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Abstract. Non-linear dynamic analysis of complex civil engineering structures based on a
detailed finite element model requires large-scale computations and involves delicate solution
techniques. In earthquake engineering, the necessity to perform parametric studies due to the
stochastic characteristic of the input accelerations imposes simplified numerical modeling in
order to reduce the computational cost. The purpose of this work is to propose two simplified
numerical strategies to simulate dynamic shear. The first one is an enhanced multifiber Tim-
oshenko beam element with higher order interpolation functions in order to avoid any shear
locking phenomena. The second one is the Equivalent Reinforced Concrete model (ERC) using
lattice meshes for concrete and reinforcement bars. For both strategies, advanced constitutive
laws are used based on continuum damage mechanics and plasticity. Verification is provided
using experimental results on reinforced concrete walls subjected to severe dynamic loading.
Both methods are computationally efficient and easy to use for engineering purposes.
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1 INTRODUCTION

In earthquake engineering, the need to perform parametric studies and the stochastic nature
of the input accelerations necessitate simplified numerical modelling in order to reduce compu-
tational cost. An optimum idealization is needed i.e. one that is sufficiently fine and yet not too
costly.

In order to simulate the non linear dynamic behaviour of a reinforced concrete (R/C) struc-
ture, a multifiber Timoshenko beam element with higher orderinterpolation functions has been
developed. The element is free of shear locking phenomena, takes into account deformations
due to shear and can be coupled with 2D or 3D constitutive laws.

Nevertheless, when dealing with structures with a slenderness ratio far from the classical
beam theory a more reliable representation of shear deformations and shear stresses has to be
provided. One possibility in that respect - always within the family of simplified modelling
strategies - is to adopt the Equivalent Reinforced Concrete model (ERC) that makes use of
lattice meshes for concrete and reinforcement bars.

For both methods, the constitutive law used for concrete is based on damage mechanics.
It is able to take into account complex phenomena such as decrease in material stiffness due
to cracking, stiffness recovery that occurs at crack closure and inelastic strains concomitant to
damage. A modified version of the classical Menegoto-Pinto model with an isotropic hardening
is used for steel.

Comparisons with experimental results on R/C walls tested on shaking table show, for both
cases, the advantages but also the limitations of the approach.

2 A multifiber Timoshenko beam element

In order to simulate - in a simplified manner - the non-linear behaviour of a R/C wall under
dynamic loading, a multifiber Timoshenko beam element has been recently developed [9], [14],
[15] and [19]. The difference with other multifiber Timoshenko beam elements usually found
in the literature - [23] and [24] - is that the element is displacement-based and has higher order
interpolation functions depending on the material’s properties. It can be implemented to any
general-purpose finite element code without major modifications. The user defines at each fibre
a material and the appropriate constitutive law (see Figure1).

The element takes into account deformations due to shear anduses cubic and quadratic La-
grangian polynomials for the transverse and rotational displacements respectively in order to
avoid any shear locking phenomena. The interpolation functions take the following form [2]:

{Us} = [N ] {U} (1)

{Us}
T =

{

us(x) vs(x) ws(x) θsx(x) θsy(x) θsz(x)
}

(2)

{U}T =
{

u1 v1 w1 θx1 θy1 θz1 u2 v2 w2 θx2 θy2 θz2

}

(3)

and the matrix containing the interpolation functions is equal to:

[N] =





















N1 0 0 0 0 0 N2 0 0 0 0 0
0 N3 0 0 0 N4 0 N5 0 0 0 N6

0 0 N∗

3 0 −N∗

4 0 0 0 N∗

5 0 −N∗

6 0
0 0 0 N1 0 0 0 0 0 N2 0 0
0 0 −N∗

7 0 N∗

8 0 0 0 −N∗

9 0 N∗

10 0
0 N7 0 0 0 N8 0 N9 0 0 0 N10





















(4)
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Figure 1: Multifiber beam element for R/C structures
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with N∗

i = Ni(φ
∗), φ andφ∗ stiffness ratio due to flexion and shear:
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If {F} and{D} are the section “generalised” stresses and strains respectively:

{F} = [Ks] {D} (7)

{F}T =
{

N Ty Tz Mx My Mz

}

(8)

{D}T =
{

u′

s(x) v′

s(x) − θsz(x) w′

s(x) + θsy(x) θ′sx(x) θ′sy(x) θ′sz(x)
}

(9)

the section stiffness matrix[Ks] takes the following form [7]:

[Ks] =





















Ks11 0 0 0 Ks15 Ks16

Ks22 0 Ks24 0 0
Ks33 Ks34 0 0

Ks44 0 0
Ks55 Ks56

Ks66





















(10)

Ks11 =
∫

S
EdS; Ks15 =

∫

S
EzdS; Ks16 = −

∫

S
EydS (11)

Ks22 = ky

∫

S
GdS; Ks24 = −ky

∫

S
GzdS

Ks33 = kz

∫

S
GdS; Ks34 = kz

∫

S
GydS

Ks44 =
∫

S
G(kzy

2 + kyz
2)dS

Ks55 =
∫

S
Ez2dS; Ks56 = −

∫

S
EyzdS

Ks66 =
∫

S
Ey2dS

The equation that provides the “generalised” strains as a function of the nodal displacements
takes the following form (withα

′

the derivative ofα with respect to the spatial variablex):

{D} = [B] {U} (12)

and[B] that takes the following form:
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(13)

Finally, the stiffness matrix of the element is given by:

Kelem =
∫ L

0

[B]T [Ks] [B] dx (14)

To reproduce correctly the behaviour of concrete under cyclic loading we use a continuous
damage model with two scalar damage variables one for damagein tension and one for damage
in compression [17]. Inelastic strains are taken into account thanks to an isotropic tensor. A
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modified version of the classical Menegoto-Pinto model withan isotropic hardening is used for
steel [20]. The Timoshenko multifiber beam element and the damage mechanic law have been
introduced into FedeasLab, a Matlab finite element toolbox [1] by the 3S-R group.

The previous tools are used hereafter to model a full-scale vertical slice of a seven-story
reinforced concrete walls building (benchmark NEES/UCSD performed between October 2005
and January 2006, [6] and [21]) subjected to increasing intensity of uniaxial earthquake ground
motions on a shaking table. The structure is composed of 2 main perpendicular walls: the web
wall and the flange wall linked with the slabs. The Timoshenkomultifiber elements used to
model the web wall are divided into 20 concrete fibers whereasthose of the flange wall are
divided into 8 concrete fibers. The results presented hereafter and the comparisons with the
experimental response are “blind” (for more details see [6]).
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Figure 2: Maximum lateral displacements and accelerationsat different levels of the NEES structure for the 4
sequences (EQ1 to EQ4), comparisons between experimental (dotted lines) and numerical results (continuous
lines).
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Figure 3: State of damage for the NEES structure at level 0 andlevel 1 (first sequence, EQ1).

In figures 2 and 3 it is demonstrated that the modelling strategy based on Timoshenko mul-
tifiber beam elements and constitutive laws within the framework of damage mechanics and
plasticity is able to reproduce with good approximation theglobal response of the seven story
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building and qualitatively the distribution of damage. Further validations of this modelling strat-
egy on R/C columns and U-shaped walls tested cyclically or dynamically can be found in [9],
[14], [15] and [19].

3 MODELING OF A R/C WALL WITH A SMALL SLENDERNESS RATIO

The behaviour of A R/C shear wall with a small slenderness is controlled primarily by shear.
For structures with small slenderness ratio (less than 1) a model based on beam theory has
difficulties in reproducing satisfactory the shear deformations and stresses [18]. An alternative
simplified method is the so-called Equivalent Reinforced Concrete model (ERC model), [9],
[16] and [18]. The model uses a lattice mesh for predicting the non-linear behaviour of shear
walls under dynamic loading and is inspired on the FrameworkMethod [8]. The basic idea
consists in using the patterns of the Framework Method for 2Dor 3D problems coupled with
continuous damage mechanics in a non-linear context and fora non-homogenous material. The
main assumptions of the proposed strategy are (see figure 4):

• An elementary volume of reinforced concrete (EV) can be separated into a concrete el-
ement (C) and a horizontal and a vertical reinforcement bar (SH and SV respectively).
Concrete and steel are then modelled separately using two different lattices,

• The sections of the bars simulating concrete are derived from the Framework Method,

• A lattice composed by horizontal and vertical bars coupled with a classical uniaxial plas-
ticity model with or without hardening simulates steel. Thesection and position of the
bars coincide with the actual section and position of the reinforcement. In order to sim-
plify the mesh the method of distribution is used, where the sections of bars are defined
proportional to a corresponding surface area. In that way the mesh is independent of the
geometry of the specimens,

• Perfect bond is assumed between concrete and steel,

• Geometrical symmetry of the pattern is required for cyclic and transient dynamic loading,

• For at least the type of structure tested hereafter, where the stress field is quite homoge-
neous, the number of elements that simulate concrete or steel does’t have a great influence
on the result [9]. Therefore a “macroscopic” model can be used instead of the “equivalent
lattice”.

The performance of the ERC model is evaluated on the NUPEC specimen (a shear wall
with a slenderness ratio equal to 0.7) tested on the shaking table at the Tadotsu Engineering
Laboratory [22]. The specimen is excited with six horizontal acceleration signals parallel to its
plane. The rotation at the top of the specimen is free. The pattern presented in figure 5 and the
following equations of the Framework Method (valid for plane stress conditions) are used to
calculate the lattice simulating concrete:

Av =
3

8

3k2 − 1

k
αt (15)

Ah =
3

8
(3 − k2) αt (16)
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Figure 4: The Equivalent Reinforced Concrete (ERC) model.

Figure 5: Framework Method - Pattern for plane stress.

Ad =
3

16

(1 + k2)
3

2

k
αt, (17)

where k the ratio between the length and the heightα of the pattern and t is the width of the
plate.

A zoom at the last two sequences (figure 6) shows that the ERC model predicts correctly the
global behaviour of the NUPEC specimen in terms of maximum values and frequency content
even under severe loading (just before collapse). Further verification of the method with exper-
imental results on less slender R/C walls with particular boundary conditions (rotations at the
top prohibited) can be found in [9], [16] and [18] .

4 CONCLUSIONS

In order to simulate correctly but also quickly the behaviour of R/C structures under severe
ground motions one has to find the right compromise for an optimum idealization i.e. one that
is sufficiently fine and yet not too costly. Two simplified modelling strategies are presented in
this work:

1. A Timoshenko multifiber element with higher order interpolations functions, free of shear
locking. The element can be easily implemented into any general-purpose finite element
code without major modifications. Numerical simulations ofa seven-story R/C building
tested on a seismic table are presented to prove the efficiency of the method. Neverthe-
less, for the calculations presented throughout this work,shear and torsion are considered
linear - the 1D version of the constitutive continuous damage law is used. In order to re-
produce correctly the behaviour at local level (for examplein case of important warping)
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Figure 6: NUPEC specimen (ERC model) - Displacement time history analysis: (a) RUN-4, (b) RUN-5.

the implementation of a 3D robust constitutive law for concrete under cyclic loading is a
necessary step. Another possibility in that respect is to consider a warping - conduction
analogy method [19].

2. For structures with small slenderness ratio, a model based on the Timoshenko beam the-
ory has difficulties in reproducing satisfactory the shear deformations and stresses. A
solution - always within the family of simplified models - is to use the ERC model that
privileges the use of two separate lattices meshes one for concrete and one for steel. A
crucial parameter for the success of the non-linear simulation is the angle that the di-
agonals of the concrete lattice form with the horizontal bars [9], [16] and [18]. Other
limitations of the method are that perfect bond is assumed between concrete and steel and
the stress field must be quite homogeneous. Finally, although the extension of the method
seems possible in 3D problems, its feasibility has still to be proven.

Our current work concerns also the development of a 3D macro-element for Soil Structure
Interaction ([3], [4] and [5]) and the development of secondgradient models to assure the ob-
jectivity of the numerical results ([10], [11] and [13]) using advanced following path methods
[12].
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mod́elisation des structures en béton arḿe soumises̀a des chargements sévères,Revue
Franaise de Gnie Civil8, no. 2-3, 329–343, 2004.

[15] P. Kotronis and J. Mazars, Simplified modelling strategies to simulate the dynamic behav-
iour of r/c walls,Journal of Earthquake Engineering9, no. 2, 285–306, 24, 2005.

[16] P. Kotronis, J. Mazars, and L. Davenne, The equivalent reinforced concrete model for
simulating the behavior of walls under dynamic shear loading, Engineering Fracture Me-
chanics70 (2003), no. 7-8, 1085–1097, 18, 2003.

[17] C. La Borderie, Ph́enom̀enes unilat́eraux dans un matériau endommageable: modélisation
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