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Abstract. Non-linear dynamic analysis of complex civil engineering&iures based on a
detailed finite element model requires large-scale contpria and involves delicate solution
techniques. In earthquake engineering, the necessityrforpe parametric studies due to the
stochastic characteristic of the input accelerations isg® simplified numerical modeling in
order to reduce the computational cost. The purpose of thi&wgoto propose two simplified
numerical strategies to simulate dynamic shear. The firgtisran enhanced multifiber Tim-
oshenko beam element with higher order interpolation femstiin order to avoid any shear
locking phenomena. The second one is the Equivalent Readf@oncrete model (ERC) using
lattice meshes for concrete and reinforcement bars. Fon lstriategies, advanced constitutive
laws are used based on continuum damage mechanics and gasterification is provided
using experimental results on reinforced concrete wallgestibd to severe dynamic loading.
Both methods are computationally efficient and easy to usenigineering purposes.
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1 INTRODUCTION

In earthquake engineering, the need to perform parametiiies and the stochastic nature
of the input accelerations necessitate simplified numlemecalelling in order to reduce compu-
tational cost. An optimum idealization is needed i.e. ora hsufficiently fine and yet not too
costly.

In order to simulate the non linear dynamic behaviour of afoeced concrete (R/C) struc-
ture, a multifiber Timoshenko beam element with higher ondrpolation functions has been
developed. The element is free of shear locking phenomakeas tinto account deformations
due to shear and can be coupled with 2D or 3D constitutive.laws

Nevertheless, when dealing with structures with a sleretesymatio far from the classical
beam theory a more reliable representation of shear defmmmsaand shear stresses has to be
provided. One possibility in that respect - always withie flamily of simplified modelling
strategies - is to adopt the Equivalent Reinforced Concretdein@ERC) that makes use of
lattice meshes for concrete and reinforcement bars.

For both methods, the constitutive law used for concreteasetd on damage mechanics.
It is able to take into account complex phenomena such agasernn material stiffness due
to cracking, stiffness recovery that occurs at crack clesurd inelastic strains concomitant to
damage. A modified version of the classical Menegoto-Pirdgdehwith an isotropic hardening
is used for steel.

Comparisons with experimental results on R/C walls testechakisg table show, for both
cases, the advantages but also the limitations of the agiproa

2 A multifiber Timoshenko beam element

In order to simulate - in a simplified manner - the non-lineadviour of a R/C wall under
dynamic loading, a multifiber Timoshenko beam element has becently developed [9], [14],
[15] and [19]. The difference with other multifiber Timoslenbeam elements usually found
in the literature - [23] and [24] - is that the element is desg@ment-based and has higher order
interpolation functions depending on the material’s praps. It can be implemented to any
general-purpose finite element code without major modiboat The user defines at each fibre
a material and the appropriate constitutive law (see Figire

The element takes into account deformations due to sheansssdcubic and quadratic La-
grangian polynomials for the transverse and rotationglldecements respectively in order to
avoid any shear locking phenomena. The interpolation fansttake the following form [2]:

{Us} = [IN{U} (1)
(U = { us(@) vsa) wi(@) Oualx) Oyy(z) Oue(z) |} (2)
{U}T:{ up v wy On le 0.1 us va wy Oy 0y2 9z2} (3)

and the matrix containing the interpolation functions is&do:

NN O 0 0 0O O N O 0 0 0 0
Ny 0 0 0O N, O Ny, O 0 0 N
0O Nf 0 -N; 0 0 0 N 0 —-N; 0 @
o 0 N, 0O 0 0 0 0 N, 0 0
0O -N; 0 N 0 0 0 —-N; 0 Nj 0
N 0 0 0 Ny 0 Ny O 0 0 Ny,

S OO OO
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Figure 1: Multifiber beam element for R/C structures
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Ni = 1-7 (5)
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with N = N;(¢*), ¢ and¢* stiffness ratio due to flexion and shear:
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If {F} and{D} are the section “generalised” stresses and strains résggct
{F} = [K.J{D} (7)
(Fy'={N T, T. M, M, M. } (8)
DY = { l(0) (@)~ bu(2) wiia) +0,(x) O(2) O,(x) O.(x)} (9

the section stiffness matrik;) takes the following form [7]:

Ksll 0 O O Ksl5 K316
Kego 0 Kgp4 O 0
Kgz Kga 0 0

[KS] = Ks44 0 O (10)
K855 K556
L K366 i
Koy = / EdS: K — / EzdS: Kug = — / EydsS (11)
S S S

Ko =k, /S GdS; Ky = —k, /S GzdS
K = k. /S GdS: Ky =k, /S GydS

Ko = /S G(k.y? + ky22)dS

K5 = /SEzzdS; K6 = —/SEyzdS

K66 I/SEZJQdS

The equation that provides the “generalised” strains asetifon of the nodal displacements
takes the following form (withn' the derivative ofy with respect to the spatial variabig:

{D} = [BI{U} (12)
and|B] that takes the following form:
N, 0 0 0 0 0 N, 0 0 0 0 0
0 Ny— N7 0 0 0 Ny—Ns 0 N;— Ny 0 0 0 Ng — Nig
0 0 N'g=N; 0 -Ny+N; 0 0 0 N's=N; 0 —Ng+Ny 0
0 0 0 N, 0 0 0 0 0 N, 0 0
/% / 7% /%
0 0 -N'7 0 N'g 0 0 0 ~N'g 0 N'To 0
0 N, 0 0 0 Ng 0 N, 0 0 0 Ny,
(13)

Finally, the stiffness matrix of the element is given by:

Ketem = /O ’ [B]" |K,][B] dx (14)

To reproduce correctly the behaviour of concrete underncyahding we use a continuous
damage model with two scalar damage variables one for damagesion and one for damage
in compression [17]. Inelastic strains are taken into anttlianks to an isotropic tensor. A

4



P. Kotronis, J. Mazars and S. Grange

modified version of the classical Menegoto-Pinto model withsotropic hardening is used for
steel [20]. The Timoshenko multifiber beam element and timagdge mechanic law have been
introduced into FedeasLab, a Matlab finite element toold¢$by the 3S-R group.

The previous tools are used hereafter to model a full-scaigcal slice of a seven-story
reinforced concrete walls building (benchmark NEES/UCSBgrmed between October 2005
and January 2006, [6] and [21]) subjected to increasingnsgity of uniaxial earthquake ground
motions on a shaking table. The structure is composed of & pependicular walls: the web
wall and the flange wall linked with the slabs. The Timoshenkdtifiber elements used to
model the web wall are divided into 20 concrete fibers whetkase of the flange wall are
divided into 8 concrete fibers. The results presented hereand the comparisons with the
experimental response are “blind” (for more details seg [6]

Lateral Displacement (in) Floors total acceleration a
900 900 ~
800 * X 800
1
700 S 700
;

= 600 ¥ ) = 600 7 - Measured acceleration EQ1
'\:/ 500 4 “ | -4 Measured lateral disp EQ1 =500 B Measured acceleration EQ2
§04()() | - ®- Measured lateral disp EQ2 f,,400 ] Measured acceleration EQ3
2 Measured lateral disp EQ3 = % - Measured acceleration EQ4

300 % - Measured lateral disp EQ4 300 ! —%— Predicted acceleration EQ1

200 - Predicted lateral disp EQ1 200 1 * | —e—Predicted acceleration EQ2

—o—Predicted lateral disp EQ2 E

—+— Predicted acceleration EQ3
—=— Predicted acceleration EQ4

—+—Predicted lateral disp EQ3 100
—=—Predicted lateral disp EQ4

0.00 5.00 10.00 15.00 20.00 0.000 0.500 1.000 1.500 2.000
Lateral Displacement (in) Floor total acceleration (g)

Figure 2: Maximum lateral displacements and acceleratardifferent levels of the NEES structure for the 4
sequences (EQ1 to EQ4), comparisons between experimeiatédd lines) and numerical results (continuous
lines).

Damage traction state in webwall (level 0) Damage traction state in webwall (level 1)

width

0.9 0.92 0.94 0.96 0965 097 0975 098  0.985

Figure 3: State of damage for the NEES structure at level Qeared 1 (first sequence, EQ1).

In figures 2 and 3 it is demonstrated that the modelling gisab@sed on Timoshenko mul-
tifiber beam elements and constitutive laws within the fraom of damage mechanics and
plasticity is able to reproduce with good approximation giebal response of the seven story
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building and qualitatively the distribution of damage. ther validations of this modelling strat-
egy on R/C columns and U-shaped walls tested cyclically oadynally can be found in [9],
[14], [15] and [19].

3 MODELING OF A R/C WALL WITH A SMALL SLENDERNESS RATIO

The behaviour of A R/C shear wall with a small slendernessngrotied primarily by shear.
For structures with small slenderness ratio (less than 1pdeinbased on beam theory has
difficulties in reproducing satisfactory the shear defdiores and stresses [18]. An alternative
simplified method is the so-called Equivalent Reinforced Cetacmodel (ERC model), [9],
[16] and [18]. The model uses a lattice mesh for predictirggribn-linear behaviour of shear
walls under dynamic loading and is inspired on the Framevivethod [8]. The basic idea
consists in using the patterns of the Framework Method folo2BD problems coupled with
continuous damage mechanics in a non-linear context aradrfon-homogenous material. The
main assumptions of the proposed strategy are (see figure 4):

e An elementary volume of reinforced concrete (EV) can be isgpd into a concrete el-
ement (C) and a horizontal and a vertical reinforcement beErgSd SV respectively).
Concrete and steel are then modelled separately using tieoadif lattices,

e The sections of the bars simulating concrete are derived the Framework Method,

¢ A lattice composed by horizontal and vertical bars couplét @ classical uniaxial plas-
ticity model with or without hardening simulates steel. ®etion and position of the
bars coincide with the actual section and position of thefoecement. In order to sim-
plify the mesh the method of distribution is used, where #iens of bars are defined
proportional to a corresponding surface area. In that waytash is independent of the
geometry of the specimens,

e Perfect bond is assumed between concrete and steel,
o Geometrical symmetry of the pattern is required for cyaid &#ansient dynamic loading,

e For at least the type of structure tested hereafter, whersttiess field is quite homoge-
neous, the number of elements that simulate concrete ddste€t have a great influence
on the result [9]. Therefore a “macroscopic” model can beluisstead of the “equivalent
lattice”.

The performance of the ERC model is evaluated on the NUPEOmprda shear wall
with a slenderness ratio equal to 0.7) tested on the shaklirlg &t the Tadotsu Engineering
Laboratory [22]. The specimen is excited with six horizdaizceleration signals parallel to its
plane. The rotation at the top of the specimen is free. Thempapresented in figure 5 and the
following equations of the Framework Method (valid for ptastress conditions) are used to
calculate the lattice simulating concrete:
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Figure 4: The Equivalent Reinforced Concrete (ERC) model.

fip
ba * The ratio heightilength is
fr b Im arbitrary.
Bk | #  Eruations are valid for a
Poisson’s ratio ecqual to 103
. * tis the width of the plate.
th!ln-.x""xd : Section ofbars

Figure 5: Framework Method - Pattern for plane stress.

3 (1Y)
Aq = 5 at, a7)
where Kk the ratio between the length and the heigbf the pattern and t is the width of the

plate.
A zoom at the last two sequences (figure 6) shows that the ER@Irpoeticts correctly the

global behaviour of the NUPEC specimen in terms of maximuhnesand frequency content
even under severe loading (just before collapse). Furthgfication of the method with exper-
imental results on less slender R/C walls with particularisiawy conditions (rotations at the

top prohibited) can be found in [9], [16] and [18] .

4 CONCLUSIONS

In order to simulate correctly but also quickly the behavioliR/C structures under severe
ground motions one has to find the right compromise for amuopt idealization i.e. one that
is sufficiently fine and yet not too costly. Two simplified mbuhg strategies are presented in
this work:

1. ATimoshenko multifiber element with higher order intdgtmns functions, free of shear
locking. The element can be easily implemented into any igdipeirpose finite element
code without major modifications. Numerical simulationsagfeven-story R/C building
tested on a seismic table are presented to prove the effjcadribe method. Neverthe-
less, for the calculations presented throughout this wsitgar and torsion are considered
linear - the 1D version of the constitutive continuous daeniagy is used. In order to re-
produce correctly the behaviour at local level (for exaniplease of important warping)
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Figure 6: NUPEC specimen (ERC model) - Displacement timmhjisanalysis: (a) RUN-4, (b) RUN-5.

the implementation of a 3D robust constitutive law for caterunder cyclic loading is a
necessary step. Another possibility in that respect is tsicker a warping - conduction
analogy method [19].

2. For structures with small slenderness ratio, a modeldasehe Timoshenko beam the-
ory has difficulties in reproducing satisfactory the sheafiodnations and stresses. A
solution - always within the family of simplified models - i3 tise the ERC model that
privileges the use of two separate lattices meshes one faret and one for steel. A
crucial parameter for the success of the non-linear sinamas the angle that the di-
agonals of the concrete lattice form with the horizontalsj&iq, [16] and [18]. Other
limitations of the method are that perfect bond is assumésdsn concrete and steel and
the stress field must be quite homogeneous. Finally, alththeyextension of the method
seems possible in 3D problems, its feasibility has stillégboven.

Our current work concerns also the development of a 3D melenment for Soil Structure
Interaction ([3], [4] and [5]) and the development of secgnadient models to assure the ob-
jectivity of the numerical results ([10], [11] and [13]) ugi advanced following path methods
[12].
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