2 +
∆t1 + ∆t2

2
ün (11)

un+1 = un + ∆t2vn+1/2 (12)

4 NUMERICAL INTEGRATION

In the context of finite elements, a natural partition

of the domain is carried out by the elements. With C-

NEM the concept of element does not exist. A natural

partitioning is given by the cells of the Voronoi dia-

gram. When cells do intersect the boundary of the do-

main, only their part inside the domain is kept. How-

ever, for strongly non-convex domains in 3D, some

boundary cells may have negative volume inside the

domain (some faces may intersect themselves inside

the domain). It is thus necessary to use another par-

titioning. For reasons of simplicity we have chosen

a partitioning based on the Delaunay tetrahedrons :

each elementary volume Ωi is defined by the quarters

of all tetrahedrons connected to the node ni.

We then use the stabilized conforming nodal integra-

tion (SCNI) proposed by Chen et al. [1] to define a

deformation gradient at node ni:

∇̃fh
i =

1

|Ωi|

∫

Ωi

∇fh(x)dΩ (13)

In order to avoid projections between two successive

actualisations of the reference configuration all vari-

ables are computed with this gradient at the nodes.

5 NUMERICAL SIMULATION OF BLANKING

All the simulations given below are dealing with the

same example. It is a simulation of blanking where

the gap e between the punch and the die is equal to

0.6mm and the radius r of the cutting edges are equal

to 0.2mm (Figure 2). The sample has a thikness (in

the direction of cutting) equal to 5mm, and its behav-

ior is modeled via a Johnson-Cook law [2] (Eq.14)

with the following coefficients (SI): A = 253. 106,

B = 685. 106, C = 0.097, m = 2.044, n = 0.3128,
˙̄ǫ
p
0 = 1., T0 = 296. These coefficients correspond to a

306L stainless steel.

σy = [A + B.(ǭp)n]
[

1 + C. ln
(

˙̄ǫ
p

˙̄ǫ
p
0

)] [

1 −
(

T−T0

Tf−T0

)m]

(14)

ǭp represents the equivalent plastic strain, ˙̄ǫ
p

the rate

of plastic strain and T the current temperature. The

punch and the die are considered as rigid and the con-

tact with the sample is without friction. The two sym-

metries of the experiment are taken into account and

only a quarter of the sample is studied.

e

e

r

punch

die

die

sample sy
mm
etr
y

symmetry

Figure 2: The blanking device

Figure 3 gives the evolution of the Mises equivalent

stress. The velocity of the punch is equal to 10m.s−1.

The elastic behavior take a major place in the lo-

calization of the shearing band. The elastic waves

take 0.9 10−6s to pass across the sample and figure

4 shows that the shearing band is clearly localize after



only 2.0 10−6s when elastic waves are still governing

the stress distribution in the sample. On figure 4 we

compare the equivalent plastic strain for 2 different

punch velocities.

t = 0.25μs t = 0.50μs

t = 1.00μs t = 2.00μs

Figure 3: Stress field in blanking - Punch velocity : 10ms
−1

This figure exhibits the asymmetry of the shearing

band which is more important close to the die, this

effect being more important when the velocity of the

punch goes from 10 to 30m.s−1.

Punch Velocity 10ms−1 Punch Velocity 30ms−1

Figure 4: Plastic strain localisation after 2.00µs

On both previous simulations the punch and the die

are taken as rigid although their young modulus and

mass density are close to those of the sample. This

increases the effect of plastic strain near the contact

and inside the sample. This aspect will be take into

account for future simulations.

6 CONCLUSIONS

With the possibility of dealing with three-dimensional

problems involving domains of any type (convex or

not), C-NEM is from now a general tool. Its develop-

ment is currently oriented towards the adaptation of

the node distribution (refinement in particular) spe-

cially in zones where high gradients occur, and also

to the adaptation of the boundary description when

high deformations have occurred. For instance, a cor-

rect description of the domain boundary is necessary

to update the constrained Voronoi diagram in the con-

text of an updated Lagrangian approach.

First results on blanking are nevertheless interesting.
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