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By detecting and identifying degradation mechanisms, diagnostic tools are essential in 

avoiding premature ageing of PEM Fuel Cells. Indeed, the diagnosis of hazardous situations 

ensures the optimal management of operating conditions. This paper proposes several 

guidelines for choosing, designing and applying diagnostic tools for PEMFCs, focussing on 

developing objective criteria allowing an actual validation of the results. At the conceptual 

stage, methods to ensure the database representativeness of different degrees of flooding 

and drying, two typical faults in the PEM fuel cell, are discussed, and simple equations are 

given to estimate the relative humidity in the stack under applied operating condition. 

After the diagnostic tool has been realised, indicators to evaluate fault diagnosis perfor-

mances are proposed. Implementation ability may be evaluated by cost criteria, which 

include equipment, consumed energy and consumed time. This paper demonstrates that a 

practical comparison of diagnosis methods is possible and provides new perspectives for 

establishing a benchmark in the diagnosis of fuel cells.

Introduction

Fuel cells convert the reactant’s chemical energy directly into

electrical and thermal energy with high efficiency and good

environmental compatibility. In particular, the Polymer

Electrolyte Membrane Fuel Cell (PEMFC) technology is

appropriate for small-scale power generation applications

[10 We100 kW] e including transportation and household

applications e because of its low operating temperature

range (60e80 �C). To be competitive, Fuel Cells must be able

to match or outperform conventional devices in cost, dura-

bility, performance and reliability. These aspects can be

greatly improved by optimising operating conditions, which

prevent irreversible damages to the fuel cell. To reach this

goal, operation of fuel cells has to be managed by advanced

methods of supervision, and more generally by Prognostics

and Health Management (PHM). PHM is a new area of science

that proposes methods to:

� Assess the State of Health of a Fuel Cell (State of Health e

SoH),
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� Predict its Remaining Useful Life (RUL),

� Decide from mitigation/control actions for mission

achievement.

In a Prognostic and Health Management (PHM) approach,

monitoring data collected during normal operations are used

during maintenance. This approach is based on The State of

Health diagnosis, which identifies and isolates different faults

that may accelerate the ageing process of the fuel cell stack

during normal operations. In that sense, faults such as

flooding, drying and CO poisoning are considered during SoH

diagnosis. The Prognostic goes further by predicting the

Remaining Useful Life. Then, various recommendations,

maintenance actions or corrective actions on the control

system can be made. The accuracy of the results of the PHM

approach is closely linked to SoH diagnosis.

SoH diagnosis aims at determining the cause of the prob-

lems that will lead to durability reduction. Developing a

diagnostic tool includes several stages, beginning with data

acquisition and progressing to data treatment, fault detection

and classification. In the data acquisition stage, instrumen-

tation must be as non-intrusive as possible. Active data

acquisition, which requires the generation of an excitation

signal (e.g., Electrochemical Impedance Spectrometry e EIS),

can also be distinguished from non-active methods that do

not require specific tests. Data treatment aims at extracting

and selecting features that enable characterising the behav-

iour of the Fuel Cells. Numerous techniques have been used,

such as EIS [1e12], temporal approaches [13e28] and time-

frequencies [29e32]. A review of these methods for water

management is available in Ref. [33]. At this stage, measure-

ments are organised in features characterising defaults and

form the reference database.

Fault detection and classification are the search techniques

that transform the database to make the final diagnosis de-

cision. Fault detection compares on-line data with expected

values to detect abnormal behaviour. Two main approaches

have been developed. The first is the model-based method of

fault detection, which uses dynamic process models. The

model may be based on theoretical analytical relationships

but also on neural networks, fuzzy logic [34] or statistical

methods [34e38]. Model-based methods rely on parameter

estimation, parity equations or state observers [39]. The sec-

ond class is signal-based approaches, which were also devel-

oped in Refs. [29e32,40]. Their main advantage is their high

robustness whenever considering different types of fuel cell

stacks. Regardless of the approach, the goal is to generate

several residuals indicating the difference between nominal

and faulty statuses. Based on these different residuals, fault

diagnosis procedures follow, determining the cause of the

fault by applying classification or inference methods [41].

Classification aims to automatically interpret the detection

results and to suggest fault cases.

Previous studies devoted to diagnostic methodology com-

parison are very scarce. Cooper and Smith [42] compared

several methods of data acquisition and treatment: current

interrupt, High Frequency Resistance (HFR) and Electro-

chemical Impedance Spectroscopy (EIS). The estimated ohmic

resistances differ from 10 to 30% according to the method

used, which exceeds that which is reasonably accounted for

by measurement error. Petrone et al. [34] reviewed model-

based methodologies for PEMFCs. The comparisons focus on

the advantages and drawbacks of the type of model (white-

box, grey box and black-box) to aid in developing a suitable

diagnostic tool. These studies compare the methods them-

selves and do not use external standards to establish the best

method for operational readiness. The development of a

diagnostic tool will only be completed after making sure that

the tool is operational. These standards would aim to

determine:

� Diagnostic performances: validation of the results ob-

tained by the classification algorithm must be performed;

� Genericness, repeatability and reproducibility: the diag-

nostic tool should detect faults for all stacks and not only

the one used for the tool design. This is a highly complex

and challenging task without which the diagnostic tool is

not operational. Repeatability and reproducibility of diag-

nostic results rely essentially on the database representa-

tiveness, which is a challenge partly due to the large variety

of stacks coming from different suppliers (with different

sizes, power levels and materials). Genericness requires a

precise definition of defaults, and even default quantifica-

tion when it is possible.

Once the diagnostic tool is tuned, implementation must be

economically worthwhile. Thus, for mass production, instru-

mentation must be inexpensive and the testing phases dedi-

cated to diagnosis must not require too much energy or time

consumption.

With these goals in mind, all of the stages involved in the

design of diagnostic tools shall be reviewed to find out how to

establish standards. This paper suggests appropriate solu-

tions to today’s state-of-the-art diagnostic tools of fuel cells.

Section 2 below introduces the different fault diagnostic

approaches, highlighting the link between dataset and

computational methods. Section 3 presents the proposed

approach, which is separated into three subsections: the first

addresses reference database generation, the second with

evaluation of fault detection and classification performances

and the third with implementation aspects. Section 4 illus-

trates the approach on an example of a diagnostic study [38].

This paper does not pretend to be a review but aims to

rationalise and reinterpret previously published results con-

cerning fuel cell diagnosis areas. The topic is intentionally

limited to water management (drying and flooding). However,

generalisation is straightforward.

An overview of fault diagnosis approaches

Features of flooded and dried fuel cells

A fuel cell is composed of many single cells that are grouped

together to form a fuel cell stack. Each single cell contains an

anode, a cathode and an electrolyte layer (a polymer mem-

brane when considering PEM fuel cells). The stack is fed by

reactive gases (hydrogen and oxygen or air) through bipolar

plates containing channels. When a hydrogen-rich fuel enters

the fuel cell stack, it reacts electrochemically with oxygen
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(mostly coming from ambient air) to produce electricity, heat

and water. Hydrogen fuel is processed at the anode where

electrons are separated from protons on the surface of a

platinum-based catalyst. The protons pass through the

membrane to the cathode side of the cell while the electrons

travel in an external circuit. Protons are able to cross the

membrane only if attached to water molecules. On the cath-

ode side, another precious metal electrode combines the

protons and electrons with oxygen to produce water, which is

expelled as the only waste product. The stack is considered as

floodedwhen liquidwater blocks the flow channels and/or the

pores of the Gas Diffusion Electrodes (GDE), reducing the

catalyst active sites, and thus leading to voltage drop. The

dehydration state of the membrane (called also “drying”) will

limit proton migration from the anode to the cathode side,

leading equally to a voltage drop. Flooding and drying are

important limiting factors of PEM fuel cell performance.Water

management is thus essential to ensure proper operation of

the PEM fuel cells. More details on voltage degradation asso-

ciated with water management can be found in Ref. [33].

The polarisation curve characterises fuel cell static per-

formances. Fig. 1 shows fuel cell polarisation curves that were

recorded on a 150 cm2 six-cell air/H2 PEM fuel cell [2]. The fuel

cell was operating under nominal, flooded and dried condi-

tions obtained by modifying the inlet gas relative humidity.

Fig. 1 shows that for currents above 200mA cm�2, a faulty fuel

cell operates at a significantly lower voltage than a healthy

one. However, it seems almost impossible to tell which of the

two failures caused the voltage drop: for a given current,

excessive drying or flooding of the fuel cell can lead to the

same voltage, as seen here in Fig. 1, where the “flooded” and

“dry” polarisation curves are almost superimposed.

Methods based on polarisation curve allow for the detec-

tion of faults but have significant limitations for diagnostic

purposes. Indeed, on one hand, a quasi-steady state experi-

ment is needed, which is an important constraint; on the

other hand, isolating the cause of the fault is not always

possible.

Electrochemical Impedance Spectroscopy (EIS) is a non-

invasive method that consists of applying a small alternative

perturbation, for which the amplitude, phase and frequency

are known. For the full impedance spectrum, the disturbance

must be repeated at different frequencies. A comparison of

the impedance response for a normal, flooded and dried cell is

shown in Fig. 2 [4]. The experimentation has been carried out

on a 10 cm2 single cell. To ensure consistency and repeat-

ability of the experiments, operating parameters are kept

constant (gas flows, pressure, humidity, cell current). To

create flooding in the cell, the humidifier temperature was

maintained at approximately 40 �C or higher than the cell

temperature, whereas the cell temperature was then main-

tained at approximately 40 �C or higher than the humidifier to

create drying. Frequencies ranging from 0.1 Hz to 1 kHz, with

10 measurement points per decade, were used for all of these

spectra. Inductive behaviour from the wires was predominant

above 1 kHz, while instability of the system led to highly

irreproducible results below 0.1 Hz. The impedance spectrum

of the normal and flooding states contains 1 semicircle, which

corresponds to the cathode side, anode impedance being

negligible. During the flooding process, both the real and

imaginary parts of the cell impedance increase as the liquid

water accumulation in the cathode side increases. However,

the shape (semicircle) of the impedance response remains

almost the same, with the exception of increased diameter

and a slight shift to the right. The drying state therefore con-

tains 2 semicircles, showing an increase of the impedance at

the anode side, which makes it different from the flooding

fault. Thus, unlike polarisation curves, each impedance

spectrum exhibits its specific shape or feature with respect to

flooding or drying of the fuel cell [1,8].

Fig. 1 e Measured polarisation curves for a stack operating

under flooded, dried and nominal conditions [2].

Fig. 2 e Impedance response of a normal, flooded, and

dried cell [4].

Fig. 3 e Mean cell voltage of a fuel cell in flooded, normal

and dried conditions [2].
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Fig. 3 shows the mean cell voltage of a 150 cm2 six-cell air/

H2 stack during a 5-h experiment, during which the stack was

successively operated in flooded, nominal and dried condi-

tions [2]. The DC current was kept constant for the duration of

the test, to ensure that the State of Health (SoH) of the fuel cell

is solely responsible for the voltage variation. As seen in Fig. 3,

there are no obvious methods of diagnosing the State of

Health of the stack from its voltage. For a given current,

flooded and dried conditions can lead to the same voltage drop

[2]. However, some recent studies do not use exactly the

voltage, but the electrochemical noise voltage. There are time-

frequency methods, such as Power Spectral Densities (PSD)

[30,31] or FFT [29], or evenwavelets [32], that are considered as

very promising for real-time diagnosis of fuel cell stacks.

An alternative is to use the variations of the current in

operation (Fig. 4) [13,15]. Dynamics are then assumed to be

sufficient to extract data on the hydration state of the stack.

Diagnosis methods can also generate their own dynamics on

the stack, such as current interruption [23] or current steps

[19]. In these instances, the flooding or drying state of the fuel

cell cannot be directly characterised, and processing of the

data is necessary.

Consequences on diagnostic methods

Fault detection is based on the fact that “normal state”,

“flooding state” and “drying state” show specific features,

which constitute the reference database. This reference

database is compared with the data to be tested. Feature

extraction may consist of estimating a distance between the

data to be tested and the reference curve of each state.

Another approach is to establish one or more models repro-

ducing the observed behaviour. Features to be extracted are

then the model parameters, which are estimated. Classifica-

tion can then be performed based either on estimated or

parameter distances. Expanding the method to other faults,

such as CO poisoning, is based on the search for new specific

features based on EIS or polarisation curves [5,7,10]. Adding

new measurements [20], proposes to also use pressure oscil-

lations in addition to voltage oscillations. EIS methods may

also be extended to maintenance strategies [44] or estimation

of ageing time [45].

Diagnostic methods using mean voltage must use an

additional source of information, forwhich pressure dropmay

be a useful selection [14,29]. Fault detection using several

types of measurements is based on residual thresholds: the

difference between the measurements and the reference

database is compared with a threshold. Expansion of the

method to include fault sensing or process failures, which are

detectable by other specific measurements, is thus straight-

forward. This approach is therefore suitable for use in a fault-

tolerant control structure. Approaches using noise measure-

ments lead to time-frequency signal-based approaches, such

as Power Spectral Density or wavelets, which are under

development, and their appeal will lie in their ability to handle

both water management and ageing problems.

Diagnostic methods based on a time voltage signal allow

for taking into account the different operating phases (start-

ing, transient, steady-state). The challenge is to detect de-

faults during very short transient periods. Diagnosticmethods

may then be based on a model, which can be established on

various concepts [34], such as statistics, fuzzy logic or

knowledge of the physical or electrical phenomena. The

advantage is that model-based methods are ready to be used

by the control strategy [39]. The efficiency of these methods is

completely dependent on the relevance and reliability of

Fig. 4 e Evolution of the current demand (derived from the vehicle real speed) [43].
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established models. In addition, the extension of this

approach to ageing is linked to the development of dynamic

models of ageing, which are currently underdeveloped.

Proposed approach

Collecting data is the first step when developing a diagnosis

method. Taking care of the way data are collected is very

important because accuracy and reliability of diagnostic tools

are closely linked to the quality of the database. However, it is

equally the most difficult point. For that reason, this section

deals first with the ways to generate a representative

database.

Fault database relevance criteria

Repeatability of experiments is a classical challenge: the same

experiments led on different fuel cells or test benches yield

different results. This is why it is believed that only a single

database would allow for the comparison of methods, but

then genericness of the diagnostic tool would be lost. Here, the

opposite idea is explored: criteria allowing for the comparison

of experiments are proposed.

Test range of the stack

Checking the variation range of the operating parameters

used for the tests is easy to establish. In addition, it provides a

basis for comparing database representativeness. Two criteria

on the operating parameters are proposed: the experimental

relative variations with respect to the operating point, and the

rate of experimental range on the manufacturing range.

The relative variations of the manipulated parameters

with respect to the operating point can always be estimated.

The influencing parameters are current density (j), stack

temperature (T), anode overstoichiometry (la), cathode over-

stoichiometry (lc) and relative humidity at anode and cathode

(F) and pressure (P). Their relative variations are then:

Dx

x

�

�

�

�

min;Exp

¼
xmin;Exp � xref

xref
(1)

Dx

x

�

�

�

�

max;Exp

¼
xmax;Exp � xref

xref
(2)

where x is one of the parameters [j, T, la, lc, F, P], xref is the

reference value at the operating point, xmin,Exp is the minimal

value taken in the whole experiment and xmax,Exp is the

maximal value taken in the whole experiment.

The manufacturer of a fuel cell also gives the operating

range of the parameters, thus another criteria may be esti-

mated. The rate of the experimental range on the

manufacturing one is:

DxExp

DxMan
¼

xmax;Exp � xmin;Exp

xmax;Man � xmin;Man
(3)

where xmin,Man is the minimal value given by the manufac-

turer and xmax,Man is the maximal value.

Ideally, this ratio should be equal to one, but this is never

the case. The reason is that all combinations of the parameter

values are not necessarily achievable or are avoided: theymay

lead to an instability of the stack’s behaviour or to premature

ageing of the stack. Stack durability may be affected by low

amplitudes of the excitation signal (when establishing a

polarisation curve or impedance spectroscopy spectrum) or by

rougher solicitations (such as a current step, for example). As

far as we know, there is no method for anticipating the effect

of a combination of parameter values on the stack. Only M.A.

Riascos and D.D. Peireira [48] suggested an empirical equation

on temperature limitations with respect to other operating

parameters. This is an important research area that should be

developed.

One consequence is that the ranges of the operating pa-

rameters effectively used are known only after experimenta-

tion. Thus, establishing the database by means of

experimental designs [49], which scan all the available ranges

of parameters, is not suitable, and so this method is progres-

sively set aside. In order to perform a correct experimentation,

the operating parameter values have to be increased accord-

ing to a small step defined by the user. The important thing is

to create flooding and drying defaults. However, if the previ-

ous criteria are easy to establish, quantifying the degrees of

these defaults is more difficult.

Evaluation of the degrees of flooding and drying

Flooding and drying conditions are continuously varying de-

grees of humidity in the stack and are the results of two

opposite mechanisms: water formation and water extraction.

Water balance depends on [50]: (i) the water carried inside and

outside the fuel cell by the humidified reactant gases, (ii) the

water generated by the electrochemical reaction at the cath-

ode, (iii) the water carried by the protons that are transported

through the membrane (electro-osmotic drag) and (iv) the

water carried by diffusion caused by water gradient concen-

tration (often occurring from cathode to anode, called back-

diffusion). The net amount of water transported across the

membrane is the result of the last two processes directed in

opposite directions.

Improper water management can lead to membrane

dehydration caused by anode side drying or electrode flood-

ing. Dehydration of the membrane is more likely to occur at

high stoichiometry and high temperature. The general

consensus is that water flooding is more prone to occur at the

cathode than at the anode. Flooding occurs not only in the

porous electrodes themselves but in the gas flow channels of

the flow field as well, depending on the interplay between the

properties and the engineering of those components and the

operating conditions. More details can be found in Ref. [50].

These mechanisms are influenced directly by each operating

condition [51].

Table 1 shows the influence that the modification from the

optimal point of a single parameter has on the accumulation

or the discharge of the water. To create flooding or drying

defaults, only one parameter can be changed, such as, for

example, increasing or decreasing the relative humidity at the

cathode. This is a simple way to establish the database and

ensures the progressiveness of the degrees of flooding or

drying. However, these experiments are most likely not truly

representative of normal operating conditions.

In Table 1, each operating parameter is supposed to be

changed one by one, but they are in fact deeply correlated, and
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a change in one operating parameter may affect others.

Equations (4)e(6) below highlight the interactions between the

parameters. Current density (j) directly generates water by the

electrochemical reaction at the cathode. It should also be

noticed that the cathode supplied with air, rather than with

pure oxygen, will encourage the rate of water removal. Tem-

perature (T) influences the kinetics of the electrochemical

half-reactions and, therefore, a high temperature induces the

formation of water during the reduction of oxygen at the

cathode. They are linked by the Butler-Volmer equation:

j ¼ j0

�

exp

�

ð1� aÞ
nFh

RT

�

� exp

�

� a
nFh

RT

��

(4)

where j0 is the exchange current density (A/m2), a the charge

transfer coefficient, n the number of electrons involved in the

electrode reaction, F the Faraday’s constant (96484C/eq.), h the

activation overpotential, R the universal gas constant (8.3144 J/

Kmol) and T the absolute temperature (K).

However, the saturation pressure of the gas increases

severely with temperature, and a low temperature will facili-

tate the formation of water by condensation. The expression

below describes the effect of temperature on saturation

pressure:

Psat ¼ exp

�

23:1961�
3816:44
T� 46:13

�

(5)

Raising the pressure increases the stack performance

(higher current for the same power). It also affects the pres-

ence of water; a high pressure will induce condensation of the

water that occurs when:

Pw > Psat (6)

where Pw is the partial pressure of water.

These equations show that choosing operating parameters

to create the defaults is not an easy task. Establishing a

quantitative criterion of default degrees of flooding and drying

should thus be extremely useful. The judicious use of very

simple laws and balance equations may help in estimating

slight increases or decreases in the amount of water. Models

based on static macroscopic balances were developed to es-

timate the amount of water in the membrane [25,40]. These

models aim to handle water management by control strate-

gies and need to be validated. An interesting point would be to

determine, before experimentation, which parts of the stack,

such as electrodes or channels, are affected.

However, with very simple relations, water flows can be

approximated using only a few parameters [52]: stack voltage,

current, the number of electrons involved in the electrode

reaction and air stoichiometry. Thus, considering the homo-

geneous concentrations in the fuel cell, the partial water

balance at the cathode can be written as:

Fin
w � Fout

w � awFprod þ Fprod ¼ 0 (7)

aw ¼
transfered waterC/A

produced water
(8)

where Fin
w is the water flow input, Fout

w the water flow output,

Fprod the water flow produced at the cathode and aW the

partition coefficient of water produced at the cathode that is

transferred to the anode.

The variation of overstoichiometry coefficients (l) impacts

the mass balance in the stack. Indeed, a strong flow of dry gas

(high stoichiometry) encourages the dragging of water out of

the fuel cell, which will change the partition coefficient aw.

Thus, Foutw can be deduced from Equation (7) and be used to

quantify the amount of water in the fuel cell.

For example, for dry gas supply ðFinw ¼ 0Þ and no water

partition (aW ¼ 0), partial water balance Equation (7) becomes

Foutw ¼ Fprod. It gives the relative humidity in the cathode

compartment, according to Fig. 5. The correct relative hu-

midity (F) is between 80% and 100%. It can be noticed that

extra humidification is essential when relative humidity is

less than 80%, which occurs at high temperatures and high air

stoichiometry. The influence of air stoichiometry at a constant

temperature is also noticeable.

Being able to estimate the relative humidity, the ex-

periments can be classified according to quantified degrees

of flooding and drying. To combine the operating param-

eters, the use of fault trees [53,54] should be a relevant

solution.

Once the reference database is achieved, it has to be

separated into two parts: one to be used for the diagnostic tool

development and the other to test the diagnostic tool. Repre-

sentativeness of faults is important for the part of the data-

base used for development of the tool. The part used for tests

has to be relevant enough to allow for the evaluation of the

performances of the diagnostic tool.
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Fig. 5 e Relative humidity at the cathode depending on the

operating temperature and the overstoichiometry

coefficient (l).

Table 1 e Independent influence of operating parameters 

in water content in the fuel cell.

Water
content

j T la lc Fa Fc Pa

Increase [ Y Y Y [ [ [

Decrease Y [ [ [ Y Y Y

j is the current density, T is the stack temperature, la is the anode

overstoichiometry, lc is the cathode overstoichiometry, F is the

relative humidity and P is the pressure (a: at anode side, c: at

cathode side).

[ upper optimal point, Y lower optimal point.
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Classification and result performances

To identify the various steps from measurements to final

diagnosis use, the diagnostic stages are summarised in Fig. 6:

(i) feature selection and extraction; (ii) fault detection, which

includes model-based or signal-based approaches; (iii) classi-

fication: the faults to be detected are gathered into classes

with specific algorithms; (iv) results validation: evaluation of

the accuracy of diagnostic results and (vi) results interpreta-

tion, which aims to verify that diagnosis is meaningful and

useful, such as for alarm, prognostic or integration in fault-

tolerant control.

In data treatment and fault detectionmethods, the delicate

points to eventually take into account are the computation

time and the size of the database required. Comparative

studies of various approaches have already been assessed in

the literature [33,34] and are not considered here. Classifica-

tion and diagnosis validation will now be discussed.

Determination of defect classes

Classification consists of clustering the data into classes that

share the same default. The classes are usually defined by an

expert. For fuel cell diagnosis, “flooding” and “drying” repre-

sent two classes corresponding to the same phenomenon (the

amount of water). Other defaults may be detected: CO-

degradation or poisoning has sometimes been included

[5,16,24]. Most often, only three classes are used: “normal”,

“flooding” and “drying” [8]. However, S. Wasterlain [38]

retained 5 classes: moderated drying, minor drying, light

flooding, minor flooding and moderated flooding. Further-

more [21], distinguished the anode from the cathode [25], the

amount of water in the membrane and in the electrodes.

Because the effects of flooding and the drying out of the

stack are continuous in nature, the frontiers and the number

of the classes are arbitrarily chosen. Some algorithms (K-

means for example) are, however, able to define andmove the

frontiers. However, the number and limits of the classes will

give the final interpretation of the diagnostic system delivered

to the user. Interest lies in detecting the default early enough

to assess the State of Health, predicting its Remaining Useful

Life or deciding on control actions. The link has not been

established yet, and disposing of quantitative degrees of de-

faults as proposed in the previous section would considerably

simplify this task.

Classification algorithms

Classification, or clustering, is a method of data analysis

where algorithms are used to gather the new data into classes.

A multitude of methods are proposed in the literature and

may be viewed from different perspectives. Two viewpoints

are presented here: one based on fundamental theoretical

concepts and the other on the method to form classes.

The theory and fundamental concepts on which classifi-

cation is based are [55]:

- Statistical analysis. The similarity between measures are

used to partition data [16,26,36,38].

- Fuzzy techniques. The features of the database can be clas-

sified to more than one class. This type of algorithms

handles the uncertainty of real data [18,43].

- Crisp considers non-overlapping partitions, meaning that a

feature either belongs to a class or not. Most of the classi-

fication algorithms result in crisp classes. Note that usually

fault detection methods, based on residues determination,

are of the crisp classification type.

- Neural Networks (NN). Neural networks have input and

output nodes. The input layer (input nodes) has a node for

each attribute of the feature, each one connected to every

output node (output layer). Each connection is associated

with a weight, which determines the position of the cor-

responding output node. Thus, according to an algorithm,

which changes the weight’s property, output nodes move

to form classes [6,27].

Methods of classification may also be presented by the al-

gorithms to form classes:

- Partitional classification, which attempts to directly decom-

pose the dataset into a set of disjoint classes. Some algo-

rithms attempt to determine an integer number of

partitions that optimise a certain criterion function. The

optimisation of the criterion function is an iterative pro-

cedure. K-means belong to this type [55].

- Hierarchical classification, which proceeds successively by

either merging smaller classes into larger ones, or by

splitting larger classes. The result of the algorithm is a treeFig. 6 e Steps of the diagnostic process.
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of classes, called a dendrogram, which shows how the

classes are related. By cutting the dendrogram at a desired

level, a classification of the data items into disjoint groups

is obtained [54,56].

- Density-based classification. The key idea is to group neigh-

bouring features of a dataset into classes based on density

conditions.

To evaluate the differences between these methods,

Table 2 provides a comparison for some classical methods of

these algorithms with 3 criteria. Complexity has to be un-

derstood in relation with the database: the processing time of

the K-meansmethod proportionally increases with the size of

the base, while for the other methods, the processing time

increases far more compared with the amount of data. The

input parameters are different for each method. Finally, the

results are different according to each method.

The choice of the algorithm may require complementary

assumptions or expertise. In the context of an online appli-

cation, the computation time associated with the algorithm is

also an important factor. Determining the contribution of a

classification algorithm is a problem in itself. Here, we see that

evaluating the differences between algorithms is a complex

task.

Validation of results

Validation of the results obtained by classification algorithms

is a final and necessary step that evaluates the diagnostic

performances. Until relatively recently, scant attention had

been paid to validation of the results obtained by classification

algorithms, which is now an active research area [57].

Validation of the results falls broadly into three classes [58]:

- External validation. The quality of the algorithm is evaluated

by comparing the resulting classes with those known from

the test database (the true classes). It determines the

quality of the algorithm in regard to recognising existing

groups.

- Relative validation is based on the evaluation of the con-

sistency of the algorithms, comparing the classes ob-

tained by the same algorithm under different conditions.

It determines the quality of the algorithm to generate

meaningful groups. It does not include additional

information,

- Internal validation consists of calculating properties of the

resulting classes, such as compactness, separation and

roundness. This family of techniques is based on the

assumption that the algorithms should search for classes

whose members are close to each other and far from

members of other classes. It determines the quality of the

algorithm in regard to generating an interesting partition.

Internal validation does not require additional information

about the data or repetition of the clustering process.

If the test database has been performed correctly, external

validation is the best choice. Fault diagnostic results can be

easily summarised and classified by building the confusion or

contingency matrix [59]. Table 3 shows the confusion matrix:

columns represent occurring faults and rows represent diag-

nosed faults. Therefore, for a fault f: “a” is the number of

samples assigned to a fault, “b” represents those samples

mistakenly diagnosed as fault f, “c” are all samples that were

not correctly diagnosed as fault f, and “d” evaluates whether

the remaining states are properly not diagnosed as fault f,

which guarantees the overall fault diagnostic performance.

Therefore, the following equations are proposed for

directly evaluating the classification performance indexes

from the confusion matrix.

Precision for fault f can be defined as the ratio of correct

detection to all diagnosed faults

PrecðfÞ ¼
a

aþ b
(9)

Recall for fault f can be defined as the ratio of the diagnosed

faults to all of the actually occurring faults

RecðfÞ ¼
a

aþ c
(10)

The F1 index (widely used in the machine learning area)

combines both precision and recall and is used for evaluating

the general performance of the diagnostic method:

F1 ¼
2� PrecðfÞ � RecðfÞ
PrecðfÞ þ RecðfÞ

(11)

Accuracy, error and global indexes are complementary

indexes to globally evaluate the system classification general

performance. Accuracy represents the percentage of correct

assignments, not only the correctly diagnosed but also the

correctly not occurring and not diagnosed samples. Between

several indices, accuracy is the best replacement for the error

rate: it can be computed quickly and the deviation is small for

more than two classes [58]. Error is the percentage of wrong

assignments and is the accuracy supplementary measure.

They are formally defined as follows:

AccðfÞ ¼
aþ d

aþ bþ cþ d
(12)

Table 2 e Characteristics of classification algorithms from 

Ref. [55].

Method Complexitya Input
parameters

Results

K-means

(partitional)

O(n) Number of

classes

Centre of

classes

DBSCAN

(density-based)

O(nlog n) Classes radius,

minimum

number of

features

Assignment of

data values to

classes

Hierarchical O(n2) Classes radius Assignment of

data values to

classes

a n is the number of points in the dataset.

Table 3 e Confusion or contingency matrix [59].

Diagnosed fault
(predicted class)

Happening fault (true class)

Yes No

Yes a b

No c d

8



ErrorðfÞ ¼
bþ c

aþ bþ cþ d
¼ 1�AccðfÞ (13)

If the true classes from the database are not known, or are

in addition to the above proposed approach, a “silhouette”

index can be determined, which, according to [57], appears to

be efficient. A silhouette is the average, over all classes, of the

silhouette width of their points [58]. If x is a point in the class

Ck and nk is the number of points in Ck, then the silhouette

width of x is defined by the ratio:

SðxÞ ¼
bðxÞ � aðxÞ

max½bðxÞ;aðxÞ�
(14)

where a(x) is the average distance between x and all other

points in Ck,

aðxÞ ¼
1

nk � 1

X

y˛Ck ;ysx

dðx; yÞ (15)

and b(x) is the minimum of the average distances between x

and the points in the other classes,

bðxÞ ¼ min
h¼1.K;hsk

"

1
nh

X

y˛Ck

dðx; yÞ

#

(16)

For a given point, x, the silhouette width ranges from �1

to 1. If the value is close to �1, the point is closer, on average,

to another class than the one to which it belongs. If the value

is close to 1, its average distance to its own class is signifi-

cantly smaller than to any other class. The higher the

silhouette is, the more compact and separated the classes

are. A silhouette has already been applied for fault diagnosis

of fuel cells [61].

Implementation aspects

After having developed a fault diagnostic tool and evaluated

its performances on a relevant database, the last step is to

implement it. Thus, economic viability of the diagnostic tool

should now be considered. Three aspects will be discussed:

time consumption, energy consumption and diagnostic

equipment investment costs. All of these points may poten-

tially lead to modifying a diagnostic method or to preferring

one over the other.

Time-consuming aspects

Time consumption comes both from measurement and al-

gorithm computation time. During these periods of time, the

stack is operating for the diagnostic tool and is unavailable for

the user. This may be an important point depending on the

application, such as with transportation applications.

Measurements for methods using an excitation signal,

such as EIS, are taken in two time periods:

- A stabilisation period, which ensures the stability of the

operating point for each current density applied to the

system. This may take a few seconds, but may be longer

because of the thermal time constant. In laboratory tests,

this period often lasts 20 or 30 min,

- The measurement duration, which may be long for low

frequencies.

The stabilisation period is a very important obstacle for on-

line diagnosis. Furthermore, stabilisation of the stack may

take considerable time, for example, in the event of severe

flooding or drying.

Energy consumption

Energy aspects are directly linked to measurements and may

also be considered. Estimating the energy consumption (E) of

the stack during measurements for diagnostic purposes is

straightforward:

E ¼

Z

T

0

UðtÞIðtÞdt (17)

where U is the instantaneous stack voltage, I the instanta-

neous stack current and T the acquisition time.

Diagnostic tools also need additional equipment for the

fuel cell system. Thus, the system’s energy consumption may

also be estimated and added to the previous calculations.

Material aspects

Developing a diagnostic methodology involves adding mate-

rial dedicated to the diagnostic tool to the fuel cell system,

which is called the diagnostic system. For example, specific

sensors, devices for data acquisition and even a device

providing the solicitation signal may be needed. Fig. 7 shows

the experimental setup needed for the EIS curves of Fig. 2 [4].

To apply a small amplitude of alternative voltage, the fuel cell

has to be excited by a current provided by an AC signal

generator. Thus, the electronic load voltage, regulated in

current, is treated by a frequency analyser. A software license

may also be added (i.e., Labview, dSPACE or Matlab real time).

In such a configuration, the cost is important (more than U.S. $

28,000 or 20 kV).

In the case of diagnosis during maintenance phases, this

material cost may be acceptable. However, the laboratory

material may not be appropriate for real applications. For

example, impedance spectrometers are generally limited in

voltage and current, which does not enable their use for

vehicle or stationary applications during normal operation.

Thus, some technological solutions must be found.

Fig. 7 e Schematic of the experimental setup for EIS,

adapted from Ref. [4].
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Considering mass production, the global cost has to

decrease dramatically. The cost to produce a fuel cell for

automotive industrial production is currently estimated at

U.S. $ 4110 (V 3080) for an 80 kW fuel cell [46]. In the overall

price, the embedded control system is estimated at U.S. $ 300/

225 V, or 7.3% of the total cost. It would therefore be inter-

esting to estimate the additional cost due to the embedded

diagnostic system, which has to be reasonable. Thus, solu-

tions to adapt the material for mass production have to be

found and this is a true area of research.

4. Results and discussion

To illustrate the proposed guidelines, the results of a diag-

nostic study [38] are now considered. This diagnostic tool has

been developed on the basis of Electrochemical Impedance

Spectroscopy (EIS). To analyse the experimental data collected

through Electrochemical Impedance Spectroscopy (EIS) and

diagnose the fuel cell stack behaviour, a probabilistic method

(Bayesian Networks) has been used. Polarisation curves have

been investigated to classify the operating modes. Lastly, a

novel architecture of impedance spectrometer has been

developed for large fuel cell stacks that need high-voltage [62].

Various tests have been performed on different fuel cell stacks

operated under normal and degrading conditions according to

an appropriate experimental design.

4.1. Experimental means

The studied stack is a 20-cell 100 cm2 active area fuel cell

stack. The stack was assembled with commercial per-

fluorosulfonic Membrane-Electrodes Assemblies (MEA)

graphite bipolar plates and electrodes with 100 cm2 areas. The

experiments and EIS measurements have been performed

using a 10 kW test bench developed in-lab.

The operating parameters (current density j, stack tem-

perature T, anode overstoichiometry la, cathode over-

stoichiometry lc, relative humidity F) and their ranges, given

by themanufacturer and used for experimentation, are shown

in Table 4. The experimentally generated operating conditions

were created using a 2-level-fractional experimental design.

To prevent the measurements from suffering the influence of

past events on the fuel cell state, the test protocol provides a

stabilisation time of 30 min after each change of operating

parameters.

The result of the experimental design is that 11 operating

conditions have been retained, and 5 classes have been cho-

sen: moderated drying (2 operating conditions), minor drying

(3 operating conditions), light flooding (1 operating condition),

minor flooding (2 operating conditions) and moderated

flooding (2 operating conditions), for a current density of 0.5 A/

cm2. The global reference database used for algorithm

learning and testing is composed of 231 impedance spectra.

For the Bayesian approach, the database size has an important

impact on the correct and incorrect fault detections. To obtain

an accurate classification with a Bayesian networks approach,

the learning database represents 75% of the experimental

database, and thus approximately 25% is left for the tests (62

impedance spectroscopy spectra).

To achieve the impedance spectroscopy spectra and to

limit the size of the database, only one frequency per decade

has been used: 5 kHz, 500 Hz, 50 Hz, 5 Hz, 775 mHz and

50 mHz.

The test database is made of 68 impedance spectroscopy

spectra:

� 10 experimental impedance spectroscopy spectra of

moderated drying (f1)

� 27 experimental impedance spectroscopy spectra of minor

drying (f2)

� 5 experimental impedance spectroscopy spectra of light

flooding (f3)

� 10 experimental impedance spectroscopy spectra of minor

flooding (f4)

� 10 experimental impedance spectroscopy spectra of

moderated flooding (f5)

The normal state of the fuel cell has 6 impedance spec-

troscopy spectra.

Database

The operating parameters that have been used to establish

Wasterlain’s test database are presented in Table 5. Because

the pressure does not vary in these experiments, it has not

been taken into account. The reference point has been

chosen close to the proposed manufacturer nominal point.

The experimental range is smaller than the range given by

the manufacturer to avoid instability. Below these ranges,

Table 4 e Range of the operating parameters.

Parameter x j
A/cm2

T, �C la lc F

Theoretical range given

by the manufacturer

xmin 0 60 1.2 1.5 25

xmax 1 90 3 3 75

Experimental reference xref 0.5 80 1.3 2 50

Experimental range xmin,Exp 0 60 1.8 2 35

xmax,Exp 0.7 80 3 3 75

Table 5 e Relative variations of experimental measurements.

Operating parameter x j A/cm2 T, �C la lc F

Relatives variations
Dx
x

�

�

�

�

min;Exp

�100% �25% þ38% 0 �30%

Dx
x

�

�

�

�

max;Exp

40% 0 131% 50% 50%

Experimental/Theoretical

Ratio

DxExp
DxMan

70% 67% 67% 67% 70%
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Table 5 presents the relative variations and rate of experi-

mental range. Considering the relative variations with

respect to the operating point, only the current density (j)

exhibits a significant change around the reference point.

The maximal temperature (T) and the minimal cathode

overstoichiometry (lc) are the reference value, to avoid

instability due to excessive drying of the stack. The anode

overstoichiometry (la) is also always above the referencing

point for the same reasons. These results show the difficulty

encountered to obtain a database that is sufficiently repre-

sentative of the practicable range found in real operating

conditions. The rate of the experimental range on the

theoretical range is an interesting indicator: at least 67% of

the operating range has been used during the tests. Thus,

experiments are significantly representative of the operating

range of the fuel cell.

Evaluations of the degrees of flooding and drying have been

carried out according to Equations (7) and (8). Eleven operating

conditions have been considered during the experiments,

and, from the nominal operating parameters, the relative

humidities have been estimated for the cathode and the

anode. For the operating conditions leading to “moderate

flooding”, the relative humidities of the anode and cathode

side exceed 100% (water condensate). Similarly for the case of

“minor drying”, relative humidity in the cathode side is lower

than 80%. These relative humidities have been estimated

using a basic distribution fluid model (partial balance) in a

perfectly stirred reactor (Equation (7)) with no water partition

(aw ¼ 0 in Equation (8)). To increase consistency, the partition

coefficient could be refined, either from experimental data or

from the water transport model.

Classification algorithms

The indexes proposed in Section 3 can now be calculated from

the results on the test database. From the 68 spectra that have

been classified, only 1 spectrum, which was belonging to a

moderate drying class (f1), has been classified as a moderate

flooding class (f5).

The confusion matrix for the moderate drying (f1) is given

in Table 6.

Indicators are then:

Precðf1Þ ¼
9

9þ 1
¼ 90% (18)

which means that among all detections of moderated drying,

90% will be true and 10% will be false.

Recðf1Þ ¼
9

9þ 0
¼ 100% (19)

This means that all the moderated drying will be detected.

Thus, the F1 index is:

F1 ¼
2� Precðf1Þ � Recðf1Þ
Precðf1Þ þ Recðf1Þ

¼ 94:7% (20)

Additionally, accuracy is:

Accðf1Þ ¼
9þ 58

9þ 1þ 0þ 58
¼ 98:5% (21)

This means that 98.5% of cases are well classified.

Thus, the error is:

Errorðf1Þ ¼ 1�Accðf1Þ ¼ 1:5% (22)

1.5% of cases are not well classified.

Similar tables and indices have been populated for each of

the 5 faults. In addition, a table summing all faults has also

been evaluated. Table 7 shows the resulting indexes in a single

table, as proposed by Ref. [60] for multi-fault detection.

In this way, performance indexes can now be easily eval-

uated. Table 7 shows complete and detailed information on

classification performance. Note that even normal state per-

formance was evaluated in the same manner. Precision gives

information about the diagnosed samples, recall gathers the

information about the occurring faults, and the F1 index gives

a single normalised measurement for the evaluation of the

general system performance. Accuracy and error are supple-

mentarymeasurements about the classification validity of the

results.

The global index shows how many samples have been

well-diagnosed through all of the existing classes, thereby

providing a notably valuable measurement with regard to the

system’s overall diagnostic correctness. High values in that

measurement are difficult to achieve (as they require a perfect

diagnosis for each sample) and not only indicate a good per-

formance diagnosing the isolated classes but also ensure a

good performance when faced with simultaneous faults. The

global index is the lower index simply because it focuses on

the totally well-diagnosed samples throughout all of the

existing classes that are in this example 5 compared with the

original 6.

Implementation aspects

As the database is representative of the defaults of flooding

and drying, and as the performance of the algorithm is good,

the viability of the approach has to be investigated. In this

section, we propose to compare the polarisation curve and the

impedance spectroscopy spectra. Table 8 shows the energy

cost of experiments and the corresponding experimental

duration. Considering the polarisation curve, an interval of

400 ms has beenmarked to stabilise the system between each

Diagnosed fault
(predicted class)

Happening fault (true class)

Yes No

Yes 9 1

No 0 58

Table 7 e Indexes evaluation.

Index Normal f1 f2 f3 f4 f5 Sf

Prec (%) 100 90 100 100 100 100 98.5

Rec (%) 100 100 100 100 100 100 100

F1 (%) 100 94.7 100 100 100 100 99

Acc (%) 100 98.5 100 100 100 100 99.75

Error (%) 0 1.5 0 0 0 0 0.25

Global (%) 5/6 ¼ 83.3

Table 6 - Confusion matrix for fault f1 moderate drying.
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modification of the operating conditions. Thus, 20 min and

156 W h are required to obtain the polarisation curve. For the

full impedance spectrum, the applied disturbance must be

repeated at different frequencies from 50 mHz to 5 kHz. Each

frequency curve gives one point of the total EIS curve. Time

acquisition and required energy are more important when

frequency decreases.

The total energy consumed for EIS is approximately 5 times

less than for polarisation. Table 8 also highlights that the

experimental period needed is shorter (less than 3 min for EIS

and 20 min for polarisation). To reduce the time measure-

ments needed to acquire the data and to be closer to pseudo-

real time measurement, frequency at 50 mHz was dismissed

for the Bayesian approach, despite the importance of the real

part of the impedance. The EIS method may also be improved

to further decrease the experimental period: the frequency

range to bemeasured (<1 Hz)may be truncated [38], or a signal

with an interlaced frequency [49] may be used.

The last step is to compare the equipment investment for

both approaches. Table 9 provides a list of thematerial and the

software investment. This table highlights themost important

investments,which are aboutU.S. $ 28,000 (20 kV). To decrease

this cost, some solutions can be considered, such as replacing

the active electronic loadwith a simple resistance or using the

static converter to eliminate the frequency generator. It ap-

pears that EIS is a more expensive method than polarisation,

and some research topics are currently being investigated to

find new solutions to system excitation and spectral analysis.

As software has been developed specifically for this applica-

tion, investmentmay also include theworking time or the cost

in the event of commercial acquisition.

It can be noted that this part of the paper may be consid-

ered independently from the others. Here, material, energy

and time consumption aspects allow for the estimation of the

relevance of a diagnostic approach for implementation, once

this approach has been properly validated. Tables 8 and 9 are

sufficient to show that EIS approaches need to be improved in

regard to equipment cost, but have low energy consumption

and acquisition times. Conversely, a polarisation approach

seems unsuited to an embedded system because the con-

sumption time per curve is very long and test conditionsmust

avoid stack degradation. New diagnostic approaches should

be assessed in the same manner.

Conclusions

This work aims to provide tools to enable a comparison of

diagnostic approaches for fuel cells. The first section proposed

guidelines that are applied to a real diagnosis study in the

second section. This paper highlights the crucial importance

of the database, not only to build the reference database but

also to determine the limits of default classes and validate the

diagnostic tool. To quantify the progressive degrees of drying

or flooding, simple equations to estimate the relative humid-

ity in the stack under applied operating conditions have been

given. The results on the Wasterlains’ study are consistent

despite the highly debatable strong assumption that thewater

produced at the cathode remains in the cathode compart-

ment. This approach has to be pursued to refine the partition

coefficient, either from experimental data or from the water

transport model.

Validation indexes to estimate algorithm performances are

notably easy to establish, making other algorithm compari-

sons unnecessary. This step is important for comparing the

different diagnostic approaches, which, however, are valid

only if the quality of the reference database is good, which

means that the proposed tools are complementary and must

be used together.

Finally, implementation aspects present valuable new in-

sights into the diagnostic approaches utilised. Energy and

time consumption very clearly show whether the considered

approach has to be adapted to better fit the requirements for

extensive use. The equipment needed for the diagnostic sys-

tem is thus far not suitable for mass production.

Though this paper has raised a number of unsolved prob-

lems, the proposed tools to establish quantitative criteria of

diagnostic evaluations are ready to be used to establish

milestones of benchmarking for diagnostic tool comparison.
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[33] Youfi-Steiner N, Moçotéguy Ph, Candusso D, Hissel D,
Hernandez A, Aslanides A. A review on PEM voltage
degradation associated with water management: impact,
influent factors and characterization. J Power Sourc
2008;183:260e74.

[34] Petrone R, Zheng Z, Hissel D, Péra MC, Pianese C,
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