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Steps towards a real time solution of fire in tunnels
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F. Chinesta, and A. Leygue
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ABSTRACT 

We show a solution for a realistic tunnel fire simulation using a 2D-3D coupling strategy and a full 

multiphysics model for concrete (2D sections), known also as three fluids model (water, vapour, dry air). 

The computing times are too high for a real time solution. We investigate the applicability of the proper 

generalized decomposition (PGD) to obtain two goals: achieve a full 3D solution for the solid domain and 

reduce simultaneously the computing time. The first results are encouraging. 

1. Introduction

The availability of an efficient tool for simulation of a fire scenario in a tunnel is of paramount importance for 

fire safety management in emergency situations, for training of fire brigades prior to emergency cases in 

order to be able take the right decisions when needed and to evaluate measures geared to increase the 

resistance of existing tunnel vaults against spalling. We have developed such a tool which takes the thermal 

fluid-structural coupling in a tunnel fire fully into account [1]. It appears as one of the largest coupled 

problems actually solved in the community of computational interaction problems. The simulation of a 

realistic fire scenario is still a time consuming task and the tool is not yet completely ready for the first of the 

above mentioned three goals. One of the bottlenecks is the heavy computational burden linked with the 

three fluids model for concrete. It is not possible to disregard the enormous heat sink the tunnel vault 

represents with the phase changes and chemical reactions going on in heated concrete. Such an omission 

can yield temperature fields also some 1000°C above  measured ones in an experiment. On the other hand 

simplifications of these phenomena are not possible as highlighted in two recent companion papers [2,3]. In 

the existing model [1] we have chosen a 3D-2D coupling strategy where the thermally driven CFD part is 

solved in a three dimensional cavity i.e. the tunnel, and the concrete part is solved on 2D sections normal to 

the tunnel axis, at appropriate intervals, see Figure 1. The heat flux and temperature values which serve as 

coupling terms between the fluid and the structural problem are interpolated between the sections. With this 

approximation the heat transfer in the tunnel vault in the direction of the tunnel axis is disregarded. As an 

example, with such an approach the fully coupled simulation on a realistic tunnel for a fire of 20 MW of the 

duration of one hour lasts more than one day on a PC.  

The aim of our current research effort is twofold: realize a true 3D-3D coupling on one hand and reduce 

drastically the computing time on the other hand. The way for achieving this is through adoption of an 

extremely fast equation solver which can achieve a speed-up of up to 3600 times [4] and the adoption of the 

Proper Generalized Decomposition PGD [5,6] for a fast 3D solution of the problem of heated concrete. 

Steps in this direction as well as the general model will be shown. 
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2. Full 3D solution ofheated concrete with PGD 

In the case of the complex behaviour of the tunnel vault (transient and non-linear coupled multi-physic 

models) we would like to avoid the above mentioned 3D to 2D dimensionality reduction. Because of the 

richness of the thickness description due to many coupled physics with strong and fast evolutions in the 

thickness direction, a full 3D descriptions may involve millions of degrees of freedom in the solid domain 

that should be solved many times because of the history dependent chemo-hygro-thermo-mechanical 

behavior.  

Today, the solution of such fully 3D models remains intractable for large size problems despite the 

impressive progress made in mechanical modeling, numerical analysis, discretization techniques and 

computer science during the last decade. New numerical techniques are needed for approaching such 

complex scenarios, able to proceed to the solution of fully 3D multiphysics models in geometrically complex 

parts. The well established mesh-based discretization techniques fail because of the excessive number of 

degrees of freedom involved in the fully 3D discretizations where very fine meshes are required in the 

thickness direction (despite its reduced dimension) and also in the in-plane directions to avoid too distorted 

meshes. A way to solve this problem is the adoption of the Proper Generalized Decomposition (PGD). 

In what follows we illustrate the construction of the Proper Generalized Decomposition of a model defined in 

tunnel shell IΞ = Ω×  with 
2( , )x y= ∈Ω ⊂ ℜx  (the tunnel transverse section) and z ∈ I = 0,L   its axis. 

We consider a generic transient partial differential equation, linear for the sake of simplicity: 
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with T the time interval in which the model is defined. 
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In what follows we are illustrating the construction of one such decomposition. For this purpose we assume 

that at iteration n N<  the solution ( ), ,
nu z tx  is already known: 
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and that at the present iteration we look for the solution enrichment ( )( ) ( )R S z tθ⋅ ⋅x :  

 ( ) ( ) ( )1
, , , , ( ) ( )

n nu z t u z t R S z tθ+ = + ⋅ ⋅x x x   

The test function involved in the weak form is searched under the form: 

( ) ( ) ( ) ( )* * * *
, , ( ) ( ) ( ) ( ) ( ) ( )u z t R S z t R S z t R S z tθ θ θ= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅x x x x   
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By introducing the trial and test function in the weak form of the problem, we obtain the problem to be solved 

for computing the functions involved in the enrichment ( )( )( ), ( ),R S z tθx . Now, as the enrichment process 

is non-linear we propose to search the three functions ( )( )( ), ( ),R S z tθx
 

by applying an alternating 

direction fixed point algorithm. Thus, assuming ( )S z  and ( )tθ  known, we compute ( )R x , then we update 

( )S z
 
from ( )tθ  and the just updated ( )R x . Finally we update ( )tθ

 
from the just computed ( )R x

 
and

( )S z .The process continues until reaching convergence. The converged solutions allow defining the next 

term in the finite sums decomposition: ( ) ( )1nR X +→x x ( ) ( )1nS z Z z+→  and ( ) ( )1nt tθ +→ Θ . 

We can notice that this procedure involves a 2D solution for computing functions ( )R x , and two 1D 

solutions for computing functions ( )S z
 
and ( )tθ . Moreover, we can notice that the resulting algorithm is 

non-incremental because at each iteration we are looking the whole field history. 

In the following we show an application of the 2D-3D coupling strategy for a 20MW fire in a tunnel and a 

PGD solution for the heat transfer problem only. 

 

3. Tunnel fire: example of the 3D-2D coupling strategy 

The structure under consideration is the tunnel of Virgolo close to Bolzano (Italy) that has been also used 

for an experimental test in the framework of UPTUN project [7]. We have considered the central part of the 

tunnel, 80 m long. Its geometry is decomposed in the fluid and the solid domains, see Fig.s 1,2. The solid 

domain consists in the cross section of the tunnel vault. In the simulations five cross sections are 

considered at 0, 30, 40, 50, 80 meters along the longitudinal axis z. The location of fire is the section at 40 

m. The fluid is considered as an ideal gas and has the following properties: dynamic viscosity µ=1.8x10
-5

 

kg/ms, specific heat cp=1006 J/kgK, thermal conductivity λ f=0.026, W/mK, density ρ=1.225 kg/m3
. Concrete 

used for the solid domain (i.e. the sections of the concrete tunnel) is C60 concrete (with a final compressive 

strength equal to 60 MPa) and has the following main properties at ambient temperature (20°C): elastic  

modulus E=40000 MPa, porosity n=0.082, intrinsic permeability k=2×10
-18

 m
2
, solid density ρs=2564  kg/m3

, 

solid thermal conductivity λs=1.92 W/mK,  solid specific heat cps=855.52 J/kgK. The volumetric heat source 

corresponding to the fire is located at the coordinates (x,y,z)=(1.0,0.5,40.0) and has a volume equal to 8 m3
. 

This means that the fire is located in the central section of the tunnel at 0.5 m from the longitudinal axis and 

at a height of 1 m from the road pavement. 

 

 

Figure 1. Global geometry of the tunnel. 
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A   B 

Figure 2. Geometry of the tunnel: (A) 3D fluid domain, (B) 2D solid domain (i.e. tunnel cross section) 

 

The total thermal power involved by the fire is increasing in 10 minutes up to 20MW following a linear law 

and then kept constant. For this analysis 15300 hexaedral elements are used in the fluid domain, while 

each cross section is discretized with 640 quadrilateral elements with eight nodes. 

The initial and the boundary conditions selected for this case are: 

•  For the fluid domain: the atmospheric pressure is imposed at the ends of the tunnel, the initial fluid 

velocity is equal to zero, close to the tunnel vault the fluid can exchange heat with the concrete 

structure surface according to the universal profiles (“wall law”) described in [1], with a heat 

exchange coefficient equal to αc=500 W/m2K. The initial temperature is set to 298.15 K for the 

whole fluid domain. 

•  For the solid domain: on the inner side of the cross section, i.e. the vault surface in contact with the 

fluid, two convective (i.e. Robin) boundary conditions are imposed. The convective heat exchange 

is governed by the same universal profiles described for the fluid domain with the same exchange 

coefficient αc. As far as the mass exchange between the surface of concrete and the surrounding 

environment is concerned, a water vapor pressure equal to 1300 Pa and an exchange coefficient of 

0.02 m/s are set. The initial condition for the concrete structure are p
g
=101325 Pa, pc

=7×10
-7

 Pa, 

T=298.15 K. This set of values corresponds to an initial relative humidity equal to 58%. On the 

outer side of the cross sections the values of gas pressure, capillary pressure and temperature are 

fixed (i.e. Dirichlet bc.s) to the initial ones.  

The total time of simulation is 1 hour. The case under consideration corresponds to a real fire case in terms 

of the total thermal power involved, the duration of the fire and the value of the heat exchange coefficient 

selected. Figure 3 shows that the velocity of the ascensional flux close to the fire source is higher than 9 

m/s, while the horizontal fluxes flowing toward the ends of the tunnel have a velocity equal to 3 m/s (t=600 

s). The temperature distribution in the fluid domain and in the top part of the sections S2, S3 (the section of 

the fire) and S4 are shown in Figure 4. The central section, that is the most stressed one, is the most 

exposed to spalling risk. Indeed, the peak of gas pressure (2.4 MPa) in the external layer of the concrete 

vault (10 cm thick), the formation of the “moisture-clog” (the relative humidity reaches in this zone a value 

higher than 90%) and, finally, the total damage (� 55%) can lead to a progressive spalling starting from 

that layer, see Fig. 5. 
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Figure 3. Velocity field (m/s) at t= 600 s (C), (A) cross-section and (B) longitudinal section. 

 

 

Figure 4. Temperature distribution (K) at t = 3600 s in the fluid domain and in sections S2, S3 (fire), S4. 

 

Finally, Figure 6 shows the distribution of maximum temperature in the cross sections along the longitudinal 

axis and a comparison between the heat source temperature evolution in time and the temperature profiles 

most used in literature. The case considered corresponds to a fire with a temperature profile between an 

ISO-Fire and a Hydro-carbon Fire. 
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 A  B 

Figure 5. Temperature and rel. humidity distribution (A) and gas pressure and total damage distribution (B) 

in the top of the central section S3 (fire) at t = 3600 s. 

 A

 B 

Figure 6. Distribution of the maximum temperature of the cross-sections along the z -axis (A) and 

comparison of the source temperature evolution with the main heating profiles available in the literature (B). 

4. Heat transfer simulation in the tunnel vault with PGD

In this section we present some preliminary results of the simulation of the tunnel fire described above 

obtained by applying the Proper Generalized Decomposition techniques illustrated in section 2. The main 

aim of this calculation is to demonstrate the validity of the approach considering, as initial stage of the on-

going research, a simplified model limited to heat transfer through conduction. 

The mesh used in the same as in the previous example in the transversal section, but using nine-noded 

elements., while in the longitudinal direction 8000 elements have been used. The duration is 1 hour with a 

time step of 1 sec. 
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As already pointed out the problem is solved assuming some simplifications as far as both the physical 

problem and the boundary conditions are concerned. The concrete vault is treated as a solid domain for 

which only the pure conductive thermal problem is considered, neglecting convective transfer of energy, 

phase changes and the mass transport inside the pores of the material. The boundary conditions consist in 

the definition of a stationary normalized thermal flux on the inner surface of the tunnel vault according to the 

following formula: 

 
   
norm. heat flux = F

X
x, y( )× F

z
z( )  

in which 
   
F

X
x, y( )= y  and the distribution function along the z-coordinate is shown in Figure 7B:  

A  B 

Figure 7. Sketch of the mesh (A) and of the bc.s (B) used in the case of tunnel fire solved by PGD. 

 

The whole 20 MW power is applied directly to the heated surface without taking in to account the role 

played by air, i.e. by using Neumann condition instead of Robin condition defined trough a heat exchange 

coefficient α between the surface of concrete structure and the surrounding fluids. Because of this we 

expect a large difference in terms of temperature field between the solution obtained by means of PGD and 

the original one obtained by using the full model. The results of PGD analysis are depicted in Figure 8. 

 

A B 

Figure 8. Temperature distribution along z-axis (A) and in the thickness of the central cross section of the 

tunnel (B) obtained from PGD analysis. 

 

The results shown in Figure 8 have been obtained by using 13 modes and took 2 min and 30 sec of 

computational time on a standard INTEL cpu based computer using MATLAB. A fast check has shown that 

the computed stored energy in the concrete vault after one hour equals the heat input. The time span is too 

short for heat flux to reach the boundary to the surrounding rocks, see the temperature gradient in Figure 

8B. 
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The surface temperatures reached are comparable to the ones obtained with the full model, [1], in the case 

of pure CFD simulations for which the solid domain is neglected together with the related heat exchange 

fluxes. In that case the temperature values were much higher than those obtained with the model of section 

3 and approximately equal to 4000 K [1], that is the same order of magnitude of thermal field attained by 

using PGD in this work. 

5. Conclusions

We have shown a 3D-2D coupled solution for a tunnel fire simulation, taking the three fluids concrete model 

into account. For a fire of a duration of one hour the calculation time on a PC is well over one day. For the 

thermal problem in the tunnel vault a PGD approach on a full 3D solid domain model has been shown. The 

computing time was reduces to two and half minutes. 

Considering the short computational time and the fact that it is possible to obtain physically reasonable 

results just by introducing in PGD analysis more sophisticated physical models and physically correct bc.s 

(i.e. taking into account the role of the air), this set of preliminary computations are extremely encouraging. 
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