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Reliability-Based Analysis of Strip Footings Using Response 
Surface Methodology

Dalia S. Youssef Abdel Massih
1 

and Abdul-Hamid Soubra
2

Abstract A reliability-based analysis of a strip foundation subjected to a central vertical load is presented. Both the ultimate and the 
serviceability limit states are considered. Two deterministic models based on numerical simulations are used. The first one computes the 
ultimate bearing capacity of the foundation and the second one calculates the footing displacement due to an applied load. The response 
surface methodology is utilized for the assessment of the Hasofer–Lind reliability indexes. Only the soil shear strength parameters are 
considered as random variables while studying the ultimate limit state. Also, the randomness of only the soil elastic properties is taken into 
account in the serviceability limit state. The assumption of uncorrelated variables was found to be conservative in comparison to the one 
of negatively correlated variables. The failure probability of the ultimate limit state was highly influenced by the variability of the angle 
of internal friction. However, for the serviceability limit state, the accurate determination of the uncertainties of the Young’s modulus was 
found to be very important in obtaining reliable probabilistic results. Finally, the computation of the system failure probability involving 
both ultimate and serviceability limit states was presented and discussed.

keywords Shallow foundations; Bearing capacity; Foundation settlement; Serviceability; Simulation models; System reliability; 
Footings.

Introduction

The commonly used approaches in the analysis and design of

foundations are deterministic. The average values of the input

parameters are usually considered and the uncertainties of the

different parameters are taken into account via a global factor of

safety which is essentially a “factor of ignorance.” A reliability-

based approach for the analysis of foundations is more rational

since it enables one to consider the inherent uncertainty of each

input parameter. Nowadays, this is possible because of the im-

provement in our knowledge of the statistical properties of soil

�Phoon and Kulhawy 1999�.

In this paper, a reliability-based analysis of a strip foundation

resting on a c−� soil and subjected to a central vertical load is

presented. Previous investigations on the reliability analysis of

foundations focused on either the ultimate or the serviceability

limit state �Bauer and Pula 2000; Cherubini 2000; Griffiths and

Fenton 2001; Griffiths et al. 2002; Low and Phoon 2002; Fenton

and Griffiths 2002, 2003, 2005; Popescu et al. 2005; Przewlocki

2005; Youssef Abdel Massih et al. 2007�. This paper considers

both limit states in the analysis of foundations. Two deterministic

models based on the Lagrangian explicit finite difference code

FLAC3D are used. The first one computes the ultimate bearing

capacity of the foundation and the second one calculates the foot-

ing displacement due to an applied service load. The response

surface methodology is utilized to find an approximation of the

analytically unknown performance functions and the correspond-

ing reliability indexes. The random variables considered in the

analysis are the soil shear strength parameters c and � for the

ultimate limit state, and the soil elastic properties E and � for the

serviceability limit state. After a brief description of the basic

concepts of the theory of reliability, the two deterministic models

based on numerical FLAC3D simulations are presented. Then, the

probabilistic analysis and the corresponding numerical results are

presented and discussed.

Basic Reliability Concepts

Two different measures are commonly used in literature to de-

scribe the reliability of a structure: The reliability index and the

failure probability.

The reliability index of a geotechnical structure is a measure of

the safety that takes into account the inherent uncertainties of the

input variables. A widely used reliability index is the Hasofer and

Lind �1974� index defined as the shortest distance from the mean

value point of the random variables to the limit state surface

in units of directional standard deviations, namely �

=min�R��� /r���� �Fig. 1�. Its matrix formulation is �Ditlevsen

1981�

�HL = min
x�F

��x − ��TC−1�x − �� �1�

in which x�vector representing the n random variables;

��vector of their mean values; and C�their covariance matrix.

The minimization of Eq. �1� is performed subject to the constraint
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G�x��0 where the limit state surface G�x�=0 separates the

n-dimensional domain of random variables into two regions: a

failure region F represented by G�x��0 and a safe region given

by G�x��0.

The classical approach for computing �HL by Eq. �1� is based

on the transformation of the limit state surface into the space of

standard normal uncorrelated variates. The shortest distance from

the transformed failure surface to the origin of the reduced vari-

ates is the reliability index �HL.

An intuitive interpretation of the reliability index was sug-

gested in Low and Tang �1997a, 2004� where the concept of an

expanding ellipse �Fig. 1� led to a simple method of computing

the Hasofer–Lind reliability index in the original space of the

random variables. When there are only two uncorrelated

nonnormal random variables x1 and x2, these variables span a

two-dimensional random space, with an equivalent one-sigma

dispersion ellipse �corresponding to �HL=1 in Eq. �1� without the

min� centered at the equivalent normal mean values ��1
N ,�2

N� and

whose axes are parallel to the coordinate axes of the original

space. For correlated variables, a tilted ellipse is obtained. Low

and Tang �1997a, 2004� reported that the Hasofer–Lind reliability

index �HL may be regarded as the codirectional axis ratio of the

smallest ellipse �which is either an expansion or a contraction of

the 1−	 ellipse� that just touches the limit state surface to the

1−	 dispersion ellipse. They also stated that finding the smallest

ellipsoid that is tangent to the limit state surface is equivalent to

finding the most probable failure point.

From the first-order reliability method FORM and the

Hasofer–Lind reliability index �HL, one can approximate the fail-

ure probability as follows

P f � 
�− �HL� �2�

where 
�·��cumulative distribution function of a standard nor-

mal variable. In this method, the limit state function is approxi-

mated by a hyperplane tangent to the limit state surface at the

design point.

Ellipsoid Approach via Matlab

Low and Tang �1997a, 2004� showed that the minimization of the

Hasofer–Lind reliability index can be efficiently carried out in the

original space of the random variables. When the random vari-

ables are non-normal and correlated, the optimization approach

uses the Rackwitz–Fiessler equations to compute the equivalent

normal mean �N and the equivalent normal standard deviation 	N

without the need to diagonalize the correlation matrix, as shown

in Low and Tang �2004� and Low �2005�. Furthermore, the itera-

tive computations of the equivalent normal mean �N and equiva-

lent normal standard deviation 	N for each trial design point are

automatic during the constrained optimization search.

In the present paper, by the Low and Tang method, one liter-

ally sets up a tilted ellipsoid in Matlab software and uses the

“fmincon” command, built in the optimization tool of this soft-

ware, to minimize the dispersion ellipsoid subject to the con-

straint that it be tangent to the limit state surface. Eq. �1� may be

rewritten as �Low and Tang 1997b, 2004�

� = min
x�F

�� x − �x
N

	x
N �T

�R�−1� x − �x
N

	x
N � �3�

in which �R�−1�inverse of the correlation matrix. This equation

will be used to set up the ellipsoid in Matlab since the correlation

matrix �R� displays the correlation structure more explicitly than

the covariance matrix �C�.

Deterministic Numerical Modeling of Bearing
Capacity and Displacement of Strip Footings Using
FLAC3D

FLAC3D �Fast Lagrangian Analysis of Continua 1993� is a com-

mercially available three-dimensional finite difference code in

which an explicit Lagrangian calculation scheme and a mixed

discretization zoning technique are used. This code includes an

internal programming option �FISH� which enables the user to

add his own subroutines.

In this software, although a static �i.e. nondynamic� mechani-

cal analysis is required, the equations of motion are used. The

solution to a static problem is obtained through the damping of a

dynamic process by including damping terms that gradually re-

move the kinetic energy from the system.

The calculation scheme invokes the equations of motion in

their discretized forms to derive new velocities and displacements

from stresses and forces. Then, strain rates are derived from ve-

locities, and new stresses from strain rates. The stresses and

deformations are calculated at several small timesteps �called

hereafter cycles� until a steady state of static equilibrium or plas-

tic flow is achieved. The convergence to this state may be con-

trolled by a maximal prescribed value of the unbalanced force for

all elements of the model. It should be mentioned that the appli-

cation of displacements or stresses on a system creates unbal-

anced forces in this system. Damping is introduced in order to

remove these forces or to reduce them to very small values com-

pared to the initial ones.

Numerical Simulations

This section focuses on the computation of the ultimate bearing

capacity of the soil �ultimate limit state �ULS�� and the footing

vertical displacement �serviceability limit state �SLS�� due to a

central vertical footing load. Although a random soil is studied in

this paper, a symmetrical velocity field is considered in both the

ULS and the SLS. This is because the soil properties are modeled

as random variables. Thus, each FLAC3D simulation considers a

homogeneous soil. The randomness of the soil is taken into ac-

Fig. 1. Design point and equivalent normal dispersion ellipses in

space of two random variables
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count from one simulation to another. A nonsymmetrical velocity

field is necessary only for the computation of the reliability of a

foundation resting on a spatially variable soil �i.e., where c or �

are considered as random processes�.

Ultimate Limit State—Bearing Capacity

This section focuses on the determination of the ultimate bearing

capacity of a rough rigid strip footing, of breadth B=2 m, resting

on a c−� soil.

Because of symmetry, only half of the entire soil domain of

width 20B and depth 5B is considered. The bottom and right

vertical boundaries are placed far enough from the footing and

they do not disturb the soil mass in motion �i.e., velocity field� for

all the soil configurations studied in this paper. A nonuniform

mesh composed of 904 zones is used �Fig. 2�. The region under

the right half of the footing was divided horizontally into 15

zones, whose size gradually decreases from the center to the edge

of the footing where very high stress gradients are developed.

Beyond the edge of the footing, the domain was divided into 30

zones whose size increases gradually from the foundation edge to

the right vertical boundary. Vertically, the domain was divided

into 20 zones whose size decreases gradually from the bottom of

the domain to the ground surface.

Since this is a two-dimensional �2D� case, all displacements in

the direction parallel to the footing are fixed. For the displacement

boundary conditions, the bottom boundary was assumed to be

fixed and the vertical boundaries were constrained in motion in

the horizontal direction.

A conventional elastic-perfectly plastic model based on the

Mohr–Coulomb failure criterion is adopted to represent the soil.

The soil elastic properties employed are the shear modulus G

=23 MPa and the bulk modulus K=50 MPa �for which the

equivalent Young’s modulus and Poisson’s ratio are, respectively,

E=60 MPa and �=0.3�. The values of the soil shear strength

parameters used in the analysis are: �=30°, �=20°, and c

=20 kPa, where ��soil dilation angle. The soil unit weight was

taken equal to 18 kN /m3. Notice that the soil elastic properties

have a negligible effect on the failure load. A strip footing of half

width equal to 1 m and depth 0.5 m is used in the analysis. It is

divided horizontally into four zones. The footing is simulated by

a weightless elastic material. Its elastic properties are the Young’s

modulus E=25 GPa and the Poisson’s ratio �=0.4. Compared to

the soil elastic properties, these values are well in excess of those

of the soil and ensure a rigid behavior of the footing. The footing

is connected to the soil via interface elements that follow Cou-

lomb’s law. The interface is assumed to have a friction angle

equal to the soil angle of internal friction, dilation equal to that of

the soil, and cohesion equal to the soil cohesion in order to simu-

late a perfectly rough soil-footing interface. Normal stiffness Kn

=109 Pa /m and shear stiffness Ks=109 Pa /m are assigned to this

interface. These parameters do not have a major influence on the

failure load.

For the computation of the ultimate bearing capacity of a rigid

rough strip footing subjected to a central vertical load using

FLAC3D, a displacement control method is adopted in this paper.

The following procedure is performed before any simulation of

the foundation loading: Geostatic stresses are first applied to the

soil, then several cycles are run in order to arrive at a steady state

of static equilibrium, and finally the obtained displacements are

set to zero in order to obtain the footing displacement due to only

the footing load.

Displacement Control Method

In this method, a controlled downward vertical velocity �i.e., dis-

placement per timestep� is applied to the nodes of the footing.

Damping of the system is introduced by running several cycles

until a steady state of plastic flow is developed in the soil under-

neath the footing. This state is achieved when both conditions: �1�

a constant footing load and �2� small values of unbalanced forces,

were satisfied as the number of cycles increases. The number of

cycles required to reach this state depends on the value of the

applied velocity. At each cycle, the vertical footing load is ob-

tained by using a FISH function that calculates the integral of the

normal stress components for all elements in contact with the

footing. The value of the vertical footing load at the plastic steady

state is the ultimate footing load. The ultimate bearing capacity is

then obtained by dividing this load by the footing area.

Two control parameters �the intensity of the vertical velocity

and the mesh size� may greatly affect the value of the ultimate

footing load. They are examined in the following sections:

An optimal vertical velocity must be chosen in order to reach

a value of the ultimate bearing capacity close to the smallest most

critical one �corresponding to very small velocity� with a reason-

able computation time. A velocity of 2.5�10−6 m / timestep

downward was suggested by Yin et al. �2001� as a result of a

number of verification runs. This value was tested in the present

paper, and an ultimate load of 2 ,393.1 kN /m was obtained at the

plastic steady state after 215,000 cycles. This load corresponds to

a continuous increase of the footing displacement. A smaller ve-

locity of 10−6 m / timestep and a higher velocity of 5

�10−6 m / timestep were also tested. The value of the ultimate

load corresponding to the smaller velocity was found equal to

2 ,392.7 kN /m which is slightly smaller �i.e., more critical� than

the one obtained by applying the 2.5�10−6 m / timestep velocity.

However, 380,205 cycles were required to achieve this value �i.e.,

an increase in the calculation time by 76%�. For the higher veloc-

ity of 5�10−6 m / timestep, a slightly greater value of

2 ,394.48 kN /m was obtained �Fig. 3�. The difference is smaller

than 0.1% from the value obtained using the 10−6 m / timestep

velocity. The necessary number of cycles to reach this value was

about 107,743 which is significantly smaller than the 215,000 and

the 380,205 cycles required by the two smaller velocities. Thus,

the use of a vertical velocity of 5�10−6 m / timestep highly re-

duces the computation time with a negligible deterioration in the

accuracy of the solution. In this paper, this velocity is adopted for

all subsequent calculations.

The effect of the mesh size on the solution was also checked.

It was found that a more refined mesh under the footing does not

improve the value of the ultimate footing load and may cause

Fig. 2. Soil domain and mesh used in FLAC3D
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numerical instability. Also, a more refined mesh beyond the edge

of the footing �40 zones instead of 30 horizontally and 30 zones

instead of 20 in the vertical direction� improves the result �i.e.,

reduces the ultimate load� by only 0.24% with an increase in the

calculation time by 33%. Thus, the mesh presented above will be

used in all subsequent calculations.

In order to confirm the accuracy of the ultimate bearing capac-

ity obtained by the displacement control method, incremental ver-

tical stresses are applied to the nodes situated at the base of the

footing until failure is reached. For each stress increment, damp-

ing is introduced until a steady state is obtained. This method

called the load control method is found to give a closely similar

result of 2 ,394.44 kN /m �Fig. 4� in comparison to the value of

2 ,394.48 kN /m obtained by the displacement control method.

However, this approach is less efficient regarding the computation

time. In order to compare the number of cycles required by the

two methods for a given displacement of the footing, the total

number of cycles was found to be about 648,000 for a vertical

footing displacement of 45 cm in the load control method. The

corresponding number of cycles was about 107,000 in the dis-

placement control method.

The contact normal and shear stress distributions along the

soil-footing interface as obtained by the two methods at failure

are presented in Figs. 5�a and b�. They show nearly identical

results. Except at the footing edge which is a singular point, a

quasi-uniform normal stress distribution was observed �Fig. 5�a��.

For the shear stress distribution, gradually increasing stress from

the center to the edge of the footing was noticed �Fig. 5�b��. As

for the normal stress distribution, high stresses were observed at

the footing edge due to the singularity at this point.

For computation of the ultimate bearing capacity of a rough

rigid footing, the displacement control method was found to be

the most simple and efficient one regarding the computation time.

It will be used in this paper for all subsequent calculations.

Serviceability Limit State—Vertical Displacement

For the computation of the vertical displacement of a rigid footing

under an applied vertical load, it would not be interesting to apply

uniform stresses directly to the surface nodes of the soil since this

approach corresponds to the simulation of a flexible footing.

Thus, as in the ultimate limit state, modeling the foundation by a

weightless elastic material is also adopted here. An elastic-

perfectly plastic model is used for the soil since it enables the

development of plastic zones that may occur near the footing

edges even at small service loads and it leads to more accurate

solutions than a purely elastic model. The same procedure de-

scribed before concerning the geostatic stresses is used here. A

Fig. 3. Load-displacement curve from displacement control method

Fig. 4. Load-displacement curve from load control method

Fig. 5. �a� Normal �	�; �b� shear �
� stresses at right half of footing

base as obtained from two methods
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uniform service stress is applied at the base of the footing. Damp-

ing of the system is introduced by running several cycles until a

steady state of static equilibrium is reached in the soil. This state

is achieved when both conditions: �1� a constant vertical displace-

ment of the footing �Fig. 6� and �2� small values of unbalanced

forces, were satisfied as the number of cycles increases.

Reliability Analysis of Strip Footings

The aim of this paper is to perform a reliability analysis of a strip

footing resting on a c−� soil and subjected to a central vertical

load. Two failure or unsatisfactory performance modes are con-

sidered in the analysis: The first one involves the ultimate limit

state and emphasizes the ultimate bearing capacity of the footing

and the second one considers the serviceability limit state and

focuses on the maximal footing displacement. The two determin-

istic models presented in the previous section are used. The

response surface methodology is employed to find an approxima-

tion of the analytically unknown performance functions. The co-

hesion c, the angle of internal friction �, the Young’s modulus E,

and the Poisson’s ratio � of the soil are considered as random

variables. Due to the relatively low effect of the elastic modulus E

and the Poisson’s ratio � on the ultimate bearing capacity, only c

and � will be considered as random variables while studying the

ultimate limit state. Similarly, only the randomness of E and �

will be taken into consideration in the analysis of the serviceabil-

ity limit state. After a brief description of the performance func-

tions used in the present analysis, the response surface methodol-

ogy and its numerical implementation are presented. Then, the

probabilistic numerical results based on this method are presented

and discussed.

Performance Functions

Two performance functions are used in this reliability analysis.

The first one is defined with respect to the ultimate bearing ca-

pacity of the soil. It is given as follows

G = Pu/PS − 1 �4�

where Pu�ultimate foundation load calculated by FLAC3D and

PS�applied footing load. The second performance function, de-

fined with respect to a prescribed admissible footing displace-

ment, is given as follows

G = umax − u �5�

where u�vertical displacement of the footing calculated by

FLAC3D due to a service load PS; and umax�maximal admissible

vertical displacement.

Response Surface Method

If the performance function is an explicit function of the random

variables, the reliability index can be calculated easily. In the

FLAC3D model, the closed form solution of the performance

function is not available. Thus, the determination of the reliability

index is not straightforward. An algorithm based on the response

surface methodology proposed by Tandjiria et al. �2000� is used

in this paper with the aim to calculate the reliability index and the

corresponding design point. The basic idea of this method is to

approximate the performance function by an explicit function of

the random variables, and to improve the approximation via itera-

tions. The approximate performance function used in this study

has a quadratic form. It uses a second-order polynomial with

squared terms but no cross terms. The expression of this approxi-

mation is given by

G�x� = a0 + 	
i=1

n

ai . xi + 	
i=1

n

bi . xi
2 �6�

where xi�random variables; n�number of the random variables;

and �ai ,bi��coefficients to be determined. In this paper, two ran-

dom variables are considered for each limit state �i.e., n=2�. They

are characterized by their mean values �i and their coefficients

of variation 	i. A brief explanation of the algorithm used is as

follows:

1. Evaluate the performance function G�x� at the mean value

point � and the 2n points each at �±k	 where k=1in this

paper;

2. The above 2n+1 values of G�x� can be used to solve Eq. �6�

for the coefficients �ai ,bi�. This obtains a tentative response

surface function;

3. Solve Eq. �1� to obtain a tentative design point and a tenta-

tive �HL subject to the constraint that the tentative response

surface function of step 2 be equal to zero; and

4. Repeat steps 1–3 until convergence. Each time step 1 is re-

peated, the 2n+1 sampled points are centered at the new

tentative design point of step 3.

Numerical Implementation of Response Surface
Method

As described in the previous section, the determination of the

Hasofer–Lind reliability index requires: �1� the determination of

the coefficients �ai ,bi� of the tentative response surface via the

resolution of Eq. �6� for the 2n+1 sampled points; and �2� the

minimization of the Hasofer–Lind reliability index subject to the

constraint that the tentative response surface function be equal to

zero. These two operations which constitute a single iteration

Fig. 6. Vertical footing displacement versus number of cycles due to

applied load PS=750 kN /m
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were done using the optimization toolbox available in Matlab 7.0

software. Several iterations were performed until convergence of

the Hasofer–Lind reliability index.

Notice that the determination of the performance function at

the 2n+1 sampled points was performed using deterministic

FLAC3D calculations. The results of these computations constitute

input parameters for the determination of the coefficients �ai ,bi�
of the tentative response surface using Matlab 7.0. Also, the value

of the design point determined using the minimization procedure

in Matlab 7.0 is an input parameter for the determination of the

performance function at the 2n+1 sampled points in FLAC3D.

Therefore, an exchange of data between FLAC3D and Matlab 7.0

in both directions was necessary to enable an automatic resolution

of the iterative algorithm for the determination of the Hasofer–

Lind reliability index. The link between FLAC3D and Matlab 7.0

was performed using text files and FISH commands.

Numerical Results

For the ultimate limit state, different values of the coefficients of

variation of the angle of internal friction and cohesion are pre-

sented in the literature. For most soils, the mean value of the

effective angle of internal friction is typically between 20 and

40°. Within this range, the corresponding coefficient of variation

as proposed by Phoon and Kulhawy �1999� is essentially between

5 and 15%. For the effective cohesion, the coefficient of variation

�COV� varies between 10 and 70% �Cherubini 2000�. For the

coefficient of correlation, Harr �1987� has shown that a correla-

tion exists between the effective cohesion c and the effective

angle of internal friction �. The results of Wolff �1985� ��c,�

=−0.47�, Yuceman et al. �1973� �−0.49��c,��−0.24�, Lumb

�1970� �−0.7��c,��−0.37�, and Cherubini �2000� ��c,�=−0.61�
are among the ones cited in the literature. In this paper, the illus-

trative values used for the statistical moments of the shear

strength parameters and their coefficient of correlation �c,� are

given as follows: �c=20 kPa, ��=30°, COVc=20%, COV�

=10%, and �c,�=−0.5. These values are within the range of val-

ues cited above. For the probability distribution of the random

variables, c is assumed to be lognormally distributed while � is

assumed to be bounded and a beta distribution is used �Fenton

and Griffiths 2003�. The parameters of the beta distribution are

determined from the mean value and standard deviation of �. It

should be mentioned that the soil elastic properties �i.e., K and G

or E and �� considered as deterministic in the present ultimate

limit state have no effect on the value of the ultimate bearing

capacity. Higher values of these properties, G=100 MPa and K

=133 MPa �for which E=240 MPa and �=0.2�, were checked.

No change was observed in the value of the ultimate bearing

capacity. Furthermore, a reduction by 50% in the number of

cycles necessary to reach failure was noticed �i.e., a reduction in

the computation time by half�. Consequently, these values will be

used in all subsequent calculations when studying the ultimate

limit state. The CPU time required for each simulation was found

to be about 15 min on a Centrino 2.0 GHz PC.

For the serviceability limit state, soils with small values of

Young’s modulus are used in this paper. In such soils, the vari-

ability of the compressibility characteristics is very large �Bauer

and Pula 2000�. A lognormal distribution is used for E with a

mean value of 60 MPa �Nour et al. 2002�. For the coefficient of

variation, some values proposed and used by several authors are

listed in Table 1. A value of 15% is used in this paper. Regarding

the Poisson’s ratio, there is no available information about its

random variation. Some authors have suggested that the random-

ness can be neglected in an analysis of settlement taking place in

the case of elastic soil. Others have stated that � changes with a

relatively narrow interval. In this paper, � is considered as a log-

normally distributed variable with a coefficient of variation of

5%. Its mean value is taken equal to 0.3. For the correlation

coefficient of these two parameters, there is no information avail-

able. The results reported by some researchers �Bauer and Pula

2000� lead to the conclusion that this correlation is negative. In

this paper, the cases of uncorrelated and correlated soil elastic

properties with �E,�=−0.5 are considered. The CPU time required

for each serviceability limit state simulation was found to be

about 10 min on a Centrino 2.0 GHz PC.

Ultimate Limit State

Graphical Representation of Successive Tentative
Response Surfaces

Fig. 7 shows the evolution of the tentative response surface in the

standard space �u1 ,u2� for a footing applied load equal to

775 kN /m �i.e., a safety factor of 3.1�. The two equations used

for the transformation of each �c ,�� of the limit state surface

from the physical space to the standardized normal uncorrelated

space �u1 ,u2� are �e.g., Lemaire 2005�

Table 1. Values of Coefficient of Variation �COV� of Young’s Modulus

Proposed by Several Authors

Authors

COV of Young’s modulus

�%�

Phoon and Kulhawy �1999� 30

Bauer and Pula �2000� 15

Nour et al. �2002� 40–50

Baecher and Christian �2003� 2–42

Fig. 7. Evolution of tentative response surface
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u1 = 
 c − �c
N

	c
N � �7�

u2 =
1

�1 − �2
�
� − ��

N

	�
N � − �
 c − �c

N

	c
N �� �8�

where ��coefficient of correlation of c and �; and �c
N, ��

N, 	c
N,

and 	�
N�equivalent normal means and standard deviations of the

random variables c and �. They are determined from the transla-

tion approach using the following equations

c − �c
N

	c
N

= 
−1�Fc�c�� �9�

� − ��
N

	�
N

= 
−1�F����� �10�

where Fc and F��non-Gaussian cumulative distribution functions

of c and �; and 
−1�·��inverse of the standard normal cumula-

tive distribution.

A convergence criterion on the reliability index was adopted. It

considers that convergence is reached when a difference smaller

than 10−2 between two successive reliability indexes is achieved.

One can notice that this criterion is reached after only four itera-

tions. Thus, only 20 numerical simulations by FLAC3D were nec-

essary. The corresponding CPU time required is about 20�15

=300 min �i.e., 5 h�. A value of 4.35 was found for the reliability

index. This value corresponds to a failure probability of 6.84

�10−6 calculated by the FORM approximation.

Reliability Index and Design Point

Table 2 presents the Hasofer–Lind reliability index and the cor-

responding design point for different values of the vertical applied

load PS �i.e., safety factor F= Pu / PS� varying from small values

up to the deterministic ultimate load. The cases of correlated

��c,�=−0.5� and uncorrelated ��c,�=0� shear strength parameters

are considered.

The reliability index decreases with the increase of the applied

load PS �i.e., the decrease of the safety factor F= Pu / PS� until it

vanishes for an applied load equal to the deterministic ultimate

load. This case corresponds to a deterministic state of failure for

which F=1 using the mean values of the random variables and

the failure probability is equal to 50%. The comparison of the

results of correlated variables with those of uncorrelated variables

shows that the reliability index corresponding to uncorrelated

variables is smaller than the one of negatively correlated vari-

ables. One can conclude that the hypothesis of uncorrelated shear

strength parameters is conservative in comparison to the one of

negatively correlated parameters. For instance, when the safety

factor is equal to 3.2 �i.e., PS=750 kN /m�, the reliability index

increases by 32% if the variables c and � are considered as nega-

tively correlated.

The values of the design points corresponding to different val-

ues of the vertical applied load can give an idea about the partial

safety factors of each of the strength parameters c and tan � as

follows

Fc =
�c

c* �11�

F� =
tan����

tan �* �12�

Table 2 shows that for uncorrelated shear strength parameters, the

values of c* and �* at the design point are smaller than their

respective mean values and increase with the increase of the ap-

plied load. Consequently, the partial safety factors Fc and F� de-

crease with the increase of the applied load. They tend to 1 when

PS= Pu. For negatively correlated shear strength parameters, c*

slightly exceeds the mean for some values of the applied load.

This can be explained by the counterclockwise rotation of the

dispersion ellipse due to the negative correlation �Fig. 8�. The

position of the design point, which is the point of tangency be-

tween the ellipse and the limit state surface, changes from that

found for uncorrelated soil shear strength parameters. A higher c*

�respectively, a lower �*� is found. Consequently, c* can become

greater than the mean value for a negative correlation. This con-

Table 2. Reliability Index and Design Point for Uncorrelated and Correlated Shear Strength Parameters

�c,�=0.0 �c,�=−0.5

PS

�kN/m� F

c*

�kPa�

�*

�°� �HL Fc F�

c*

�kPa�

�*

�°� �HL Fc F�

750 3.19 14.12 20.86 3.49 1.42 1.52 17.08 19.34 4.62 1.17 1.64

1,150 2.08 16.30 24.27 2.12 1.23 1.28 18.26 23.08 2.71 1.10 1.35

1,550 1.54 17.90 26.61 1.21 1.12 1.15 18.64 26.43 1.53 1.07 1.16

1,780 1.35 18.52 27.71 0.81 1.08 1.10 20.04 27.22 1.00 0.99 1.12

1,950 1.23 18.89 28.45 0.55 1.06 1.07 19.92 28.14 0.67 1.00 1.08

2,395 1.00 19.61 30.00 0.00 1.01 1.00 19.61 30.00 0.00 1.01 1.00

Fig. 8. General layout of dispersion ellipse for different correlation

coefficients
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clusion is similar to that found by Youssef Abdel Massih et al.

�2008�.

Sensitivity of Failure Probability to Variability of Soil
Shear Strength Parameters

In order to study the effect of the variability of the soil shear

strength parameters on the failure probability, Fig. 9 shows the

FORM failure probability versus the coefficient of variation of c

and �. For each curve, the coefficient of variation of a parameter

is held to the same constant value given in the introduction of the

section “Numerical Results” and the coefficient of variation of the

second parameter is varied over the range 10–40%. The results

show that the failure probability is highly influenced by the coef-

ficient of variation of the angle of internal friction; the greater the

scatter in � the higher the failure probability of the foundation.

This means that the accurate determination of the distribution of

this parameter is very important in obtaining reliable probabilistic

results. In contrast, the coefficient of variation of c does not sig-

nificantly affect the failure probability.

Serviceability Limit State

Reliability Index and Design Point

The threshold value of the settlement is umax=0.1 m. Table 3 pre-

sents the Hasofer–Lind reliability index and the corresponding

design point for different values of the vertical applied load PS.

The cases of correlated and uncorrelated soil elastic properties are

considered. The reliability index decreases with the increase of

the applied load PS. A comparison of the results of correlated soil

elastic properties with those of uncorrelated ones shows that, as in

the ultimate limit state, the hypothesis of uncorrelated soil elastic

properties is conservative in comparison to the one of negatively

correlated properties.

By comparing Tables 2 and 3, one can notice that for small

values of the applied load, the reliability index of the ultimate

limit state is significantly smaller than that of the serviceability

limit state. Thus, for small values of the applied load, the ultimate

failure mode is predominant and will have the highest contribu-

tion in the determination of the system failure probability. The

difference between the reliability indexes of the two failure

modes becomes smaller for higher values of the applied load.

Consequently, when the applied load increases, the two failure

modes �i.e., the ultimate and the serviceability ones� will have

nearly similar contributions in the computation of the system fail-

ure probability �see another interpretation in the section “System

Failure Probability”�.

As for the ultimate limit state, the values of the design point

allow us to calculate the partial safety factors of E and � as

follows

FE =
�E

E* �13�

F� =
��

�* �14�

Table 3 shows that for uncorrelated soil elastic properties, the

partial safety factors FE and F� decrease with the increase of PS.

They become equal to 1 when PS is equal to the load that leads to

the maximal prescribed foundation settlement umax for the mean

values of the soil elastic properties. For negatively correlated soil

elastic properties, F� is found smaller than 1. The same interpre-

tation given in the ultimate limit state for negatively correlated

variables remains valid in the present case.

Sensitivity of Failure Probability to Variability of Soil
Elastic Properties

As for the ultimate limit state, the effect of the variability of the

soil elastic properties on the failure probability is shown in Fig.

10 where FORM failure probability is plotted versus the coeffi-

cient of variation of E and �. For each curve, the coefficient of

variation of a parameter is held to the same constant value given

in the introduction of the section “Numerical Results” and the

coefficient of variation of the second parameter is varied over the

range 5–35%. The results show that the failure probability of the

serviceability limit state is highly influenced by the coefficient of

variation of the Young’s modulus; the greater the scatter in E the

higher the failure probability of the foundation. This means that

an accurate determination of the distribution of this parameter is

very important in obtaining reliable probabilistic results. In con-

Fig. 9. Effect of variability of soil shear strength parameters on fail-

ure probability

Table 3. Reliability Index and Design Point for Uncorrelated and Correlated Soil Elastic Properties

�E,�=0.0 �E,�=−0.5

PS

�kN/m�

E*

�MPa� �* �HL FE F�

E*

�MPa� �* �HL FE F�

750 19.42 0.280 7.60 3.10 1.07 16.57 0.337 8.80 3.62 0.89

1,150 33.71 0.288 3.87 1.78 1.04 31.06 0.319 4.46 1.93 0.94

1,550 49.75 0.296 1.21 1.21 1.01 48.37 0.306 1.41 1.24 0.98

1,780 59.33 0.300 0.00 1.01 1.00 59.33 0.300 0.00 1.01 1.00
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trast, compared to E, the uncertainties in � have a minor effect on

the failure probability.

System Failure Probability

The system failure probability under the two failure modes in-

volving the ultimate and the serviceability limit states of the foot-

ing is given by

P fsys
= P f�U � S� = P f�U� + P f�S� − P f�U � S� �15�

where P f�U�S��failure probability under the ultimate and the

serviceability failure modes; P f�U��failure probability under

only the ultimate failure mode; and P f�S��failure probability

under only the serviceability failure mode. The failure probability

of the intersection is given as follows �Lemaire 2005�

max�P�A�,P�B�� � P f�P � S� � P�A� + P�B� �16�

where

P�A� = 
�− �U�

−
�S − �US�U

�1 − �US
2 � �17�

P�B� = 
�− �S�

−
�U − �US�S

�1 − �US
2 � �18�

�US = ��U
��S� �19�

�U and �S�reliability indexes corresponding to the ultimate and

the serviceability failure modes, respectively, and �US�cor-

relation between the two failure modes. �U and �S for both modes

are given by

�Ui
= − � ��U

�uUi

�
�u

ui

* �

= −
uUi

*

�U

�20�

�Si
= − � ��S

�uSi

�
�u

si

*�

= −
uSi

*

�S

�21�

where uUi

* and uSi

* �standard uncorrelated normal variables at the

design points �see Eqs. �7� and �8��. Here, it was found that �US

=0 since the two failure modes are independent.

The probability of the intersection P f�U�S� is set equal to its

lower limit �i.e., max�P�A� , P�B��� in order to obtain the higher

limit of the system failure probability P fsys
.

The system reliability index can be approximated using the

FORM approximation as follows

�sys = − 
−1�P fsys� �22�

Table 4 presents the system failure probability P fsys and the cor-

responding reliability index �sys for different values of the applied

load. Four cases are considered: They are the combinations of

correlated and uncorrelated shear strength parameters with corre-

lated and uncorrelated soil elastic properties. From this table, it

can be seen that even for the system reliability, the assumption of

uncorrelated parameters is conservative in comparison to the one

of negatively correlated variables. For small values of the applied

load, where the ultimate failure mode is predominant, one can

notice that the system reliability index is equal to the reliability

index of the ultimate failure mode. When the applied load in-

creases, the system reliability depends on both failure modes and

the system reliability index is smaller than the ones corresponding

to a single failure mode. Finally, one can notice that a negative

system reliability index is found for an applied load of

1,780 kN /m corresponding to the deterministic failure state of the

serviceability mode. This corresponds to a system failure prob-

ability higher than 50% �i.e., higher than the one corresponding to

a zero reliability index�. This value is due to the combination of

the failure probability of the serviceability limit state �i.e., 50%�

and the one of the ultimate limit sate. In this case, the system

reliability index is meaningless.

Conclusions

A reliability-based analysis of a strip footing resting on a c−�

soil and subjected to a central vertical load is presented. Both the

ultimate and the serviceability limit states are used to characterize

the footing behavior. Two deterministic models based on numeri-

Fig. 10. Effect of variability of soil elastic properties on failure

probability

Table 4. System Failure Probability and Reliability Index

�c,�=0.0

�E,�=0.0

�c,�=−0.5

�E,�=−0.5

�c,�=−0.5

�E,�=0.0

�c,�=0.0

�E,�=−0.5

PS

�kN/m�

P fsys

�%� �sys

P fsys

�%� �sys

P fsys

�%� �sys

P fsys

�%� �sys

750 0.02 3.49 2.00�10−4 4.62 2.00�10−4 4.62 0.02 3.49

1,150 1.70 2.12 0.34 2.71 0.34 2.70 1.70 2.12

1,550 21.30 0.79 13.70 1.09 16.90 0.96 18.30 0.90

1,780 60.45 −0.26 57.93 −0.20 57.93 −0.20 60.45 −0.26
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cal simulations using the Lagrangian explicit finite difference

code FLAC3D are employed. The first one computes the ultimate

bearing capacity of the foundation and the second one calculates

the footing displacement due to an applied service load. The

Hasofer–Lind reliability index is adopted here for the assessment

of the foundation reliability. The response surface methodology is

used to find an approximation of the analytically unknown limit

state surfaces and the corresponding reliability indexes. Only the

soil shear strength parameters are considered as random variables

while studying the ultimate limit state. Also, the randomness of

only the soil elastic properties is taken into account in the service-

ability limit state. The main conclusions of this paper can be

summarized as follows:

1. The hypothesis of uncorrelated parameters was found to be

conservative in comparison to the one of negatively corre-

lated variables;

2. For uncorrelated shear strength parameters, the values of c*

and �* at the design point are found smaller than their re-

spective mean values and increase with the increase of the

applied load PS. Consequently, the partial safety factors Fc

and F� decrease with the increase of the applied load. They

tend to 1 when PS= Pu. For negatively correlated shear

strength parameters, c* slightly exceeds the mean for some

values of the applied load;

3. For uncorrelated soil elastic properties, the partial safety fac-

tors FE and F� decrease with the increase of PS. They tend to

1 when PS is equal to the load that leads to the maximal

prescribed foundation settlement umax for the mean values of

the soil elastic properties. For negatively correlated soil elas-

tic properties, F� is found smaller than 1;

4. The failure probability is found to be highly influenced by

the uncertainties of the angle of internal friction for the ulti-

mate limit state and by those of the Young’s modulus for the

serviceability limit state; and

5. For small values of the applied load, the ultimate limit state

is predominant in the computation of the system failure prob-

ability. Consequently, the system reliability index is found

equal to that of the ultimate limit state. For higher values of

the applied load, the system reliability index depends on both

limit states. It is smaller than the ones corresponding to a

single failure mode. Thus, both failure modes have to be

considered in the reliability analysis of foundations for high

values of the applied load.
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