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ABSTRACT 

Inflatable structures made of modern textile materials 
can be inflated at high pressure in order to be used as 
strong building elements. The aim of the paper is to 
present results from research on the mechanics of highly 
inflated structures. Experimental, analytical and 
numerical studies on the behavior of inflatable fabric 
beams are displayed. We will first describe 
experimental studies on two kinds of inflatable 
prototypes: flat panels and tubes. Experiments show that 
their behavior is a linear combination of yarns and 
beams shapes. The usual theory of collapse analysis is 
then applied to the computation of wrinkling loads of 
these fabric beams. The second section of the paper is 
devoted to build a new inflatable beam theory and to 
show that the compliance of the inflatable beams is the 
sum of the beam compliance and of the yarn 
compliance. A new inflatable beam finite element is 
developed in the third section and used to compute 
deflections of hyperstatic beams. Our first results on the 
buckling of inflatable panels are displayed in the last 
section. Comparisons between experimental and 
analytical results are shown and show that this new 
theory on the mechanical strength of inflatable 
structures at high pressure is satisfactory. 

INTRODUCTION 

This paper presents results from research on the 
mechanics of inflatable structures at high pressure. Such 
structures are not new and a lot of inflatable structures 
are used by the industry: temporary buildings, boats, 
pools, space antennas, life jackets, etc. Moreover they 
have many interesting properties: they are light, easily 
folding and present reversible behavior after failure 
(they come back to their initial position after 
unloading). Inflation causes tension pre-stress in the 
walls and in the yarns of the structures. This pre-stress 
is proportional to the pressure and ensures an important 
mechanical strength. Generally, the inflation pressure is 
lower than 105 Pa because the structures are built with 

low strength materials. Development of new types of 
structures making full use of performance 
characteristics of modern textile materials will be 
possible by means of an available theory of their 
behavior when pressure reaches more than 106 Pa. 
A high pressure in inflatable structures is interesting 
from the following point of view: wrinkling and/or limit 
load is proportional to the applied pressure1. We must 
therefore use a high pressure if we want a good 
mechanical strength of inflatable structures. 
Unfortunately there is few results on the deflections of 
inflatable structures. Comer and Levy2, and more 
recently Main & all3 have studied inflatable fabric tubes 
and calculated the deflections of cantilever structures by 
using the usual beam theory. We will show that these 
studies should be improved. The obvious reason is that 
in a beam theory, the values of the deflections depend 
only on the flexural rigidity of the beam. Pressure 
doesn’t appear in the beam solution, and it seems clear 
that an inflated beam at an extremely low pressure has 
very large deflections. Deflection values are close to 
experimental ones when the pressure is low, but go far 
from reality at high pressure4. Moreover in a yarn 
theory deflections are independent of the material 
constitutive law and this is irregular. We will show that 
in fact the deflections of inflatable structures are a linear 
set of yarn and beam deflections. Given that these 
deflections are inversely proportional to the constitutive 
law and to the applied pressure, we have a second 
reason to inflate highly the structures and to use high 
performance materials. 

In the first section of the paper we will describe 
experimental work and show that inflatable beams 
cannot be viewed as ordinary plates or beams, because 
their deformation pattern is quite different. Experiments 
show that they behave like yarns when the pressure is 
low, like yarns and beams at high pressure, and once 
again like yarns or mechanisms when the applied load 
reaches the collapse load. Moreover experimental work 
shows that the section’s rotation of the beam is not 
orthogonal to the average fiber and implies that an usual 
beam theory can’t be used to calculate deflections of 
inflatable beams when the pressure is high. 
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The first experimental results are used in the second 
section in order to make an analogy between the usual 
theory of limit analysis of plastic beams, and the 
particular behavior of inflated beams when the collapse 
load is reached. We  will show that a suitable definition 
of the limit bending momentum allows the use of 
classical results in limit analysis. 

A new inflated beam theory is constructed in the third 
section in order to provide simple analytical formulas 
for deflection values of cantilever inflated beams. 
Equilibrium equations are written in the deformed state 
of the beam to take the geometrical stiffness and the 
following forces into account, and a Timoshenko’s 
beam theory is used. We will show that the deflection of 
the beam is simply the sum of the theoretical deflections 
given by the beam and the yarn theories. 

In the fourth section of this paper, we will build an 
inflatable beam finite element, able to give good values 
of the displacement field for hyperstatic beams or in 
structures made of inflatable beams. The inflatable 
beam theory implies that the compliance matrix of a 
cantilever inflated beam is simply obtained by adding 
the usual matrixes of yarns and beams. This matrix is 
then used to calculate the stiffness matrix of the free 
finite element by applying the usual theory of the 
equilibrium finite element method. This new element is 
then implemented in a finite element software. We will 
then compare results obtained with this new finite 
element to experimental, analytical and numerical 
results All these comparisons prove the accuracy of this 
theory on the mechanical strength of inflatable beams at 
high pressure and the efficiency of this inflatable finite 
element. 

Our first results on the buckling of an inflated panel are 
displayed in the last section. Obviously, an extension of 
the theory will be necessary in order to predict buckling 
occurring in compression loads. 

EXPERIMENTAL STUDY ON INFLATABLE 
PANELS AND TUBES 

Experimental results on inflatable panels 

The tested panels are prototypes constructed by 
Tissavel Inc. They are made of two parallel-coated 
woven fabrics connected by yarns and a cross section of 
these panels is shown Figure 1. The yarns density is 
enough to ensure the flatness of the fabric structure. 
Yarns are made of high strength polyester: its 
membrane modulus is about of 650000 N/m 

Figure 1.  Cross section of the panels 

The panel’s behavior depends on the inflation pressure 
p that leads the fabrics and the yarns to be prestressed 
and then to support local compression loads. 
Experimental study has been realised for two kinds of 
boundary conditions: simply supported panels and 
panels clamped at their two ends. Panels are loaded by a 
concentrated force F applied at the mid span of the 
beam. The width and height are named b, h and O is the 
half span of the beam. The typical shape of an inflated 
panel is shown figure 2. 

Figure 2.  Deformed pattern of a simply supported 
inflated panel. 

For such deformations, when the pressure is low, large 
straight parts appear between points of loading. When 
the pressure is higher, straight parts are shorter and a 
wider curved zone appears. The panel has therefore a 
behavior that is similar to that of a tensioned yarn when 
the pressure is low and to that of a beam when the 
pressure is high, and once again to that of a yarn (or a 
mechanism) when the applied load reaches the collapse 
load. Experimental deflection curves for low and high 
values of the inflation pressure are shown figure 3. 
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Figure 3.  Deflection curves for low and high pressure 
on a Clamped-Clamped panel 

Experimental results on inflatable tubes 

Tubes are also prototypes made of Ferrari’s pre-stressed 
fabrics. High characteristics fabrics are also used: the 
membrane modulus is 300000 N/m. 
Experimental study has also been realized for two kinds 
of boundary conditions: simply supported tubes and 
clamped tubes. The radius of the tube is named R. 
Typical shape of simply supported tubes is shown 
figure 4. 

Figure 4. Deformed pattern of a  simply supported 
inflated tube 

Similar statements can be done on the bended shapes of 
the tubes, but with less straight parts between points of 
loading. In fact, for panels, the influence of shear 
stresses along the sides can be neglected regarding the 
stiffness of the two pre-stressed membranes at the top 
and bottom of the panel. This is not true for inflated 
tubes; shear stresses play an important role in the 
behavior of the beam. Experimental deflection curves 
for low and high values of the inflation pressure are 
shown figure 5. 
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Figure 5.  Deflection curves of a simply supported tube 
for low and high pressure 

All these experimental results prove that inflatable 
beams behave successively like yarns or beams, and that 
their deformation pattern depends mainly on the 
inflation pressure and on the applied load. 

WRINKLING AND COLLAPSE LOADS 

Two kinds of results are interesting values from an 
engineering point of view: results on the wrinkling or 
collapse loads, and values of the deflections for a given 
load. We will begin with the first kind of results 
because these values can simply be obtained from the 
theory of shakedown analysis of beams: the deformation 
pattern of the inflated beam near it’s wrinkling / 
collapse load looks like a “Wrinkling load” 
phenomenon defined when the local resultant stress in 
the fabric begins to cancel in a side of the beam. 
Collapse load is defined when the structure becomes a 
mechanism. An important property of inflatable 
structures is due to the fact that this collapse is 
reversible: after unloading, inflatable structures come 
back to their initial position. 

Shakedown analysis of plastic beams is well known5. 
When plasticity appears on the inner or outer fibers of a 
simply supported beam loaded at its mid span, the load 
F0 is given by: 

l
00

M4F= (1) 

Where M0 is the maximum elastic momentum (also 
equal to the momentum which gives the beginning of 
the plastic process) and O is the length of the beam. 
When the load is increased, a plastic zone grows until a 
plastic hinge appears and the section of the beam is 
entirely plastified. The collapse load F1 is given by the 
same formula by replacing M0 by the total or plastic 
bending momentum M1.  
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l
11 M4F= (2) 

In the case of our inflated fabric beams, we can make 
the analogy between the beginning of plasticity and the 
apparition of an area where the stresses in the fabric 
cancels. Development of the plastic area is analogous to 
the expansion of a pneumatic hinge, and when the 
external load equals the collapse load, the pneumatic 
hinge has no strength. The beam becomes a mechanism 
and the collapse load is reached. The main difference 
between plasticity and the mechanical behavior of 
inflatable beam provides from the fact that plasticity 
gives residual strains and that shakedown is reversible 
for inflatable structures: they come back to their initial 
position after unloading.  

Wrinkling and collapse loads of panels 

Following results depend on the definition of the 
bending moments M0 and M1. Let’s consider a small 
element of the panel. Ni and Ns denote the resultant 

stress respectively in the lower and upper membrane. 

Ns 

Ni Ni 

Ns 

h 

The bending momentum results mainly from the 
difference between the stresses in the two membranes, 

( )Si NN
2
hM −=  (3)

and these stresses are equilibrated by the internal 
pressure. 

hb
hpb

NN
2

iS +=+ (4) 

The wrinkling load is obtained when one of the 
resultant stresses cancels, for instance Ns = 0. The first 

bending momentum is therefore equal to: 

)hb(2
hpb

M
22

0 += (5) 

The second bending momentum is defined when the 
pneumatic hinge is entirely unwrapped. One of the 
resultant stress is therefore equal to the whole load due 
to the internal pressure and we have: 

2
pbh

M
2

1= (6) 

Collapse loads can therefore be easily obtained by using 
the theory of limit analysis. In the case of our two 
experiments on hyperstatic beams, the collapse loads 
are respectively given by5. For a simply supported – 
clamped beam, we have: 

l
11 M6F= (7) 

and for a clamped-clamped beam: 

l
11 M8F= (8) 

Comparisons between experimental and theoretical 
results are given in Table 1, for three kinds of boundary 
conditions. 
One can see that errors between experimental and 
theoretical results are lower than 25% for wrinkling 
load and below 18% for collapse load. The wrinkling 
load is identified as a beginning of non-linearity on the 
load displacement curve of the panel response under 
static load. 
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Table 1: Wrinkling/collapse load on panel with various boundary conditions 

Load case Wrinkling/collapse 50 kPa 100 kPa 150 kPa 200 kPa 250 kPa 300 kPa 

F0 
Th. 
Exp. 
Error 

30 
25 

20% 

59 
48 

23% 

89 
78 

14% 

119 
97 

23% 

148 
118 
25% 

178 
148 
20% Isostatic 

Simply supported 
F1 

Th. 
Exp. 
Error 

38 
42 

11% 

76 
85 

11% 

1134 
120 
5,5% 

151 
172 
12% 

189 
200 
5,5% 

227 
252 
10% 

F0 
Th. 
Exp. 
Error 

40 
38 
5% 

86 
90 
4% 

133 
120 
11% 

178 
150 
18% 

216 
200 
8% 

256 
250 
2% Hyperstatic 

Simply supported – Clamped 
F1 

Th. 
Exp. 
Error 

57 
57 
1% 

113 
125 
11% 

170 
180 
5,5% 

227 
235 
3,5% 

284 
275 
3% 

340 
315 
8% 

F0 
Th. 
Exp. 
Error 

60 
58 
3% 

120 
110 
9 

180 
145 
24 

240 
192 
25% 

300 
248 
20% 

360 
310 
16% Hyperstatic 

Clamped – Clamped 
F1 

Th. 
Exp. 
Error 

76 
82 
8% 

151 
185 
18% 

227 
265 
14% 

302 
350 
14% 

378 
430 
12% 

453 
490 

7,5% 

Wrinkling and collapse loads of tubes 

Tubes have already been studied by Comer and Levy2. 
The wrinkling load is always obtained when the 
resultant stress cancels on the upper or the lower 
generative of the tube. They have defined the collapse 
load when the whole resultant stress cancels on one of 
these generatives which gives the following formula for 
the second bending momentum: 

3
1 Rp=M π (9) 

The collapse load of a simply supported inflatable tube 
is therefore given by: 

l

3

1
Rp4

=F
π

(10) 

A comparison between this theoretical formula and 
experimental results is shown Table 2.  Errors can 
increase up to 42%. 

Table 2: Collapse load on tube with various boundary conditions 

Load case Definition 50 kPa 100 kPa 150 kPa 200 kPa 250 kPa 300 kPa 

Isostatic 
Simply supported 

F1 theoretical 

Experiment 

Error 

82 

68 

21% 

165 

122 

35% 

247 

175 

41% 

329 

248 

33% 

412 

292 

42% 

494 

356 

39% 

Hyperstatic 
Simply supported – Clamped 

F1 theoretical 

Experiment 

Error 

123 

96 

31% 

247 

190 

30% 

370 

300 

23% 

494 

375 

32% 

617 

500 

23% 

741 

580 

28% 

Hyperstatic 
Clamped – Clamped 

F1 theoretical 

Experiment 

Error 

165 

140 

18% 

330 

269 

22% 

494 

389 

27% 

659 

470 

40% 

823 

632 

30% 

988 

758 

30% 

Our experiments have established that in fact the 
collapse load of inflatable tubes appears when the 
resultant stress vanish about a generative parallel to the 
neutral fibre of the tube. We will suppose that this 
collapse load is obtained when the stress distribution 
has the following shape: 
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Figure 6. Stress distribution in a tube at it’s collapse 
load 

This hypothesis has only experimental foundations and 
must be improved by theory. With this assumption, the 
second bending momentum is given by: 

4
Rp

=M
32

1
π

(11) 

With this new value of the bending momentum and the 
usual formulas for the collapse load of the two kinds of 
isostatic and hyperstatic bending on a tube, we have 
now a very good correlation between experimental and 
theoretical results for collapse loads as shown in 
Table 3. 

Table 3: Collapse load on tube with various boundary conditions 

Load case Definition 50 kPa 100 kPa 150 kPa 200 kPa 250 kPa 300 kPa 

Isostatic 
Simply supported 

F1 theoretical 

Experiment 

Error 

65 

68 

5% 

129 

122 

6% 

194 

175 

11% 

259 

248 

4% 

323 

292 

11% 

388 

356 

9% 

Hyperstatic 
Simply supported – Clamped 

F1 theoretical 

Experiment 

Error 

97 

96 

1% 

194 

190 

2% 

292 

300 

3% 

388 

375 

3,5% 

485 

500 

3% 

582 

580 

1% 

Hyperstatic 
Clamped - Clamped 

F1 theoretical 

Experiment 

Error 

129 

140 

8% 

259 

269 

4% 

388 

389 

1% 

517 

470 

10% 

647 

632 

2,5% 

776 

758 

2,5% 

The analogy between collapse plastic analysis of beams 
and the theoretical results obtained on collapse loads of 
inflatable beams compared to experimental results 
proves that one can use the usual “plastic” theory to 
compute collapse loads for inflatable beams at high 
pressure. It is well known that the two theorems of 
collapse analysis lead to optimisation problems which 
can be easily solved nowadays5. We can therefore use 
all these results to compute collapse loads of complex 
structures made of inflatable beams. 

DEFLECTIONS 

Let’s now consider the results on the deflections. Main 
& all have compared experimental values of the 
deflections of inflatable cantilever tubes with those 
given by a usual Bernoulli beam theory3. Their results 
are strong in the scale of applied loads and pressure, 
and also for the kind of material with low constitutive 
law used for their experiments. When the inflation 
pressure is increased, geometrical stiffness and 
following forces must be taken into account in the 
theoretical solution giving the values of the deflections 

for this kind of beams. The obvious reason is that in a 
usual beam theory, the values of the deflections depend 
only on the flexural rigidity of the beam. 

The pressure doesn’t appear in the usual beam solution, 
and it seems clear that an inflated fabric beam at an 
extremely low pressure has very large deflections. We 
have tried to apply a yarn theory to our inflatable 
beams, and in this case the result is in reverse order: the 
deflection values are close to experimental ones when 
the pressure is low, but go far from reality at high 
pressure4. Moreover in a yarn theory deflections are 
independent of the material constitutive law and this is 
irregular. We will show that in fact the deflections of 
inflatable structures are a linear set of yarn and beam 
deflections. 
Let’s come back on the main results of Reference6. 
Equilibrium equations are written in the deformed state 
of the beam to take into account the geometrical 
stiffness and the following forces, and a Timoshenko’s 
beam theory is used because sections of the beams don’t 
satisfy to the usual Bernoulli beam theory. 
The pressure effects are supposed to be replaced by 
forces normally applied to the membranes, because they 
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are in fact following forces. The angle between the 
membranes and the horizontal axis is named θ. Ni and 

Ns denote the resultant stress respectively in the lower 

and upper membrane. T is the shearing stress. 
 

 

y 

θ 
α 

N

Ni 

( )hb2

hpb2

+
 F ))sin(

2
hxd(pb α−θ−−+l  

h

))sin(
2
hxd(pb α−θ+−+l  

x−l
 

d 
T 

Ni + dNi 

Ns + 
dNS 

T+dT ( )hb2

hpb2

+
 pbdx 

pbdx 

 
Figure 7. Loads on an inflatable panel element 

 
Equilibrium equations imply: 
 

 
hb
hbpNN

2

is +=+  (11) 

 
 ( )α−θ−= pbhFT  (12) 

 

 ( ) ( ) 0NN
2
hxF iS =−+−l  (13) 

 
For these inflatable panels, the shear stress can be 
neglected with respect to the influence of the normal 
stress6. The stresses in the membranes are: 
 

 ( ) ( ) ( )x
h
F

hb2
hbpxN

2

i −−+= l  (14) 

 

 ( ) ( ) ( )x
h
F

hb2
hbpxN

2

s −++= l  (15) 

 
Experiments have shown that the panel behave like a 
Timoshenko beam: if P is a point of the neutral fibre 
and if Q is a point of the lower or the upper membranes, 
the displacements are given by the following relations: 
 

 ( ) yx e)x(ve)x(uPu +=  (16) 

 

 ( ) ( ) PQPuQu ∧Ω+=  with zeα=Ω  (17) 

 

The horizontal displacement u(x) and the deflection 
v(x) are only functions of x. The local strains ( )xiε  and 

( )xsε   in the two membranes are therefore:  

 

 ( ) x,x,i
2
hux α+=ε  (18) 

 

 ( ) x,x,s
2
hux α−=ε  (19) 

 
Resultant stresses are obtained from the constitutive law 
of the fabric and are given by:    
 

 ( ) ( ) x,
2
bh*E

hb2
hbpxN

2

i α++=  (20) 

and 

 ( ) ( ) x,
2
bh*E

hb2
hbpxN

2

s α−+=  (21) 

 
where E* is the membrane modulus (product of the 
Young modulus E by the thickness e of the fabric). The 
comparison between formulas (14), (15) and (16) gives: 

 ( )x
hbE

F2
dx
d

2* −=α l  (22) 

 
The boundary conditions at the clamped end give the 

closed form of the deflection, where *I is equal to the 
second moment of area divided by the thickness: 
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( ) 




+=





+=

6
x

2
x

IE
Fx

pbh
F

6
x

2
x

hbE
F2x

pbh
Fxv

32

**

32

2* ll  

(23) 

This is nothing but the sum between the tight yarn and 
the beam deflections. In an other word, the compliance 
of the inflatable panel is the sum of the yarn compliance 
and of the beam compliance.  
Figure 8 shows comparisons between theoretical and 
experimental results for a simply supported panel. Other 
results can be found in Reference6. 
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Figure 8.  theoretical and experimental deflections for a 
simply supported panel 

In the case of cantilever or simply supported tubes, the 
analytical solution is more complex to be established 
because the shearing stress can’t be neglected. The first 
results are displayed in 7 and an example is given 
Figure 9. 
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simply supported tube 

AN INFLATABLE FABRIC PANEL FINITE 
ELEMENT 

Analytical results on the deflections are only relative to 
isostatic inflatable beams. This section of the paper is 
devoted to construct an inflatable beam finite element 
able to give good values of the displacement field for 
hyperstatic beams and also for structures made of 
inflatable beams. Let’s begin by establishing the 
compliance matrix of a cantilever-inflated beam8. V and 
F denote the total displacement and load vectors: 

[ ]2211
T vvV αα= ; [ ]2211

T FFF ΓΓ= (24) 

The definition of nodal unknowns is usual: vi and αi 
denote displacement and rotation at node i, and Fi and 
Γi denote load and torque at the same node. When this 
beam is a cantilever inflatable beam submitted to a load 
F2 and a torque Γ2 at node 2, it’s flexibility matrix ξ is 
simply obtained by adding the usual matrixes of beam 
and yarn: 

[ ] 




Γ















 +
=




Γξ=α 2

2

****

2
**

2

**

3

2

2

2
2 F

IEIE2

IE2S
p

IE3Fv
ll

lll
 (25) 

The usual theory of the force finite element method 
shows that the stiffness matrix K of the free finite 
displacement element is obtained from the stiffness 
matrix of the reduced isostatic finite element Kr (the 
inverse of the flexibility matrix ξ) by using the 
following equations: 

TrBKBK= ; 1
rK −ξ= (26) 

where B is the equilibrium matrix. The free stiffness 
matrix of the inflatable fabric beam element is 
therefore8: 

( )



























+

+

+
=

pSIE3IE2pS
-

IE6IE2

IE2IEIE2IE

pS
-

IE6IE2pSIE3IE2

IE2IEIE2IE

pSIE12

pSIE12
K

**

3

**

2

**

3

**

2

**

2

****

2

**

**

3

**

2

**

3

**

2

**

2

****

2

**

2**2

2*2*

llllll

llll

llllll

llll

ll
(27) 
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One can notice that this stiffness matrix depends on the 
internal pressure of the inflatable beam. This new 
element is then implemented in a finite element 
software. After solving the displacement problem, the 
resultants stresses in the membranes are calculated by 
formulas (20 and (21). A comparison between finite 
element and experimental results is shown figure 10 for 
a clamped – clamped panel. One can see a very good 
agreement between the two solutions. 
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Figure 10. Finite element  and experimental 
deflection for a clamped – clamped panel 

A tube finite element has also be developed, but the 
final solution requires special developments because the 
flexibility matrix of the cantilever beam isn’t symmetric 
and leads to a non symmetric final finite element. 
Results on the deflections of hyperstatic tubes can be 
found in Reference7. 

BUCKLING OF INFLATABLE FABRIC PANELS 

The last section relates to the buckling of inflatable 
beams. No relevant References have been found on 
buckling of inflatable structures. The first theoretical 
developments look promising. In the meantime, some 
experiments have been conducted on the inflatable 
panel which has been used for the previous bending 
studies. The influence of two parameters has been 
analyzed: the pressure and the free length of a clamped 
– clamped panel.
Theoretical analysis of the clamped-clamped panel is 
done by the finite element method. The panel is 
discretized into two finite elements. We suppose that 
the global stiffness matrix is given by adding the matrix 
of our inflatable finite element to the usual matrix of 
bucking problems9: 
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The first buckling load for the panel is solution of the 
following equation: 

0)KKdet( f =+ (29) 

Where K and Kf are the reduced assembled matrixes of 
the panel discretized into two finite elements. The first 
buckling load is finally given by: 

l2**

**

pbhIE48
pbhIE40F
+

= (30) 

The experiments have been run on a clamped-clamped 
panel with a free length of 1 meter. The pressure of 
inflation has been increased from 0 to 300 kPa by steps 
of 50kPa. Then the maximum load has been measured. 
The failure criteria is again a wrinkling of one side of 
the panel which leads to a complete bending shape. The 
Figure 11 shows the evolution of the maximum load 
versus pressure. 
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Figure 11. Evolution of the strength of a clamped-
clamped inflated panel under pure 
compression. 

The comparison between experimental and theoretical 
results are satisfactory especially for high pressures. 
The Figure 12 below shows the influence of the free 
length on the buckling load. The slope of experimental 
response and the one of theoretical are not 
corresponding, but the average remains the same. 
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Figure 12. Influence of the free length of a clamped-
clamped inflatable panel on the buckling 
load. 

CONCLUSION 

Development of new types of structures making full use 
of performance characteristics of modern textile 
materials is now possible because theory of their 
behavior is available when the pressure reaches several 
hundreds of kPa. It’s useful to use modern textile 
materials with high mechanical characteristics for 
imagining the apprehension of inflatable beams at high 
pressure. The paper deals with the first experimental 
and analytical results on the modeling of the behavior of 
inflatable fabric beams. The main results are relative to 
the collapse loads and the deflections under bending 
loads. Equilibrium equations are written in the 
deformed state to take into account the geometrical 
stiffness and the following forces. A Timoshenko’s 
beam theory must be used because sections of the 
panels don’t satisfy to the usual Bernoulli beam theory. 
Collapse loads are obtained from equilibrium equations. 
Inflatable beams cannot be viewed as ordinary beams, 
because their deformation pattern is a set of tensioned 
yarn and beam behavior. A new inflatable panel theory 
has been developed and comparisons between 
experimental and theoretical results prove the accuracy 
of this theory on the mechanical strength of inflatable 
panels at high pressure. Results on the deflections of 
inflatable tubes can be found in Reference7. The first 
results on the buckling loads of inflatable panels are 
also displayed.  Development of new types of structures 
making full use of performance characteristics of 
modern textile materials is possible because that theory 
of their behavior is now available when the pressure 
reaches several hundreds of kPa. It is also possible to 
foresee the building of light, easily transportable and 
extremely strong fabric structures. One has now also to 
work on the reliability of such structures in order to 
prove that they can be used by industry 
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