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SOIL PARAMETER IDENTIFICATION FOR THE DESIGN OF SPREAD FOOTINGS

ABSTRACT:

The identification of soil parameters by inverse analysis of two pressuremeter tests is investigated as part of a predictive benchmark dealing with a 3x3m square spread footing, resting on a relatively homogeneous sandy soil layer. The inverse analysis is performed by a FEM-simulation considering a linear elastic perfectly plastic Mohr-Coulomb model and several optimization algorithms. Firstly, deterministic and stochastic mono-objective algorithms are compared. Secondly, in order to take into account simultaneously the results of several experimental tests, a multi-objective problem is considered and solved with a multi-objective genetic algorithm which provides a set of equivalent solutions in terms of Pareto. These solutions have to be treated according to the expertise of the user but also to the importance and the quality of the test results. The sets of parameters obtained by these optimization techniques are then used to calculate the footing response. The numerical results are discussed and compared to those obtained by the benchmark participants.

INTRODUCTION: INVERSE ANALYSIS OF FIELD TESTS

In order to identify soil parameters, two kinds of experimental tests can be carried out: laboratory tests and field tests. In laboratory testing, the measurement conditions are usually well controlled and, most of the time, the homogeneous stress and strain state within the sample makes possible the identification procedure by simple analytical methods. Field tests are selected when the characterization of the soil by standard laboratory tests can be questioned because of sampling induced disturbances or prohibitive costs. In this case, due to the non homogeneous stress state within the soil, a more sophisticated identification procedure is required.

Inverse analysis aims at determining the unknown values of constitutive parameters by minimizing the difference between experimental data and predictions of analytical or numerical calculations. The nature of the simulation -analytical or numerical -depends mainly on the complexity of both the constitutive model selected to represent the behavior of the soil and the boundary conditions. The fitting of experimental data with calculations is achieved by combining a direct modeling scheme and a parameters optimization routine. Such a generally ill-posed mathematical problem requires also to define precisely (i) the set of parameters to be optimized, for instance from a preliminary sensitivity study or a prior knowledge of the soil behavior, and (ii) the domain in which solutions are considered as acceptable, from a physical and mechanical point of view. In spite of this preparatory work, the problem of the uniqueness of the solution remains an open question in most of the cases.

In most of the geotechnical applications, inverse analysis involves a simulation tool that could be a finite element code for the direct scheme (depending on the complexity of the test) and an optimization tool, mainly a deterministic algorithm. Many optimizations based on gradient methods were conducted on pressuremeter tests in order to determine soil parameters [START_REF] Mehta | Evaluation of subsoil properties by pressuremeter test[END_REF][START_REF] Cambou | Utilisation de l'essai pressiométrique pour l'identification de paramètres intrinsèques du comportement d'un sol[END_REF][START_REF] Ledesma | Estimation of parameters in geotechnical backanalysis -1°: maximum likelihood approach[END_REF][START_REF] Schnaid | Assessment of soil properties in cohesive-frictional materials with pressuremeter tests[END_REF][START_REF] Zentar | Identification of soil parameters by inverse analysis[END_REF][START_REF] Dano | Interpretation of dilatometer tests in a heavy oil reservoir[END_REF]. [START_REF] Levasseur | Soil parameter identification using a genetic algorithm[END_REF] compared a stochastic method (genetic algorithms) to a gradient method and assumed the performance of the genetic algorithm over the gradient method for some given geotechnical tests. In this paper, the ability of a genetic algorithm to identify soil parameters from a pressuremeter test is investigated and compared to another deterministic algorithm: the simplex method. The study is then extended to the performances of genetic algorithms for a multi-objective problem. Indeed, a field test being rarely conducted solely, a multi-objective solution is proposed in order to take into account the results of several tests and obtain the best compromise between these tests.

IDENTIFICATION OF DESIGN PARAMETERS FROM PRESSUREMETER TESTS FOR A SUBSEQUENT PREDICTION OF SETTLEMENTS

Presentation of the benchmark

As part of a spread footings benchmark [START_REF] Briaud | Predicted and measured behavior of five spread footings on sand[END_REF] five loading tests on square footings ranging from 1x1m to 3x3m in size were conducted at a sandy site, where numerous soil tests were also performed. The participants of the benchmark had to predict the load corresponding to settlements of 25 mm and 150 mm for each of the five footings. The parameters necessary for the numerical estimation of the foundation settlements are here identified using inverse analysis, as previously mentioned. Only the 3x3m square footing test is studied here.

Figure 1 shows the general soil layering at the site (see [START_REF] Briaud | Predicted and measured behavior of five spread footings on sand[END_REF] for more information). Two pressuremeter tests have been performed at two different depths: 2 m and 5.9 m which are used in the inverse analysis.

Fig. 1: General soil layering

Inverse analysis

The inverse analysis consists in minimizing an error function F err , which represents the difference between experimental and numerical data. In this study, we consider the pressuremeter curve which gives the evolution of the pressure applied within the probe as function of the ratio u(a)/a, where a is the radius of the probe and u(a) the displacement of the wall. The error function corresponds to the surface between the two curves normalized by the studied interval of cavity deformation. This definition of the error function makes its calculation independent of the choice of the experimental and numerical steps.

The first part of the experimental curves is not taken into account in the calculation of the error function because of the unusual curvature at the beginning of the pressuremeter tests, probably due to the remolding of the soil along the cavity wall. The optimization is carried out on the convex part of the experimental curves.

Numerical modeling

Due to the axisymmetry of the problem, a 2D finite element model is constructed in the FEM code CESAR-LCPC to simulate the pressuremeter test. 8-nodes quadrilaterals are used so that the model contains 891 nodes and 252 elements. Plain-strain condition is assumed in the vertical direction. The calculations consider the hypothesis of small strains, which is justified by the values of the local strains which are always smaller than 10% (without considering the close surrounding area of the probe). The loading is displacement controlled and, at each step, the same displacement increment is applied all along the probe.

Because of its relatively extensive use in geotechnical design, the linear elastic perfectly plastic Mohr-Coulomb model was selected. This model is characterized by five parameters:

Young's modulus E, Poisson's ratio ν, internal friction angle ϕ, dilatancy angle ψ and cohesion c.

The identification is performed on the three following parameters: Young's modulus E, friction angle ϕ and cohesion c, because of their major influence in the design of spread footings. In all the calculations, Poisson's ratio is taken equal to 0.33 and the following correlation between the internal friction angle and the dilatancy angle is considered.

30 - = ϕ ψ (degrees) (1)

Optimization algorithms

Gradient methods are traditionally used for geotechnical problems. However, the practice shows that the simplex method, also known as the Nelder and Mead downhill method [START_REF] Nelder | A simplex method for function minimization[END_REF], is more robust than the algorithms based on local gradients, because it does not require the derivative of the error function. Therefore, the simplex method is used in this study. A simplex is a polyhedron containing N+1 points in a N-dimensional space, where N is here the number of parameters to be optimized. The initial simplex is modified according to the value of the error function at the N+1 vertexes, using the three following operations: reflection, contraction and expansion (see [START_REF] Nelder | A simplex method for function minimization[END_REF] for more information). The calculation is stopped when the improvement of the function error becomes smaller than a given tolerance value. The uniqueness of the solution is usually assessed by multiple optimizations starting from different initial sets of parameters, in order to avoid a convergence towards a secondary minimum of the error function.

Genetic algorithms have been developed to circumvent that shortcoming. This method belongs to the family of stochastic algorithms. It is derived from Darwin's evolution theory. Like in biology, the survival of the best adapted individuals, represented here by the best set of parameters, and the multiplication of competitive ones are guaranteed through the transmission of a favorable gene pool. Gene mutation makes possible an emergence of new competitive individuals. The basic principles of this type of algorithms were set by [START_REF] Goldberg | Genetic algorithms in search, optimization and machine learning[END_REF]. Contrary to deterministic algorithms, the solution corresponds to an entire population of individuals with different gene pools and the result gives a global view of this set of gene pools. The strategy of the algorithm is to detect individuals with low error functions, using a reduced number of iterations, rather than to guarantee the detection of the optimal set of parameters. Firstly, an initial population is randomly generated among the search space. Then, this population is modified according to a process based on the value of the error function through the following operations: selection, cross-over and mutation. Selection and cross-over mainly improve the performance of individuals, whereas mutation makes possible to continue the exploration of a given search domain and to avoid to converge prematurely towards a secondary minimum.

The strategy of genetic algorithms gives a crucial asset in the case of a multi-objective context and particularly when a so-called Pareto frontier has to be found. Figure 2 Several multi-objective algorithms have been developed and are classified in some publications (see for instance [START_REF] Roudenko | Application des algorithmes évolutionnaires aux problèmes d'optimisation multi-objectif avec contraintes[END_REF]. This paper aims at proving the interest of multiobjective optimization for geotechnical applications. Only one algorithm is studied here. [START_REF] Fonseca | Genetic algorithms for multi-objective optimization: Formulation, discussion and generalization[END_REF] modified the operation of selection in a mono-objective genetic algorithm in order to deal with a multi-objective problem. They developed a Multi-Objective Genetic Algorithm called MOGA. Indeed, in a mono-objective genetic algorithm, the selection uses the performance of an individual, which is exactly the value of the error function. However, in a multi-objective problem, there are simultaneously multiple error functions and the performance of an individual has to be differently defined. A new method of selection based on the dominance in terms of Pareto is performed. In MOGA, the performance of an individual decreases with the number of times for which the individual is dominated by another individual.

Computational program

The identification is carried out by using two different codes: CESAR_LCPC for the direct modeling scheme ModeFrontier (developed by ESTECO) for the optimization process. In order to discuss the questions detailed in the first section, different optimizations on the two pressuremeter tests are carried out and the results are compared. For all the optimizations the same domain is explored (Table 1). Mono-objective problems are carried out with Simplex and MOGA. The initial simplex (4 sets of parameters) and the initial population (200 individuals) are randomly generated with the deterministic algorithm SOBOL, which fills uniformly the studied domain. Calculations with MOGA are performed during 20 generations. Multi-objective problems are carried out with MOGA. The initial population contains 200 individuals and calculations are performed during 40 generations.

COMPARISON OF THE DIFFERENT OPTIMIZATION ALGORITHMS IN CASE OF MONO-OBJECTIVE PROBLEM

In this section, we limit the study to the analysis of the pressuremeter test performed at 2m. depth. The analysis of the second pressuremeter test leads to the same conclusions.

Because the results of a simplex optimization depend on the initial set of parameters, calculations with different initial simplexes were carried out. The scattering in the optimal sets, related to the initial values, is important. The results of the optimizations which lead to the final smallest and biggest values of the error function among the five trial tests are summarized in Table 2. In general, the simplex algorithm needs about sixty iterations in order to converge.

An optimization with the genetic method was also carried out. One way to process the data is to set a reference value of the error function. This value corresponds to the highest value, which gives a satisfactory fitting between the experimental and the numerical results. In order to make this setting objective, the uncertainties of the experimental values accepted by the standards can be selected as the reference value. The values obtained in the present study being always higher, another way has to be followed in order to compare the results of two different types of algorithms. The best set given by the simplex method is considered as the reference value. Figure 3 shows the individuals whose error function is lower than the reference value. The genetic method provides a better mathematical optimum than the simplex method. Four others individuals are more relevant than the mathematical optimum obtained with the simplex method. Table 3 summarizes the sets of parameters which correspond to the best individuals. Figure 4 compares the experimental data and the numerical simulations performed by the parameter sets resulting from the inverse analysis with the simplex (S) and the genetic (GA) methods. The two numerical curves provide a good fitting of the experimental one, even if the sets of parameters are different (25% difference on the Young's modulus). This fact illustrates the non-uniqueness of the solution. Moreover, the set of these individuals gives some information about the importance of each parameter on the numerical results. We can notice that the cohesion is a sensitive parameter, and that an overestimated Young's modulus can be balanced by a smaller internal friction angle. The user needs to select the adequate parameters among the satisfactory sets of parameters. Considering his scientific and technical background and/or taking into account the results of others tests, he will be able to determine with better accuracy the parameters for the design calculations.

The calculation cost of the genetic method is important (about 15 times more than one of the simplex method, considering that five successive calculations were carried out with the simplex). However, the genetic method can guarantee a more robust result and has to be selected, especially when the error function is noisy.

MULTI-OBJECTIVE OPTIMIZATION

One way to solve the problem of the non-uniqueness of the inverse analysis problem is to enrich the experimental data using several tests. When two inverse analyses are separately performed (mono-objective) on two pressuremeter tests, two sets of "satisfactory" individuals are obtained, whose intersection can be empty or not, depending on the error function. For example, the inverse analysis of the first test gives friction angle values from 34 to 37 degrees, whereas the inverse analysis of the second test gives values from 39 to 40 degrees.

In this section, we present a simultaneous inverse analysis of the two pressuremeter tests. The problem is therefore a multi-objective problem and the solutions are searched in terms of Pareto. Four parameters are optimized: two different Young's moduli E1 and E2 which correspond to the two different depths, one cohesion value c and one friction angle ϕ, assuming the homogeneity of the soil layer. Figure 5 shows the results of the optimization in the criterion space. Ferr_PMT1 corresponds to the pressuremeter test at a depth of 2 meters and Ferr_PMT2 to the pressuremeter test at a depth of 5.9 meters. Five individuals are on the Pareto frontier and the corresponding sets of parameters are summarized in Table 4. These sets of parameters are located in the same region of the search space. The results are in agreement with the results of the mono-objective optimizations. The minimum values of the error functions are about the same. The Pareto frontier is located in a small region of the criterion space. This result can be explained by the relative flexibility of the optimization. The use of tests at two different depth, i.e. at two different confining stresses, leads to a higher constraint concerning the simultaneous determination of c and ϕ. The five best sets give a small range of variation for c and ϕ, and their values are in accordance with the nature of the soil considered in this study (unsaturated sandy soil). The same conclusion can be drawn from the values obtained for the Young's modulus, whose value increases with depth. Its magnitude is also in accordance with the fact that we are dealing here with secant and not tangent modulus.

Through the multi-objective optimization, the user obtains five sets of parameters, which represent at best the behavior of the soil during two different pressuremeter tests with the considered constitutive model. A difference in the quality of the tests or in the importance of them for the design calculations could be considered in order to select the most suitable sets of parameters among the five ones. 

PREDICTION OF SPREAD FOOTING SETTLEMENT

The previous five sets of parameters (Table 4) are now used to perform numerical simulations of the spread footing. Due to symmetry, only a quarter of the square footing is represented in the 3D model. 6-nodes pentahedrons and 8-nodes hexahedrons are used, so that the model contains 3444

Ferr_PMT1

Ferr_PMT2

nodes and 5230 linear elements. Two soil layers, having the elastic moduli determined previously, are considered. A linear elastic model is used for the concrete footing. The loading is force-controlled. Figure 6 compares the experimental and numerical values. One can see that all the selected sets of parameters give similar results. One can also notice that our results comply better with the experimental observations than the numerical predictions of the participants of the benchmark. However the global aspect of the numerical curve is not satisfactory. 

CONCLUSIONS

The example of parameter identification outlined in this paper shows to what extent the genetic method can be interesting. Contrary to the simplex algorithm, the genetic method does not provide a mathematic minimum, but a given range of "satisfactory" individuals, which must be seen as possible solutions, considering the ill-posed problem. Among these "satisfactory" individuals the user has to choose the best set of parameters considering his scientific and technical background and/or further analysis based on other available experimental tests. If several experimental tests are available, separate inverse analyses could be performed, each concerning a given test, but the results do not necessarily lead to a suitable solution for all the tests. The formulation of the problem as a multi-objective problem makes possible its resolution in only one inverse analysis. The fact that genetic algorithms work with a population of solutions makes them very attractive for solving multi-objective problems. Multi-objective genetic algorithms provide a set of equivalent solutions in terms of Pareto. The expert has then to select the suitable sets of parameters located on the Pareto frontier according still to his experience but also to the importance and the quality of each experimental test.

The numerical simulations of the footing settlement based on the soil parameters obtained by the identification procedure are in better agreement if compared to the results presented by the participants to the benchmark, but do not fit really well the experimental data. Further study has to be carried out, in order to find out why the response of the soil is not well captured in this case. The perspectives of this study concern in particular the extension of the identification procedure to parameters of more realistic constitutive models (elasto-plastic models with non linear elasticity and strain-hardening).
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Table 1 .

 1 Studied domain

		Minimal value	Maximal value
	Young's modulus (MPa)	10	50
	Friction angle (degrees)	30	50
	Cohesion (kPa)	0	10

Table 2 .

 2 Optimization of the 2 meters depth pressuremeter test with the simplex algorithm

	Initial Set			Optimal Set			
	E	c (kPa)	ϕ (degrees)	E	c (kPa)	ϕ (degrees)	Ferr
	(MPa) 45	1	48	(MPa)			(kPa)
	15 35	9 3,5	32 43	19	9	38	7.69
	22	9,5	49				
	43	4.5	39				
	12 33	7 1.5	44 33	18	3.5	41	9.04
	17	3	41				

Table 3 .

 3 "Satisfactory" individuals obtained with the genetic method

	E (MPa)	c (kPa)	ϕ (degrees)	Ferr (kPa)
	22	9.5	36	7.503
	23	8	36	7.602
	21	8.5	37	7.632
	25	8.5	35	7.643
	28	8	34	7.680

Table 4 .

 4 Individuals on the Pareto frontier

		E1	E2	c	ϕ	Ferr_PMT1	Ferr_PMT2
		(MPa)	(MPa)	(kPa)	(degrees)	(kPa)	(kPa)
	MC 1	20	31	10	37	7.47	13.68
	MC 2	19	29	9	38	7.69	13.15
	MC 3	19	29	9.5	38	7.81	13.13
	MC 4	19	28	6.5	39	8.09	12.97
	MC 5	19	28	6	39	8.30	12.79
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