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1 INTRODUCTION 
The localization of weak properties or bad behavior 
of a structure is still a challenge for Structural Health 
Monitoring (SHM) design (Okasha and Frangopol, 
2012). In case of random loading or material proper-
ties, this challenge is arduous because of the limited 
number of sensors and the quasi-infinite potential 
positions of local failures. Deterministic algorithms 
and specific multi-sensors systems are developed to 
this aim. In that case, generally, the precision of the 
positioning of a defect goes with a lack of sizing. 
However, the stochastic field is rarely a pure white 
noise and has a stochastic structure and probabilistic 
properties. These properties should be used to pro-
vide rational aid tools for optimizing the number of 
sensor. The paper shows that the stationary property 
is sufficient to find the optimal quantity of sensors 
and their position in view to assess accurately the 
shape of the auto-correlation function (see Fig. 1) 
that guides the position of control through Non De-
structive Techniques (NDT) during the service life. 
If we focus on embedded sensors, these stochastic 
properties are less sensitive to environmental condi-
tions (sun, humidity, …) at the surface of the struc-
tures where usual NDT tools are affected by. That 
will help the help the planning of NDT campaigns. 
The evolution of measurement with time is out of 
the scope of the present paper. 

The paper starts with key concepts and illustra-
tion of spatial random field modeling.  

In the next section, a method for optimal sensor 
positioning is suggested by focusing on the assess-
ment of the correlation function. The quality is ex-

pressed in terms of confidence interval on the pa-
rameters of the auto-correlation function. 

Figure 1. Auto-correlation function fitted with a parametric 
function. 

2 SPATIAL RANDOM FIELD MODELLING 

2.1 Usual approaches for spatial field modeling 
The stochastic field could take several forms more 
or less complicated. The most simple when the deg-
radation can be considered as homogeneous is the 
stationary stochastic field that can be used, for in-
stance, to model chloride distribution (O’Connor & 
Kenshel 2013), concrete properties (Bazant, 1991; 
2000a; 2000b) or soil properties. In some cases, 
when a stochastic process is influenced by several 
phenomena that vary with time (sea wave for in-
stance) or with space (concreting of a structure in 
several steps with heterogeneity of these steps), it 
can be modeled as piecewise stationary. This more 
sophisticated stochastic field can represent, for ex-
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ample, the variability of concreting materials by 
pieces or the corrosion of structures located in con-
tiguous environments with different characteristics 
(Boéro et al 2009, 2012). That is the case for the cor-
rosion of sheet-piles in marine environment where 
the corrosion process is governed by several phe-
nomena that depend on the exposure zone E. For il-
lustrating this case, Figure 2 presents the spatial var-
iability of the mean and the 95% quantiles of steel 
thickness loss in different zones at 10, 25 and 50 
years (t10, t25 and t50. It can be observed that both 
the mean and the 95% quantile are well defined for 
the considered zones –i.e., E∈[EA, ET, EL, EI, EM, ES] 
limited by dashed lines: from the top to the bottom, 
Aerial (A), Tide (T), Low level of tide (L), Immer-
sion (I), Mud (M) and Soil (S). In this case, a piece-
wise stationary stochastic field could be used to have 
a good representation of the loss of thickness.  
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Figure 2. Mean value and 95% quantiles of steel thickness loss 

in each zone at time 10, 25 and 50 years. 
 

2.2 Usual approaches for inspection modeling  
During measurement, there are many factors that in-
fluence the quality of measurements –e.g, environ-
mental conditions, error in the placement of the sen-
sor, error due to sensor and error induced by the op-
erator (Bonnet et al. unpubl., Breysse et al. 2009). 
These factors could lead, for a given measurement, 
to under or overestimations of the measured parame-
ter. If the parameter is underestimated and the owner 
could decide, “do nothing” when repair is required. 
On the contrary, an overestimation generates a 
“wrong decision” where the early repair generates 
overcharges (Rouhan & Schoefs 2003, Sheils et al. 
2012). In this paper we will consider inspection as 
perfect: that (i) there is no bias, (ii) error is negligi-
ble or redundancy allows us to assume it as negligi-
ble. 

2.3 Main assumptions for the stochastic modeling  

Starting from the previous sections and to limit the 
study, we consider five main assumptions about the 
sensor and the random field modeling. 

- The stochastic field is statically homogeneous, 
and only few information on the marginal dis-
tribution is known: the type of the unique 

probability density distribution. In the follow-
ing applications we consider a Gaussian field; 

- A limited number (from 30 to 50) of discrete 
sensors can be placed; 

- Second order stationary stochastic field can 
piecewise or totally describe the spatial fields; 

- Sensors are considered as perfect as defined by 
Schoefs et al. (2009). 
 

Given a probability space (Ω, F , P), a stochastic 
field or process with state space Z is a collection of 
Z-valued random variables indexed respectively by a 
set s “space” or t “time”. Let us denote Z(x, θ) the 
one-dimensional stochastic field where θ represents 
the randomness and x the spatial coordinate.  

Z(x,θi) is called the ith trajectory of this field and 
corresponds to a given realization θi of the field for 
whatever location. Z(x1, θ) is a random variable that 
is generated by θ at a given location x = x1. We con-
sider here homogeneous fields only. This means that 
the marginal distribution of Z(x1, θ) does not depend 
on the location. 
A stochastic field is second order stationary if it fol-
lows three main properties: 
• expectation E[Z(x, θ)] does not depend on the lo-

cation x –i.e., E[Z(x, θ)] = E[Z]; 
• variance V[Z(x, θ)] does not depend on the loca-

tion x –i.e., V[Z(x, θ)] = V[Z]; and 
• spatial covariance COV[Z(x, θ), Z(x, θ)] depends 

only on the distance (x-x’). 
Thus, the second order stationary is a property re-

stricted to the two first probabilistic moments. It can 
be shown that geometries of welds for ships or the 
spatial distribution of chloride concentration in rein-
forced concrete structures can be represented by sta-
tionary stochastic fields (Schoefs et al. 2011a). For 
instance, Figure 3 presents the correlation function 
of the chloride diffusion coefficient as function of 
the distance between two points (duratiNet project: 
http://www.duratinet.org, following O’Connor & 
Kenshel 2013). Note that if E[Z(x, θ)] is not constant 
with space, the signal can be centered and the prop-
erties been proved for the field (Z(x, θ) – E[Z(x, θ)]). 

Several approaches can be used to represent a 
stochastic field Z(x, θ): Karhunen-Loève expansion, 
approximation by Fourier series, and approximation 
EOLE (Li & Der Kiureghian 1993). In this paper, 
we select a Karhunen-Loève expansion to represent 
the stochastic field of resistance of a structure 
Z(x, θ). This expansion represents a random field as 
a combination of orthogonal functions on a bounded 
interval [–a, a]: 

Z(x,θ ) = µZ +σ Z . λi .ξi (θ ).
i=1

n

∑ fi (x)  (1) 

where, µZ is the mean of the field Z, σZ is the stand-
ard deviation of the statistically homogeneous field 
Z, n is number of terms in the expansion, ξi is a set 
of centered Gaussian random variables and λi and fi 
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are, respectively, the eigenvalues and eigen func-
tions of the correlation function ρ(Δx). It is possible 
to analytically determine the eigenvalues λi and eig-
en functions fi for some correlation functions 
(Ghanem & Spanos 2003). For example, it can be 
determined if we assume that the field is second or-
der stationary and we use an exponential correlation 
function (Vanmarcke, 1983):  

ρ(Δx = x1 - x2 )=exp(−
Δx
b
); 0 < b  (2) 

 
where b is the correlation length and Δx ∈ [–a, a]. 
Accounting for the stationarity of the process, the 
following transcendental equations can be obtained: 
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where ω is obtained by solving equation (3). If the 
solution of the second equation is noted ω*, the ei-
genfunctions are: 
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and the corresponding eigenvalues are: 
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Figure 3. Spatial correlation of the chloride diffusion coeffi-

cient in concrete – data Trinity College of Dublin. 

3 SENSOR POSITIONNING STRATEGY AND 
GOALS 

3.1 Key ideas for sensor geo-positioning  
The paper focuses on the assessment of the auto-
correlation function of a stationary field. An optimal 
geo-positioning of sensors along a trajectory (Fig. 4) 
should give an accurate value of the parameters (i.e. 
b) with a limited number of sensors. 
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Figure 4. Non-regularly spaced sensors along a trajectory. 

 
When looking to the usual shape of a correlation 

function (Fig.1) a regular spacing ‘Lb = a’ of Ns sen-
sors appears not optimal: it provides a dense infor-
mation for distances ‘a, 2a, … (Ns-1)a’ but none be-
tween. We get a non-homogeneous quantity of data: 
Ns for distance 0, (Ns-i) for distance ia (1<i< Ns). 
The objective will be to get a spacing of sensor that 
leads to a more homogeneous quantity of data in the 
zone f high correlation as defined on Figure 5. 
Moreover, there is a limited feed-back on the auto-
correlation length on site and the uncertainty on the 
value of ‘b’ (Eq. 2) when installing the sensors is 
significant. 
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Figure 5. High correlation zone and homogeneous measure-

ments long the trajectory. 
 
These reasons lead us to suggest a non-regular 

spacing of the sensors. 
 

3.2 Definition of the Spatial Correlation Threshold 
The When the uncertainty of the  should  of an  

stages inspection we suggest should provide both the 
parameters of the spatial correlation function and in-
dependent events that characterize the marginal dis-
tribution of Z. We considerer in this paper a one-
dimensional spatial field and we will apply the 
methodology on a set of trajectories: these trajecto-



ries could be a set of 1D components (beams), or a 
very long 1D-component subdivided artificially or 
physically (expansion joint or construction joints) in 
a set of short components, or belong to a wall struc-
ture (steel sheet pile or concrete wall). 

In view to limit the costs of the monitoring (num-
ber of sensor) we inspect a trajectory with a “suffi-
ciently low distance Lb” to assess the shape of the 
correlation function (2): for instance the shape pa-
rameter b. This “sufficiently low” can be seen as an 
Inspection Distance Threshold (ICD). Thus the non 
regular distances of sensor spacing Lbi should satis-
fy: Lbi ∈ ]0, IDT[ where L is the length of the trajec-
tory. 

For illustrating the methodology, we consider in 
the following a set of 1D-components (beams) with 
infinite length L ~ ∞: we don’t discuss the case of 
components with a limited size, especially those 
where L< Lb for which it is quite impossible to char-
acterize the spatial variability. The IDT is defined by 
assuming that after a given distance, the events 
measured from an inspection can be assumed as sta-
tistically independent. A Spatial Correlation Thresh-
old SCT of the spatial correlation gives this weak 
correlation. For instance in Figure 3 (red line) for 
SCT=0.4, IDT=3 meters. It is linked with IDT by the 
relationship: 

IDT = b. ln(SCT )  (6) 
 

3.3 Parameterization of the non-regular spacing  
In view to reduce the set of potential solutions and 
simplify the design of the network of sensors, we 
suggest a parameterization. It is based on a division 
of the trajectory into np pieces of same size Lm (see 
Fig. 6) and then a subdivision of each piece into a 
decreasing number of pieces of same size following 
a series (7). 
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Where .!" #$  denotes the floor function,NS

j is the num-
ber of sensors in the jth piece and NS

1i is the initial 
number of sensors in the 1st piece, the final 
number of inspection NS

1 f  in the first section is 
computing following: 
NS
1 f =NS − NS

j

j>1
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For instance, for two pieces and 6 sensors, 4 are 
placed in the first piece and 2 in the second (Fig. 6). 
Figure 7 presents the case 7 sensors and 3 pieces. 
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Figure 6. Distribution of sensors for Ns=6 and np=2. 
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Figure 7. Distribution of sensors for Ns=7 and np=3. 

 
 

Our objective is now to optimize the number of 
inspections in view to reach a given quality of the 
result. 

4 APPLICATION 

4.1 Assumptions and inputs  
We consider in this section a beam of length 

L=25 m with a limited number of sensors Ns=30. 
The objective is to optimize their position in view to 
reach a good assessment of b (see Eq. 2). Only one 
trajectory is instrumented and the uncertainty due to 
the stochastic field is simulated by (1) with: µZ=100 
(MpA) ; σZ=20 (MPa) ; b=1m.  

We analyze the error between the theoretical val-
ue and the assessed one. 

 

4.2  Results and inputs  
We vary the number of pieces from 1 (30 sensors) 

to 6 (12, 6, 4, 3, 3, 2 sensors on each piece). Figure 8 
presents plots the difference ( b̂ -b) between the es-
timated value and the theoretical one (here b=1) for 
1000 simulated trajectories. The regular spacing ob-
tained for np=1 shows the biggest uncertainty in the 
assessment of b with potential errors of 0.8 (near 
100%). The cutting with 6 pieces shows a systematic 
underestimation of b.  

Let us focus on εb*, the normalized mean error on 
b presented in Equation (9). Figure 9 gives the plot 
of this error as a function of np. 
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Figure 8. Distribution of sensors for Ns=7 and np=3. 

Figure 9. Normalized error on b as a function of np. 

Following this criterion, it is shown that the spac-
ing with np=2 is optimal.  

5 CONCLUSION 
We propose in this paper an original method for the 
non-regular spacing of sensors devoted to the as-
sessment of stationary fields from embedded sen-
sors. The method is based on the uncertainty as-
sessment of the parameter of the auto-correlation 
function. Numerical simulations of Gaussian sta-
tionary stochastic illustrate the potential of the 
method by showing that it provides a decision aid 
tool when a limited number of sensors are placed in 
a structure.  
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