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LOCAL ZERO ESTIMATES AND EFFECTIVE DIVISION IN RINGS OF ALGEBRAIC POWER SERIES

We give a necessary condition for algebraicity of finite modules over the ring of formal power series. This condition is given in terms of local zero estimates. In fact we show that this condition is also sufficient when the module is a ring with some additional properties. To prove this result we show an effective Weierstrass Division Theorem and an effective solution to the Ideal Membership Problem in rings of algebraic power series. Finally we apply these results to prove a gap theorem for power series which are remainders of the Grauert-Hironaka-Galligo Division Theorem.

Introduction

The goal of this paper is to give a necessary condition in term of local zero estimates for a finite module defined over the ring of formal power series to be the completion of a module defined over the ring of algebraic power series. Finding conditions for the algebraicity of such modules is a long-standing problem (see [START_REF] Samuel | Algébricité de certains points singuliers algébroïdes[END_REF] or [START_REF] Artin | Etale coverings of schemes over Hensel rings[END_REF] for instance). Let us recall that an algebraic power series over a field k in the variables x 1 , • • • , x n is a formal power series f (x) ∈ k x (from now on we denote the tuple (x 1 , • • • , x n ) by x) such that P (x, f (x)) = 0 1991 Mathematics Subject Classification. Primary : 13J05, Secondary : 11G50, 11J82, 13P10. The author was partially supported by ANR projects STAAVF (ANR-2011 BS01 009) and SUSI (ANR-12-JS01-0002-01).

for a non-zero polynomial P (x, T ) ∈ k[x, T ]. The set of algebraic power series is a subring of k x denoted by k x . For an algebraic power series f , we define the height of f , H(f ), to be the maximum of the degrees of the coefficients of the minimal polynomial of f (see Definition 3.2). If f is a polynomial its height is equal to its degree as a polynomial. Let M be a k x -module The order function ord M is defined as follows:

ord M (m) := sup{c ∈ N / m ∈ (x) c M } ∀m ∈ M \{0}.
Let p ∈ k[x] s (resp. k x s ). The degree (resp. height) of p is the maximum of the degrees (resp. heights) of its components. Then our main result is the following: Theorem 1.1. Let k be any field and let M be a finite k x -module, M = k x s N for some integer s and some k x -sub-module N of k x s . Let us assume that the sub-module N is generated by a k x -sub-module of k x s . Then there exists a function

C : N -→ R >0 such that (1) ord M (f ) ≤ C(Deg(f )) • H(f ) ∀f ∈ k x s \N.
Here Deg(f ) denotes the degree of the field extension k(x) -→ k(x, f ). Moreover when char (k) = 0 then C depends polynomially on Deg(f ).

Corollary 1.2. With the notations of Theorem 1.1, let us assume that N is generated by a k x -sub-module of k x s . Then there exists a constant C > 0 such that

(2) ord M (p) ≤ C • deg(p) ∀p ∈ k[x] s \N.
Proof. Indeed, for a vector of polynomials p ∈ k[x] s we have Deg(p) = 1 and H(p) = deg(p), so the inequality is satisfied with C = C(1) where C is the function of Theorem 1.1.

We also prove a partial converse of Corollary 1.2:

Theorem 1.3. Let R be a ring of the form k x I for some ideal I such that

I = P n1 1 ∩ • • • ∩ P n l l
where the P i are prime ideals with ht(P i ) = ht(P j ) for all i and j, and the n i are positive integers.

If there exists a constant C > 0 such that

ord R (p) ≤ C • deg(p) ∀p ∈ k[x]\I
then I is generated by algebraic power series.

Remark 1.4. We remark that the hypothesis of Theorem 1.3 are satisfied for a principal ideal I. In particular Theorems 1.1 and 1.3 provide a criterion for a principal ideal to be generated by an algebraic power series.

Remark 1.5. We will see in Section 9 that Theorem 1.3 is not true in general.

These two results are generalizations of previous results of S. Izumi (see [START_REF] Izumi | Increase, convergence and vanishing of functions along a Moishezon space[END_REF], [START_REF] Izumi | A criterion for algebraicity of analytic set germs[END_REF], [START_REF] Izumi | Transcendence measures for subsets of local algebras, Real analytic and algebraic singularities[END_REF] where he proved Corollary 1.2 when char (k) = 0, s = 1 and N is a prime ideal of k x ) and Theorem 1.3 when I is prime and char (k) = 0. The proof of Theorem 1.3 uses Hilbert-Samuel functions and is inspired by the proof given in [START_REF] Izumi | A criterion for algebraicity of analytic set germs[END_REF]. The proof of Theorem 1.1 is more difficult and is the main subject of this paper. In fact the first difficulty occurs already when s = 1 and N is an ideal of k x which is not prime. Corollary 1.2 in the case of a prime ideal has been proven by S. Izumi in [START_REF] Izumi | Increase, convergence and vanishing of functions along a Moishezon space[END_REF] in the complex analytic case using resolution of singularities of Moishezon spaces and then for any field of characteristic zero using basic field theory in [START_REF] Izumi | Transcendence measures for subsets of local algebras, Real analytic and algebraic singularities[END_REF]. But when N is not prime his proof does not adapt at all and the general case cannot be reduced to the case proven by S. Izumi.

The proof of Theorem 1.1 that we give here is done by induction on s and n. The induction steps require two effective division results in the rings of algebraic power series which may be of general interest. These are the following ones: i) In the case of the Weierstrass Division of an algebraic power series f by another algebraic power series it is proven by J.-P. Lafon that the remainder and the quotient of the division are algebraic power series [START_REF] Lafon | Séries formelles algébriques[END_REF]. The problem solved here is to bound the complexity of the division, i.e. bound the complexity of the quotient and the remainder of the division in function of the complexity of the input data. This is Theorem 4.5 and is the main tool to solve the next division problem. Let us mention that this problem is partially solved in [START_REF] Aschenbrenner | An effective Weierstrass Division Theorem[END_REF] Section 4 -see Theorem 4.6.

ii) Bounding the complexity of the Ideal Membership Problem in the ring of algebraic power series, i.e. if an algebraic power series f is in the ideal generated by algebraic power series g 1 , • • • , g p , bound the complexity of algebraic power series a 1 , • • • , a p such that

f = a 1 g 1 + • • • + a p g p .
This is Theorem 6.1.

The complexity invariants associated to an algebraic power series f are its degree and its height. The first one is the degree of the field extension k(x) -→ k(x, f ) and the second one has been defined above. In particular we will prove that the previous complexity problems admit a solution which is linear with respect to the height of f (but it is not linear which respect to the other data). This is exactly what we need to prove Theorem 1.1.

Finally we apply our main theorem to give a partial answer to a question of H. Hironaka. When f , g 1 , • • • , g s are formal power series, we can write

f = a 1 g 1 + • • • + a s g s + r
where the non-zero monomials in the expansion of r are not divisible by the initial terms of the g i (see Section 10 for precise definitions). When the power series f and the g i are convergent then r is also convergent. This result has been proven by H.

Grauert in order to study versal deformations of isolated singularities of analytic hypersurfaces [START_REF] Grauert | Über die Deformation isolierter Singularitäten analytischer Mengen[END_REF] and then by H. Hironaka to study resolution of singularities [START_REF] Hironaka | Resolution of singularities of an algebraic variety over a field of characteristic zero I, II[END_REF]. But when f and the g i are algebraic power series, then r is not an algebraic power series in general and H. Hironaka raised the problem of characterizing such power series r (see [START_REF] Hironaka | Idealistic exponents of singularity, Algebraic Geometry[END_REF]). In this case we prove that such power series r are not too transcendental (see Theorem 12.1). More precisely if we write r as r = where r n(k) is a non-zero homogeneous polynomial of degree n(k) and the sequence (n(k)) k is strictly increasing, we show that

lim sup k-→∞ n(k + 1) n(k) < ∞.
Let us mention that this division problem appears also in combinatorics: the generating series of walks confined in the first quadrant are solutions of such a division but are nor algebraic nor D-finite in general (see [START_REF] Hauser | Multivariate linear recurrences and power series division[END_REF] or [START_REF] Kurkova | On the functions counting walks with small steps in the quarter plane[END_REF]).

Let us mention that the kind of estimates given in Corollary 1.2, i.e. estimates of the form ord M p ≤ γ(deg(p)) where γ : N -→ N is an increasing function, s = 1 and N is an ideal of analytic functions are called zero estimates in the literature. Finding such estimates for particular classes of functions is an important subject of research in transcendence theory, in particular when the ideal N is generated by analytic functions of the form

x k -f k (x 1 , • • • , x k-1 ), • • • , x n -f n (x 1 , • • • , x k-1
) for some k < n and f k , • • • , f n solutions of differential equations (see [START_REF] Shidlovskii | On a criterion for the algebraic independence of the values of a class of entire functions[END_REF], [START_REF] Bertrand | Équations différentielles linéaires et majorations de multiplicités[END_REF], [START_REF] Yu | Measures of algebraic independence of numbers and functions, Journées arithmétiques de Besançon[END_REF] for instance) or functional equations (q-difference equations or Mahler functions -see [START_REF] Nishioka | On an estimate for the orders of zeros of Mahler type functions[END_REF] for instance).

We should also mention that the complexity of the Weierstrass Division for restricted power series defined over the ring of p-adic integers which are algebraic over Q[x] has been solved in [START_REF] Aschenbrenner | An effective Weierstrass Division Theorem[END_REF]. The complexity of the Ideal Membership Problem is also solved in this situation. In this case the definition of the height of an algebraic power series is more complicated.

The paper is organized as follows: after giving the list of notations used in the paper in Section 2, we define the height of an algebraic power series in Section 3 and give the first properties of it. In Section 4 we prove an effective Weierstrass Division Theorem (see Theorem 4.5). In Section 5 we give some results about the Ideal Membership Problem in rings which are localizations of rings of polynomials (see Theorem 5.2 and Proposition 5.3) and in Section 6 we give an effective Ideal Membership theorem for algebraic power series rings (see Theorem 6.1). Then Section 7 is devoted to the proof of Theorem 1.1 and Section 8 to the proof of Theorem 1.3. In Section 9 is given an example showing that the hypothesis of Theorem 1.3 cannot being relaxed. The next three sections concern the Grauert-Hironaka-Galligo Division Theorem: in Section 10 we state this theorem and give the example of Gabber-Kashiwara showing that the remainder of such division of an algebraic power series by another one is not algebraic in general. We show in Section 11 that the example of Gabber-Kashiwara is generic in some sense, i.e. in general the division of an algebraic power series by another one does not have an algebraic remainder (see Proposition 11.3). Finally we prove in Section 12 our gap theorem for remainders of such division (see Theorem 12.1).

Remark 1.6. We show in Example 10.4 that the bound in Corollary 1.2 is sharp. For Theorem 1.1 it is not clear if such bound is sharp. Indeed, let f be an algebraic power series and M = k x /I where I is an ideal generated by algebraic power series. Let

a d (x)T d + a d-1 (x)T d-1 + • • • + a 0 (x)
be the minimal polynomial of f . Then we have

(a d f d-1 + a d-1 f d-2 + • • • + a 1 )f = -a 0 . We set g := a d f d-1 + a d-1 f d-2 + • • • + a 1 . If a 0 / ∈ I, then ord M (f ) ≤ ord M (gf ) = ord M (a 0 ) ≤ C H(f )
where C is the constant of Corollary 1.2 since a 0 (x) is a polynomial of degree ≤ H(f ). This shows that in general the function C of Theorem 1.1 can be chosen to be independent of Deg(f ) except maybe when a 0 (x) ≡ 0 in M .
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Notations

In the whole paper k denotes a field of any characteristic. Let n be a non-negative integer and set

x := (x 1 , • • • , x n ) and x := (x 1 , • • • , x n-1
). The ring of polynomials in n variables over k will be denoted by k[x] and its field of fractions by k(x). The ring of formal power series in n variables over k is denoted by k x and its field of fractions by k((x)). An algebraic power series is a power series f (x) ∈ k x such that P (x, f (x)) = 0 for some non-zero polynomial P (x, T ) ∈ k[x, T ] where T is a single indeterminate. The set of algebraic power series is a local subring of k x denoted by k x . When k is a valued field we denote by k{x} the ring of convergent power series in n variables over k. We have

k[x] ⊂ k x ⊂ k{x} ⊂ k x . We will denote by K n-1 an algebraic closure of k((x )) = k((x 1 , • • • , x n-1 )).
For a polynomial p ∈ k[x] we denote by deg(p) its total degree with respect to the variables

x 1 , • • • , x n . If y := (y 1 , • • • , y m ) is a new set of indeterminates and p ∈ k[x, y] we denote by deg (y1,••• ,ym) (p)
the degree of p seen as a polynomial in K[y] where K := k(x). When p ∈ k[x] s for some s, we denote by deg(p) the maximum of the degrees of the components of p.

For an algebraic power series f ∈ k x , the height of f is the maximum of the degrees of the coefficients of the minimal polynomial of f (see Definition 3.2). The height of a vector of algebraic power series is the maximum of the heights of its components.

When (A, m) is a local ring we set

ord A (x) := sup{k ∈ N / x ∈ m k } ∈ N ∪ {∞} ∀x ∈ A. If M is a finite A-module we set ord M (m) := sup{k ∈ N / m ∈ m k M } ∀m ∈ M.
When A = k x we write ord instead of ord k x . For an ideal of k x generated by

g 1 , • • • , g p we define ord g1,••• ,gp (f ) := sup{k ∈ N / f ∈ (g 1 , • • • , g p ) k } ∈ N ∪ {∞}.
3. Height and degree of algebraic power series Definition 3.1. Let α be an element of an algebraic closure of k(x) (for example an algebraic power series). The morphism ϕ : k[x, T ] -→ k(x, α) defined by sending every polynomial P (x, T ) onto P (x, α) is not injective and its kernel is a prime ideal p of k[x, T ]. If ht(p) ≥ 2 then p ∩ k[x] = (0) and there would exist a non-zero polynomial P (x) ∈ k[x] whose image by ϕ is zero which is not possible. Thus ht(p) = 1 and p is a principal ideal. If P (x, T ) is a generator of p then any other generator of this ideal is equal to P (x, T ) times a non-zero element of k. Such a generator is called a minimal polynomial of α. By abuse of language we will often refer to such an element by the minimal polynomial of α.

Definition 3.2. [AB13] Let P (x, T ) ∈ k[x, T ].
The height of P is the maximum of the degrees of the coefficients of P (x, T ) seen as a polynomial in T . Let α be an algebraic element over k(x). The height of α is the height of its minimal polynomial and is denoted by H(α). Its degree is the degree of its minimal polynomial or, equivalently, the degree of the field extension k(x) -→ k(x, α) and is denoted by Deg(α).

When α = (α 1 , • • • , α m
) is a vector of algebraic elements over k(x) the height of α, H(α), is the maximum of the heights of the components of α and the degree of α, Deg(α), is the degree of the field extension k

(x) -→ k(x, α 1 , • • • , α m ) Remark 3.3. If P (x, T ) ∈ k[x, T ]
is the minimal polynomial of an algebraic element α, then H(α) = deg x (P ) and Deg(α) = deg T (P ). In particular for

Q(x, T ) ∈ k[x, T ] with Q(α) = 0, P divides Q hence we have H(α) ≤ deg x (Q) and Deg(α) ≤ deg T (Q). Example 3.4. Let f be a polynomial in k[x], then H(f ) = deg(f ) and Deg(f ) = 1 since the minimal polynomial of f is T -f . Let f /g be a rational function in k(x). Then H(f /g) = max{deg(f ), deg(g)} and Deg(f /g) = 1 since the minimal polynomial of f /g is gT -f .
If α is algebraic over k(x), then 1/α also and H(1/α) = H(α) and Deg(1/α) = Deg(α).

If f (x) is an algebraic power series and M ∈ Gl n (k) then f (M x) is also algebraic and H(f (M x)) = H(f (x)) and Deg(f (M x)) = Deg(f (x)).

Remark 3.5. There exists another measure of the complexity of an algebraic element α over k(x) (and so, in particular, of an algebraic power series). This one is defined to be the total degree of the minimal polynomial of α and denoted by co(α) (cf. [START_REF] Ramanakoraisina | Complexité des fonctions de Nash[END_REF] or [START_REF] Alonso | On the complexity of algebraic power series, Applied Algebra, Algebraic algorithms and error-correcting codes[END_REF]). Thus we have

H(α) + Deg(α) 2 ≤ max{H(α), Deg(α)} ≤ co(α) ≤ H(α) + Deg(α).
This shows that co(α) is equivalent to H(α) + Deg(α). Moreover these bounds are sharp. Indeed let P n (T ) := (1 + x n )T n -1 (where x is a single variable and n ∈ N is not a multiple of the characteristic of k). Then P n (T ) is irreducible and has a root

f n in k x . Thus H(f n ) = Deg(f n ) = n and co(f n ) = 2n. On the other hand the polynomial Q n (T ) := T n -(1 + x n ) is irreducible and has a root g n in k x . Thus H(g n ) = Deg(g n ) = co(g n ) = n.
For an algebraic power series f we choose to use H(f ) instead of co(f ) since the complexity of the Weierstrass Division Theorem is linear in H(f ) but not in co(f ) (it is not linear in Deg(f ) -see Theorem 4.5). Indeed we need to prove the existence of a bound in Theorem 1.1 which is linear in H(f ).

Lemma 3.6.

([AB13] Lemma 4.1) Let α 1 , • • • , α p be algebraic elements over k(x)
and a 1 , • • • , a p ∈ k(x). Then we have:

(i) Deg(a 1 α 1 + • • • + a p α p ) ≤ Deg(α 1 ) • • • Deg(α p ), (ii) H(a 1 α 1 • • • + a p α p ) ≤ p • Deg(α 1 ) • • • Deg(α p )(max i {H(α i )} + max j {H(a j )}), (iii) H(a 1 + α 1 ) ≤ H(α 1 ) + Deg(α 1 ) • H(a 1 ), (iv) H(a 1 α 1 ) ≤ H(α 1 ) + Deg(α 1 ) • H(a 1 ) (v) Deg(α 1 • • • α p ) ≤ Deg(α 1 ) • • • Deg(α p ), (vi) H(α 1 • • • α p ) ≤ p • Deg(α 1 ) • • • Deg(α p ) max i {H(α i )}.
Proof. All these inequalities are proven in [START_REF] Adamczewski | Diagonalization and rationalization of algebraic Laurent series[END_REF] except the third and the fourth ones that we prove here. Let us begin with the third one: Let P (x, T ) be the minimal polynomial of α 1 and let us write a 1 (x) = b(x)/c(x) for some polynomials b(x) and c(x). Then

Q(x, T ) := c(x) deg T (P ) P (x, T -a 1 )
is a polynomial vanishing at α 1 + a 1 . Thus

H(α 1 + a 1 ) ≤ deg x (Q(x, T )) ≤ H(α 1 ) + Deg(α 1 ) H(a 1 )
since Deg(α 1 ) = deg T (P ) and H(a 1 ) ≥ max{deg(b(x)), deg(c(x))}.

To prove Inequality (iv) let P (x, T ), b, c as above. Then b deg T (P ) P (x, c/bT ) is a polynomial vanishing at a 1 α 1 . So H(a 1 α 1 ) ≤ Deg(α 1 ) • H(a 1 ) + H(α 1 ).

Lemma 3.7. For an algebraic power series f we have:

ord(f ) ≤ H(f ).
Moreover for any integer 1 ≤ i ≤ n we have:

H(f (0, • • • , 0, x i , • • • , x n )) ≤ H(f ) and ord xi,••• ,xn (f (0, • • • , 0, x i , • • • , x n )) ≤ H(f ).
Proof. Let P (T ) = a d T d + • • • + a 1 T + a 0 be the minimal polynomial of f . Since P (f ) = 0 there are two integers 0 ≤ i < j ≤ d such that ord(a i f i ) = ord(a j f j ). Thus

ord(f ) = ord(a i ) -ord(a j ) j -i ≤ ord(a i ) ≤ deg(a i ).
This proves the first inequality. The second one is proven by noticing that if

P (x 1 , • • • , x n , f (x 1 , • • • , x n )) = 0, then P (0, x 2 , • • • , x n , f (0, x 2 , • • • , x n )) = 0.
Since P is the minimal polynomial of f , then P is not divisible by x 1 , thus

P (0, x 2 , • • • , x n , T ) = 0.
This proves that f (0, x 2 , • • • , x n ) is an algebraic power series and its minimal polynomial divides P (0, x 2 , • • • , x n , T ), hence

H(f (0, x 2 , • • • , x n )) ≤ H(f ).
The first inequality implies

ord x2,••• ,xn (f (0, x 2 , • • • , x n )) ≤ H(f ).
Hence the last two inequalities are proven by induction on i.

Remark 3.8. A formal power series f is said to be

x n -regular if f (0, • • • , 0, x n ) = 0.
In this case we say that f is x n -regular of order

d if f (0, • • • , 0, x n ) is a power series of k x n of order d.
By the previous lemma, if an algebraic power series f is x n -regular of order d then d ≤ H(f ).

Remark-Definition 3.9. Let K n-1 be an algebraic closure of k((x )) where x := (x 1 , • • • , x n-1 ). The (x )-valuation ord x defined on k((x )) extends uniquely to K n-1 and is still denoted by ord x . The completion of K n-1 for the valuation ord x is denoted by K n-1 . Let α ∈ K n-1 such that ord x (α) > 0 and f be a formal power series. Then f (x , α) is well defined in K n-1 . If f (x , α) = 0 we call α a root of f .

If f is an algebraic power series, P (x, T ) is the minimal polynomial of f and α is a root of f then P (x , α, 0) = 0 thus α is algebraic over k(x ).

Let f be a formal power series which is x n -regular of order d. Then, by the Weierstrass Preparation Theorem, there exist a unit v and a Weierstrass polynomial

P = x d n + a 1 (x )x d-1 n + • • • + a d (x ) such that f = vP .
The polynomial P is called the Weierstrass polynomial of f . Let α ∈ K n-1 be a root of P . Since ord x (a i (x )) > 0 for any i we have ord x (α) > 0. Thus f (x , α) and v(x , α) are well defined in K n-1 and f (x , α) = 0. On the other hand if α ∈ K n-1 is a root of f , since ord x (α) > 0 then v(x , α) = 0 in K n-1 , thus P (x , α) = 0. In particular α is a root of the polynomial P in the usual sense thus α ∈ K n-1 . This proves that the roots of f are exactly the roots (in the usual sense) of P seen as a polynomial in x n and are elements of K n-1 .

Lemma 3.10. Let α ∈ K n-1 be a root of a x n -regular algebraic power series f . Then α is algebraic over k(x) and

H(α) ≤ H(f ) and Deg(α) ≤ H(f ). Moreover if α 1 , • • • , α d are distinct roots of f , then [k(x , α 1 , • • • , α d ) : k(x )] ≤ H(f )!
Proof. Let P (x, T ) be the minimal polynomial of f . Since f (x , α) = 0 we have P (x , α, 0) = 0. Moreover P (x , T, 0) is a polynomial having α 1 , • • • , α d as roots. Thus a splitting field of P (x , T, 0) over k(x ) contains these roots, thus

[k(x , α 1 , • • • , α d ) : k(x )] ≤ deg T (P (x , T, 0))!
Lemma 3.11. Let α be algebraic over k(x) with ord x (α) > 0. Let g(x, y) be an algebraic power series where y is a single variable. Then g(x, α) is algebraic over k(x) and

H(g(x, α)) ≤ H(g) • (H(α) + Deg(α)) Deg(g(x, α)) ≤ Deg(α) • Deg(g).
Proof. Let P (x, y, T ) ∈ k[x, y, T ] be the minimal polynomial of g and Q(x, T ) ∈ k[x, T ] be the minimal polynomial of α. Then P (x, α, g(x, α)) = 0 and P (x, α, T ) = 0 otherwise P (x, y, T ) is divisible by Q(x, y) which is impossible since P is assumed to be irreducible. Thus g(x, α) is algebraic over k(x, α), hence over k(x). If we denote by R(x, T ) the resultant of P (x, y, T ) and Q(x, y) seen as polynomials in y: R(x, T ) := Res y (P (x, y, T ), Q(x, y)) = 0, then R(x, T ) is a polynomial of k[x][T ] vanishing at g(x, α). Let us write

P (x, y, T ) = a 0 (x, T ) + a 1 (x, T )y + • • • + a h (x, T )y h with a h = 0.
Moreover, since P (x, y, T ) is the minimal polynomial of g (as a polynomial in T ), for all i we have

deg x (a i ) + i ≤ H(g), deg(a i ) ≤ H(g) + Deg(g) -i ≤ H(g) + Deg(g),
deg T (a i ) ≤ Deg(g). In particular h ≤ H(g) and deg x (a i ) ≤ H(g) for all i. We write

Q(x, y) = b 0 (x) + b 1 (x)y + • • • + b e (x)y e with e = Deg(α) and deg(b i ) ≤ H(α) for all i. Since R(x, T ) is homogeneous of degree h in b 0 , • • • , b e and homogeneous of degree e in a 0 , • • • , a h , we see that deg T (R(x, T )) ≤ e • Deg(g) = Deg(α) • Deg(g) and H(R(x, T )) ≤ h • H(α) + e • H(g).
This proves the lemma.

Corollary 3.12. Let f be a x n -regular algebraic power series and let α 1 , • • • , α d be distinct roots of f in K n-1 . Let g ∈ k x be any algebraic power series. Then

[k(x , α 1 , • • • , α d , g(x , α 1 ), • • • , g(x , α d )) : k(x )] ≤ H(f )! Deg(g) d .
Proof. By Lemmas 3.10 and 3.11 the degree of this field extension is finite. By the proof of Lemma 3.11 we have, for any i:

[k(x , α 1 , • • • , α d , g(x , α i ) : k(x , α 1 , • • • , α d )] ≤ Deg(g). Thus [k(x , α 1 , • • • , α d , g(x , α 1 ), • • • , g(x , α d )) : k(x , α 1 , • • • , α d )] ≤ Deg(g) d .
Hence the result follows by Lemma 3.10. Remark 3.13. Let g(x, y) be an algebraic power series where y = (y 1 , • • • , y m ) is a tuple of indeterminates and let a 1 (x), • • • , a m (x) be algebraic power series vanishing at 0. If P (x, y, T ) is the minimal polynomial of g, then P (x, a(x), g(x, a(x)) = 0 but it may happen that P (x, a(x), T ) = 0. Hence the previous proof does not extend directly to this case. For example let

P 1 (x, y 1 ) := y 2 1 -(1 + x) P 2 (x, y 2 ) := y 2 2 -(1 + x)
where x is a single variable and k is a field of characteristic = 2 in which -7 is a square. Then P 1 and P 2 have a common root in k x , say a(x). Let P (x, y, T ) := (P 1 + P 2 )T 2 + P 1 T + P 2 .

The discriminant of P is equal to

∆ := P 2 1 -4P 2 (P 1 + P 2 ) = = y 4 1 -2(1 + x)y 2 1 + (1 + x) 2 + 4(y 2 2 -(1 + x))(2(1 + x) -y 2 1 -y 2 2 ) = = y 4 1 + 2(1 + x -2y 2 2 )y 2 1 + 12(1 + x)y 2 2 -4y 4 2 -7(1 + x) 2 and is not a square in k[x, y 1 , y 2 ], thus P is irreducible in k[x, y, T ]. But ∆ is unit in k x,
y since ∆(0, 0, 0) = -7, and P 1 + P 2 is also a unit. So ∆ has a root square in k x, y since char (k) = 2 and -7 is a square in k. Thus in this case P (x, y, T ) has two distinct roots in k x, y . But here

P (x, a(x), a(x), T ) = 0.
Nevertheless we can extend Lemma 3.11 as follows:

Lemma 3.14. Let g(x, y) be an algebraic power series where y = (y 1 , • • • , y m ) is a tuple of indeterminates and let a 1 (x), • • • , a m (x) be algebraic power series vanishing at 0. Then

H(g(x, a(x))) ≤ m i=1 (H(a i ) + Deg(a i )) • H(g), Deg(g(x, a(x))) ≤ m i=1 Deg(a i ) • Deg(g). Proof. Let us set g 0 (x, y 1 , • • • , y m ) := g(x, y), g 1 (x, y 2 , • • • , y m ) := g 0 (x, a 1 (x), y 2 , • • • , y m ), g 2 (x, y 3 , • • • , y m ) := g 1 (x, a 2 (x), y 3 , • • • , y m ), • • • • • • • • • g m (x) = g m-1 (x, a m (x)) = g(x, a(x)).
Then by Lemma 3.11, we have

Deg(g i ) ≤ Deg(a i ) • Deg(g i-1 ), H(g i ) ≤ H(g i-1 )(H(a i ) + Deg(a i )).
This proves the lemma.

Lemma 3.15. Let f be an algebraic power series. Then ∂f ∂xn is an algebraic power series and

H ∂f ∂x n ≤ 4 Deg(f ) 2 Deg(f )+4 H(f ), Deg ∂f ∂x n ≤ Deg(f ).
Proof. Let P (x, T ) be the minimal polynomial of f . Since P (x, f ) = 0 we have

∂P ∂x n (x, f (x)) + ∂f ∂x n (x) ∂P ∂T (x, f (x)) = 0. Since f is separable over k(x) (indeed k x is the Henselization of k[x] (x)
and the morphism from a local ring to its Henselization is always a separable morphismsee [START_REF] Nagata | Local Rings[END_REF] p. 180), then ∂P ∂T = 0. Moreover P is the minimal polynomial of f so

∂P ∂T (x, f (x)) = 0. Thus ∂f ∂xn (x) is an algebraic power series and ∂f ∂x n (x) = - ∂P ∂x n (x, f (x))/ ∂P ∂T (x, f (x)) ∈ k(x, f ).

So we obtain

Deg ∂f ∂x n (x) ≤ Deg(f )
and, by Lemma 3.6 (vi),

(3)

H ∂f ∂x n (x) ≤ 2 Deg(f ) 2 max H ∂P ∂x n (x, f (x)) , H ∂P ∂T (x, f (x)) .
We have

∂P ∂T (x, f (x)) = Deg(f )-1 i=0 a i (x)f (x) i
for some polynomials a i (x) with deg(a i ) ≤ H(f ). Thus, by Lemma 3.6 (ii),

H ∂P ∂T (x, f (x)) ≤ Deg(f ) • Deg(f 0 ) • • • Deg(f Deg(f )-1 )(max j {H(f j ) + H(a j )}) ≤ Deg(f ) Deg(f ) ((Deg(f ) -1) Deg(f ) Deg(f )-1 H(f ) + H(f )) ≤ Deg(f ) 2 Deg(f ) H(f ) since f 0 = 1, f i ∈ k(x, f ) for all i and H(a i ) = deg(a i ) ≤ H(f ), H(f i ) ≤ i Deg(f ) i H(f ) ∀i by Lemma 3.6 (vi).
We also have

∂P ∂x n (x, f (x)) = Deg(f ) i=0 b i (x)f (x) i for some polynomials b i (x) with deg(b i ) ≤ H(f ).
Thus in the same way

H ∂P ∂x n (x, f (x)) ≤ Deg(f ) • Deg(f 0 ) • • • Deg(f Deg(f ) )(max{H(f i ) + H(f )}) ≤ Deg(f ) Deg(f )+1 (Deg(f ) Deg(f ) Deg(f ) H(f ) + H(f )) ≤ 2 Deg(f ) 2 Deg(f )+2 H(f ).
Replacing these inequalities in Inequality (3) we are done.

Lemma 3.16. Let f (x, y) be an algebraic power series where x = (x 1 , • • • , x n ) and y is a single variable. Let q be a positive integer. Then f (x, y q ) is an algebraic power series with the same degree as f (x, y) and

H(f (x, y)) ≤ H(f (x, y q )) ≤ q H(f (x, y)).
Proof. If P (x, y, T ) is the minimal polynomial of f (x, y), then P (x, y q , T ) is a polynomial having f (x, y q ) as a root. Thus f (x, y q ) is an algebraic power series.

Since

k[x, y, T ] is a free k[x, y q , T ]-module with basis 1, y, • • • , y q-1 , if Q(x, y, T )
is the minimal polynomial of f (x, y q ), we can write in a unique way

Q(x, y, T ) = Q 0 (x, y q , T ) + Q 1 (x, y q , T )y + • • • + Q q-1 (x, y q , T )y q-1
where the Q i (x, y q , T ) are polynomials. Since Q(x, y, f (x, y q )) = 0, then we see that

Q i (x, y q , f (x, y q )) = 0 for all i. Since Q is the minimal polynomial of f (x, y q ), then Q divides all the Q i (x, y q , T ), hence Q = Q 0 and Q i = 0 for all i > 0. This shows that the minimal polynomial of f (x, y q ) has coefficients in k[x, y q ]. Now if Q(x, y q , T ) is the minimal polynomial of f (x, y q ) then Q(x, y, f (x, y)) = 0.
This proves that P (x, y, T ) is the minimal polynomial of f (x, y) if and only if P (x, y q , T ) is the minimal polynomial of f (x, y q ).

Since deg T (P (x, y, T )) = deg T (P (x, y q , T )) we see that f (x, y) and f (x, y q ) have the same degree. Moreover deg (x,y) (P (x, y, T )) ≤ deg (x,y) (P (x, y q , T )) ≤ q • deg (x,y) (P (x, y, T )).

This shows the inequalities concerning the heights.

Lemma 3.17. Let f (x, y) be an algebraic power series where y is a single variable and q be a positive integer. Let us write q = rp e where p = char (k), e ∈ N and gcd(r, p) = 1 (we set e = 0 when char (k) = 0 and by convention q = r). Let us write f (x, y) = f 0 (x, y q ) + f 1 (x, y q )y + • • • + f q-1 (x, y q )y q-1 . Then the power series f i (x, y q ) are algebraic and for any 0 ≤ i ≤ q -1 we have

H(f i (x, y q )) ≤ q 2 p e(e+1) 2 
4 q Deg(f ) 2q Deg(f )+5q H(f ) + q(q -1) 2 if e > 0, H(f i (x, y q )) ≤ Deg(f ) q (q H(f ) + q -1) if e = 0, Deg(f i (x, y q )) ≤ Deg(f ) r .
Proof. We need to consider several cases:

(1) First we assume that e = 0 i.e. gcd(q, p) = 1. By taking a finite extension of k we may assume that k contains a primitive q-th root of unity. Let ξ be such a primitive root of unity. Then

f (x, ξ l y) = q-1 k=0 f k (x, y q )ξ lk y k ∀ k, l.

Thus we have

f = V (ξ)F
where f is the vector with entries f (x, ξ l y), 1 ≤ l ≤ q, F is the vector with entries f 0 (x, y q ), yf 1 (x, y q ), • • • , y q-1 f q-1 (x, y q ) and V (ξ) is the Vandermonde matrix

       1 ξ ξ 2 • • • ξ q-1 1 ξ 2 ξ 4 • • • ξ 2(q-1) 1 ξ 3 ξ 6 • • • ξ 3(q-1) . . . . . . . . . . . . • • • 1 ξ q ξ 2q • • • ξ (q-1)q        . Thus F = V (ξ) -1 f Since the entries of V (ξ) -1 are in k and H(f (x, ξ l y)) = H(f (x, y)), by Lemma 3.6 (ii) and (i) we have H(F ) ≤ q Deg(f ) q H(f ), Deg(F ) ≤ Deg(f ) q . Thus by Lemma 3.6 (iv) H(f i (x, y q )) ≤ q Deg(f ) q H(f ) + Deg(f ) q (q -1) = Deg(f ) q (q H(f ) + q -1), Deg(f i (x, y q )) ≤ Deg(f ) q ∀i.
(2) If q = p > 0, then we have

∂f ∂y = f 1 + 2f 2 y + • • • + (p -1)f p-1 y p-2 , • • • • • • • • • ∂ p-1 f ∂y p-1 = (p -1)!f p-1 . Thus we have ∆f = M f
where ∆f is the vector of entries ∂ k f ∂y k , for 0 ≤ k ≤ p -1, f is the vector with entries f l (x, y p ), for 0 ≤ l ≤ p -1, and M is a upper triangular matrix with entries in k[y] and whose determinant is in k. We can check that the (p -1) × (p -1) minors of M are polynomials of degree ≤ p(p-1)

2

. Thus the height of the coefficients of M -1 is less than p(p-1)

2

. Since

f = M -1 ∆f, by Lemma 3.6 (ii) we obtain H(f k (x, y p )) ≤ p Deg(f ) Deg ∂f ∂y • • • Deg ∂ p-1 f ∂y p-1 × max 0≤i≤p-1 H ∂ i f ∂y i + p(p -1) 2 .
Thus by Lemma 3.15 we have

H(f k (x, y p )) ≤ p Deg(f ) p max 0≤i≤p-1 H ∂ i f ∂y i + p(p -1) 2 .
By applying Lemma 3.15 p -1 times we obtain

H ∂ p-1 f ∂y p-1 ≤ 4 p-1 Deg(f ) (2 Deg(f )+4)(p-1) H(f ). Thus we have H(f k (x, y p )) ≤ p4 p-1 Deg(f ) 2(p-1) Deg(f )+5p-4 H(f ) + p(p -1) 2 .
Moreover, still by Lemma 3.15 we have

Deg(f k (x, y p )) ≤ Deg(f ) ∀k.
(3) If q = rp e where gcd(r, p) = 1 and e > 0, we write

f = f 0 (x, y p ) + f 1 (x, y p )y + • • • + f p-1 (x, y p )y p-1 f i (x, y p ) = f i,0 (x, y p 2 ) + f i,1 (x, y p 2 )y p + • • • + f i,p-1 (x, y p 2 )y p(p-1) f i,j (x, y p 2 ) = f i,j,0 (x, y p 3 ) + f i,j,1 (x, y p 3 )y p 2 + • • • + f i,j,p-1 (x, y p 3 )y p 2 (p-1) • • • • • • • • • f i1,••• ,ie-1 (x, y p e-1 ) = f i1,••• ,ie-1,0 (x, y p e ) + • • • + f i1,••• ,ie-1,p-1 (x, y p e )y p e-1 (p-1) f i1,••• ,ie (x, y p e ) = f i1,••• ,ie,0 (x, y q ) + • • • + f i1,••• ,ie,r-1 (x, y q )y p e (r-1) .
Then by (2) we obtain, for k ≤ e,

Deg( f i1,••• ,i k (x, y p )) ≤ Deg( f i1,••• ,i k-1 (x, y)), H( f i1,••• ,i k (x, y p )) ≤ p4 p-1 Deg( f i1,••• ,i k-1 (x, y)) 2(p-1) Deg( e fi 1 ,••• ,i k-1 (x,y))+5p-4 × H( f i1,••• ,i k-1 (x, y)) + p(p -1) 2 .
Thus by Lemma 3.16 we have

1 p k-1 H( f i1,••• ,i k (x, y p k )) ≤ p4 p-1 Deg( f i1,••• ,i k-1 (x, y p k-1 )) 2(p-1) Deg( e fi 1 ,••• ,i k-1 (x,y p k-1 ))+5p-4 × H( f i1,••• ,i k-1 (x, y p k-1 )) + p(p -1) 2 .
By (1) we obtain

Deg( f i1,••• ,ie+1 (x, y r )) ≤ Deg( f i1,••• ,ie (x, y)) r , H( f i1,••• ,ie+1 (x, y r )) ≤ Deg( f i1,••• ,ie (x, y)) r (r H( f i1,••• ,ie (x, y)) + r -1)
and, by Lemma 3.16,

1 p e H( f i1,••• ,ie+1 (x, y q )) ≤ Deg( f i1,••• ,ie (x, y p e )) r (r H( f i1,••• ,ie (x, y p e )) + r -1)
Since the power series f i (x, y q ) of the statement of the lemma are expressed by the power series

f i1,••• ,ie+1 (x, y q ),
by induction and Lemma 3.16 we deduce

Deg(f i (x, y q )) ≤ Deg(f ) r , H(f i (x, y q )) ≤ p e(e+1) 2 
q4 p e -1 Deg(f ) r+2(p-1)e Deg(f )+(5p-4)e r H(f ) + (e + 1) r(r -1) 2

≤ q 2 p e(e+1) 2 
4 q Deg(f ) 2q Deg(f )+5q H(f ) + q(q -1) 2 .

Effective Weierstrass Division Theorem

In this part we prove an effective Weierstrass Division Theorem for algebraic power series. The proof (thus the complexity) is more complicated in the positive characteristic case since the Weierstrass polynomial associated to the divisor f may have irreducible factors that are not separable. The proof we give here is essentially the same as the one given in [START_REF] Lafon | Séries formelles algébriques[END_REF].

Lemma 4.1 (Weierstrass Preparation Theorem). Let k be any field. Let f be an algebraic power series which is x n -regular of order d. Then there exist a unit u ∈ k x and a Weierstrass polynomal

P ∈ k x [x n ] such that f = u • P and Deg(P ) ≤ H(f )!, H(P ) ≤ 2d H(f ) d+1 .
Proof. The existence of u and P comes from the Weierstrass Preparation Theorem for formal power series.

Let

α 1 , • • • , α d ∈ K n-1 be the roots of P (x n ) counted with multiplicities. Then we have P = d i=1 (x n -α i )
. By Remark 3.9 the roots of P (x n ) are the roots of f thus, by Lemma 3.10, P is an algebraic power series. Hence u is also an algebraic power series. By Lemma 3.6 (iii) H(x n -α i ) ≤ H(α i ) + Deg(α i ) and Deg(x n -α i ) = Deg(α i ) ≤ H(f ) for all i by Lemma 3.10. Thus, by Lemma 3.6 (vi),

H(P ) ≤ d • Deg(α 1 ) • • • Deg(α d ) • max i {H(α i ) + Deg(α i )} ≤ d H(f ) d (H(f ) + H(f )). Moreover P ∈ k(x, α 1 , • • • , α d ). But [k(x, α 1 , • • • , α d ) : k(x)] ≤ H(f )! by Lemma 3.10 hence Deg(P ) ≤ H(f )! Lemma 4.2.
Let f be an algebraic power series which is x n -regular of order d and let us assume that f has d distinct roots in K n-1 . Let g be any algebraic power series. Then there exist unique algebraic power series q and r such that

r ∈ k x [x n ] is of degree < d in x n and g = f q + r. Moreover, if r = r 0 + r 1 x n + • • • + r d-1 x d-1 n , we have H(r i ) ≤ 4d(H(f )!) d+1 H(f ) 2 Deg(g) max d! d(d -1) 2 H(f ) d(d-1) 2 (H(f )!) d!+2 , H(g) ≤ 4 H(f ) H(f ) O(d)
Deg(g)(H(g) + 1) ∀i, where O(d) denotes a function of d bounded by a linear function in d,

H(r) ≤ d H(f )! Deg(g) d d (max i {H(r i )} + d -1)
and Deg(r i ), Deg(r) ≤ H(f )! Deg(g) d ∀i.

Proof. The Weierstrass Division Theorem for algebraic power series is well known (see [START_REF] Lafon | Séries formelles algébriques[END_REF]), the only improvement is the inequalities on the heights and degrees. The Weierstrass Division Theorem for formal power series gives the existence and unicity of q and r. Thus we have to show that q and r are algebraic and to prove the bounds on the heights and degrees. Let

α 1 , • • • , α d ∈ K n-1 be the roots of f . Then we have g(x , α i ) = r(x , α i ) ∀i. By writing r = r 0 + r 1 x n + • • • + r d-1 x d-1
n with r j ∈ k x for all j, we obtain:

V (α) r = g(α)
where V (α) is the d × d Vandermonde matrix of the α i :

     1 α 1 α 2 1 • • • α d-1 1 1 α 2 α 2 2 • • • α d-1 2 . . . . . . . . . . . . . . . 1 α d α 2 d • • • α d-1 d     
, r is the d × 1 column vector with entries r k , and g(α) is the d × 1 column vector with entries g(x , α j ). Since the α i are distinct V (α) is invertible and we obtain

(4) r = V (α) -1 g(α)
.

By Lemmas 3.10 and 3.11 we see the g(x , α j ) are algebraic. Then Equality (4) shows that the r i and r are algebraic power series, thus q is also an algebraic power series. Again by Lemmas 3.10 and 3.11 we have for all i:

H(g(x , α i )) ≤ 2 H(g) • H(f ), Deg(g(x , α i )) ≤ H(f ) • Deg(g).
The determinant of V (α) is the sum of d! elements of the form

α 0 σ(0) α 1 σ(1) α 2 σ(2) • • • α d-1 σ(d-1) , where σ is a permutation of {0, • • • , d -1}. Each of these elements belongs to k(x , α 1 , • • • , α d )
so their degree is bounded H(f )! by Lemma 3.10. Again by Lemma 3.10 H(α i ) ≤ H(f ) and Deg(α i ) ≤ H(f ) for any i, thus by Lemma 3.6 (vi) we see that for any permutation σ we have:

H(α 0 σ(0) α 1 σ(1) α 2 σ(2) • • • α d-1 σ(d-1) ) ≤ d(d -1) 2 H(f ) d(d-1) 2 +1 .
Thus by Lemma 3.6 (ii) we have

H(det(V (α))) ≤ d! d(d -1) 2 H(f ) d(d-1) 2 +1 (H(f )!) d! .
The entries of

V (α) -1 are (d -1) × (d -1) minors of V (α i ) divided by det(V (α)).
Exactly as above the height of such an (d -1) × (d -1) minor is bounded by

(d -1)! (d -1)(d -2) 2 H(f ) (d-1)(d-2) 2 +1 (H(f )!) (d-1)!
and its degree is bounded by

H(f )! since it is an element of k(x , α 1 , • • • , α d ) (see Lemma 3.10).
Hence by Lemma 3.6 (vi) the height of the entries of V (α) -1 is bounded by

H V := 2d!(H(f )!) 2 (H(f )!) d! d(d -1) 2 H(f ) d(d-1) 2 +1 = = 2d! d(d -1) 2 H(f ) d(d-1) 2 +1 (H(f )!) d!+2 .
Moreover their degree is bounded by

H(f )! since they belong to k(x, α 1 , • • • , α d ).
If v is an entry of V (α) -1 Lemma 3.6 (vi) shows

H(vg(x , α i )) ≤ 2 H(f )! Deg(g(x , α i )) max{H V , H(g(x , α i ))} ∀i.
Since r j is of the form v 1 g(x , α 1 )

+ • • • + v d g(x , α d ) where v 1 , • • • , v d are entries of V (α) -1
(by Equation (4)) we obtain from Lemma 3.6 (ii):

H(r j ) ≤ d(H(f )!) d max i {2 H(f )! Deg(g(x , α i )) max{H V , H(g(x , α i ))}} .
Hence Lemmas 3.10 and 3.11 show

H(r j ) ≤ 4d(H(f )!) d+1 H(f ) Deg(g)× max d! d(d -1) 2 H(f ) d(d-1) 2 +1 (H(f )!) d!+2 , H(f ) H(g) = 4d(H(f )!) d+1 H(f ) 2 Deg(g) max d! d(d -1) 2 H(f ) d(d-1) 2 (H(f )!) d!+2 , H(g) . Moreover r j and r ∈ k(x , α 1 , • • • , α d , g(x , α 1 ), • • • , g(x , α d ))
, hence we have (by Corollary 3.12):

Deg(r j ) ≤ H(f )! Deg(g) d , Deg(r) ≤ H(f )! Deg(g) d . Since r = r 0 + x n r n + • • • + x d-1 n r d-1 , H(r) ≤ d H(f )! Deg(g) d d (max i {H(r i )} + d -1)
by Lemma 3.6 (ii).

Lemma 4.3. Let assume that k is a field of characteristic p > 0. Let f be an irreducible algebraic power series which is x n -regular of order d and let us assume that its Weierstrass polynomial is not separable. Let g be any algebraic power series. Then there exist unique algebraic power series q and r such that

r ∈ k x [x n ] is of degree < d in x n and g = f q + r. Moreover, if r = r 0 + r 1 x n + • • • + r d-1 x d-1 n , we have H(r i ) ≤ (2 H(f )) (2 H(f )) O(d)
Deg(g) 2d(Deg(g)+2) (H(g) + 1) ∀i,

H(r) ≤ (2 H(f )) (2 H(f )) O(d) Deg(g) O(d Deg(g)) (H(g) + 1) ∀i, Deg(r i ), Deg(r) ≤ H(f )! Deg(g) d ∀i.
Proof. Let P denote the Weierstrass polynomial of f . Since f is an irreducible power series then P is an irreducible monic polynomial of k

x [x n ] hence P is an irreducible polynomial of k((x ))[x n ].
Then we can write where g i := g i (x , x p e n ) ∈ k x , x p e n for all i by Lemma 3.17 . We define P by P (x , x p e n ) = P (x , x n ). Then P (x , x n ) is a Weierstrass polynomial in x n of degree D with algebraic power series coefficients and H( P (x , x n )) ≤ H(P (x , x n )) by Lemma 3.16. Let us perform the Weierstrass Division of g i (x , x n ) by P :

P = D k=1 (x n -α i ) p e where α 1 , • • • , α D are the distinct roots of P (x n ) in K n-
g i (x , x n ) = P q i + D-1 j=0 r i,j (x )x j n .
By Lemma 4.2 the r i,j (x ) are algebraic power series and

H(r i,j ) ≤ 4D(H(P )!) D+1 H(P ) 2 Deg(g i (x , x n )) max D! D(D -1) 2 H(P ) D(D-1) 2 (H(P )!) D!+2 , H(g i (x , x n )) .
(5)

By Lemma 3.16 we have Deg(g i (x , x n )) ≤ Deg(g(x , x p e n )) for every i thus, by Lemma 3.17, we have Deg(g i (x , x n )) ≤ Deg(g). Again by Lemma 3.16 we have H(g i (x , x n )) ≤ H(g(x , x p e n )). Moreover by Lemma 4.1 H(P ) ≤ 2d H(f ) d+1 . Thus we obtain (by using Lemma 3.17 and since D ≤ d, p e ≤ d and d ≤ H(f ) by Lemma 3.7)

H(r i,j ) ≤ 4d((2d H(f ) d+1 )!) d+1 (2d H(f ) d+1 ) 2 Deg(g)× × max d! d(d -1) 2 (2d H(f ) d+1 )) d(d-1) 2 ((2d H(f ) d+1 )!) d!+2 ,
p 2e p e(e+1)/2 4 p e Deg(g) 2p e Deg(g)+5p e H(g) + p e (p e -1) 2

(6)

≤ (2 H(f )) (2 H(f )) O(d) Deg(g) 2d(Deg(g)+2) (H(g) + 1).
Finally, since

g i (x , x p e n ) = P q i (x , x p e n ) + D-1 j=0 r i,j (x )x jp e n , then r = p e -1 i=0 D-1 j=0 r i,j (x )
x jp e +i n by unicity of the remainder in the Weierstrass division. Thus Lemma 3.6 (ii) shows

H(r) ≤ p e D • Deg(r i,j (x )) p e D max i,j
{H(r i,j (x )) + jp e }.

Moreover

Deg(r i,j ), Deg(r) ≤ H(f )! Deg(g i ) D ∀i, j since r i,j and r ∈ k(x , α 1 , • • • , α D , g i (x , α 1 ), • • • , g i (x , α D )) (as shown in the proof of Lemma 4.2). Hence

H(r) ≤ (2 H(f )) (2 H(f )) O(d) Deg(g) O(d Deg(g)) (H(g) + 1
).

We will use at several places this basic lemma:

Lemma 4.4. For any ε > 0, a > 0 and d ∈ N we have

(2d) (2d) ad ≤ 2 2 O(d 1+ε ) .
Proof. Let a > 0 and ε > 0. There exists a constant C > 0 such that for any d large enough we have:

ad ln(2d) + ln(ln(2d)) ≤ C ln(2)d 1+ε + ln(ln(2)). Thus (2d) ad ln(2d) ≤ ln(2)2 Cd 1+ε and (2d) (2d) ad ≤ 2 2 Cd 1+ε .
Theorem 4.5 (Weierstrass Division Theorem). Let k be a field. Let f be an algebraic power series which is x n -regular of order d. Let g be an algebraic power series. Then there exist unique algebraic power series q and r such that

r ∈ k x [x n ] is of degree < d in x n : r = r 0 + r 1 x n + • • • r d-1 x d-1 n , r i ∈ k
x ∀i and g = f q + r. Moreover we have the following bounds (for any ε > 0):

i) if char(k) = 0: H(r) ≤ 2 2 O(H(f ) 1+ε ) Deg(g) d 4 +d 3 +6d 2 -5d+3 (H(g) + 1), H(r i ) ≤ 2 2 O(H(f ) 1+ε ) Deg(g) O(d 4 ) (H(g) + 1) ∀i, H(q) ≤ 2 2 O(H(f ) 1+ε ) Deg(g) d 4 +d 3 +6d 2 -3d+5 Deg(f )(H(g) + 1). ii) if char (k) > 0: H(r) ≤ 2 2 O(H(f ) 1+ε ) Deg(g) O(d 4 Deg(g) 4 ) (H(g) + 1), H(r i ) ≤ 2 2 O(H(f ) 1+ε ) Deg(g) O(d 4 Deg(g) 4 ) (H(g) + 1) ∀i, H(q) ≤ 2 2 O(H(f ) 1+ε ) Deg(g) O(d 4 Deg(g) 4 ) Deg(f )(H(g) + 1). In both cases we have Deg(r) ≤ H(f )! Deg(g) d , Deg(r i ) ≤ H(f )! Deg(g) d ∀i, Deg(q) ≤ H(f )! Deg(g) d+1 Deg(f ).
Proof. Let us write f = u.P where u is a unit and P a Weierstrass polynomial in x n . Let us decompose P into the product of irreducible Weierstrass polynomials

P = P 1 • • • P s .
Let us consider the following Weierstrass divisions:

g = P 1 Q 1 + R 1 Q 1 = P 2 Q 2 + R 2 • • • • • • Q s-1 = P s Q s + R s . Then g = P 1 • • • P s Q s + R 1 + P 1 R 2 + P 1 P 2 R 3 + • • • + P 1 • • • P s-1 R s .
Thus, by unicity of the Weierstrass division, we have

u • q = Q s , r := R 1 + P 1 R 2 + P 1 P 2 R 3 + • • • + P 1 • • • P s-1 R s
are the quotient and the the remainder of the division of g by P .

Here s ≤ d since P is monic of degree d in x n . Let d i be the degree in x n of the polynomial P i for 1 ≤ i ≤ s. Let us choose 1 ≤ i ≤ s and let us denote by

α 1 , • • • , α di ∈ K n-1 the roots of P i .
First let us prove the lemma when char(k) = 0. In this case these roots are distinct. Then

P i = di i=1 (x n -α i ).
We have H(x n -α i ) ≤ H(α i )+Deg(α i ) ≤ 2 H(f ) (by Lemma 3.6 (iii)) and Deg(x nα i ) = Deg(α i ) ≤ H(f ). Then, by Lemma 3.6 (vi) and since d i ≤ d ≤ H(f ) (by Lemma 3.7), we have

H(P i ) ≤ d i H(f ) di • 2 H(f ) ≤ 2 H(f ) H(f )+2 .

Moreover

Deg(P i ) ≤ H(f )! since P i is in the extension of k(x) generated by the roots of f . Exactly as in the proof of Lemma 4.2 we have

R i ∈ k(x, α 1 , • • • , α d , Q i-1 (x , α 1 ), • • • , Q i-1 (x , α d )). Since Q i-1 = Qi-2-Ri-1 Pi-1
we obtain, by induction,

Q i-1 (x , α k ) ∈ k(x , α 1 , • • • , α d , Q i-2 (x , α 1 ), • • • , Q i-2 (x , α d )) thus (7) R i , Q i , P i ∈ k(x, α 1 , • • • , α d , g(x , α 1 ), • • • , g(x , α d )) ∀i and Deg(R i ), Deg(Q i ), Deg(r), ≤ H(f )! Deg(g) d ∀i
by Corollary 3.12. Since q = g-r f , then

q ∈ k(x, α 1 , • • • , α d , g(x , α 1 ), • • • , g(x , α d ), g, f )
and deg(q) ≤ H(f )! Deg(g) d+1 Deg(f ). Thus the inequalities on the degrees are proven.

Let ε be a positive real number. By Lemma 4.2 the height of R 1 is bounded by d 1 (H(P 1 )! Deg(g) d1 ) d1 (4 H(P 1 ) H(P1) O(d 1 ) Deg(g)(H(g) + 1) + d 1 -1) and so we obtain

(8) H(R 1 ) ≤ 2 2 O(H(f ) 1+ε ) • Deg(g) d 2 +1 (H(g) + 1) by Lemma 4.4 since H(P 1 ) ≤ 2 H(f ) H(f )+2 and d 1 ≤ d ≤ H(f ).
By Lemma 3.6 (ii) and (vi) we have 

H(Q 1 ) = H g -R 1 P 1 ≤ 2 Deg(P 1 ) Deg(g -R 1 )× × max{H(P 1 ), 2 Deg(g) Deg(R 1 ) max{H(g), H(R 1 )}} ≤ 4 H(f )! Deg(g) 2 Deg(R
H(Q 1 ) ≤ 2 2 O(H(f ) 1+ε ) Deg(g) d 2 +2d+3 (H(g) + 1).
Still by Lemma 4.2, and as we have shown for H(R 1 ), we have

(10) H(R i ) ≤ 2 2 O(H(f ) 1+ε ) Deg(Q i-1 ) d 2 +1 (H(Q i-1 ) + 1),
and by Lemma 3.6 (ii) and (vi), and as we have done for H(Q 1 ), we have

H(Q i ) ≤ 2 Deg(P i ) Deg(Q i-1 -R i )× × max{H(P i ), 2 Deg(R i ) Deg(Q i-1 ) max{H(R i ), H(Q i-1 )}} ≤ 4 H(f )! Deg(Q i-1 ) 2 Deg(R i ) 2 max{H(P i ), H(Q i-1 ), H(R i )} ≤ 4(H(f )!) 5 Deg(g) 4d max{H(P i ), H(Q i-1 ), H(R i )}.
The previous bound (10) on H(R i ) gives

H(Q i ) ≤ 2 2 O(H(f ) 1+ε ) Deg(g) 4d Deg(Q i-1 ) d 2 +1 (H(Q i-1 ) + 1).
Since d ≤ H(f ), Deg(Q i ) ≤ H(f )! Deg(g) d for i, and by using the bound (9) on H(Q 1 ), we obtain by induction on i

H(Q i ) ≤ 2 2 O(H(f ) 1+ε )
Deg(g) (d 3 +d 2 +4d)(i-1)+d 2 +2d+3 (H(g) + 1) ∀i ≥ 1.

Thus the bound (10) gives

(11) H(R i ) ≤ 2 2 O(H(f ) 1+ε ) Deg(g) (d 3 +d 2 +4d)i+d 2 -6d+3 (H(g) + 1) ∀i ≥ 2.
By Lemma 3.6 (vi), for all i ≥ 2

H(P 1 • • • P i-1 R i ) ≤ i Deg(P 1 ) • • • Deg(P i-1 ) Deg(R i )× max{H(P 1 ), • • • , H(P i-1 ), H(R i )} ≤ i(H(f )!) i Deg(g) d max{H(P 1 ), • • • , H(P i-1 ), H(R i )} ≤ 2 2 O(H(f ) 1+ε ) Deg(g) (d 3 +d 2 +4d)i+d 2 -5d+3 (H(g) + 1)
by (11). We have

P i and R i ∈ k(x, α 1 , • • • , α d , g(x(, α 1 ), • • • , g(x , α d )) for all i, then 
Deg(P 1 • • • P i-1 R i ) ≤ H(f )! Deg(g) d ∀i.
Thus by Lemma 3.6 (ii) we obtain

H(r) ≤ s(H(f )! Deg(g) d ) s • 2 2 O(H(f ) 1+ε ) Deg(g) (d 3 +d 2 +4d)s+d 2 -5d+3 (H(g) + 1) ≤ 2 2 O(H(f ) 1+ε ) Deg(g) d 4 +d 3 +6d 2 -5d+3 (H(g) + 1) since s ≤ d and d ≤ H(f ).
Thus by Lemma 3.6 (ii) and (vi)

H(q) = H g -r f ≤ 2 Deg(g -r) Deg(f ) max {H(f ), 2 Deg(g) Deg(r) max{H(g), H(r)}} ≤ 4 Deg(g) 2 Deg(r) 2 Deg(f ) • 2 2 O(H(f ) 1+ε ) Deg(g) d 4 +d 3 +6d 2 -5d+3 (H(g) + 1) ≤ 2 2 O(H(f ) 1+ε ) Deg(g) d 4 +d 3 +6d 2 -3d+5 Deg(f )(H(g) + 1). If we write r(x) = r 0 (x ) + r 1 (x )x n + • • • + r d-1 (x )x d-1 n we have r 0 (x ) = r(x , 0) and (12) r i+1 (x ) = r -(r 0 + r 1 x n + • • • + r i x i n ) x i n (x , 0) ∀i ≥ 0.
In particular, from (7), we have

r i ∈ k(x , α 1 , • • • , α d , g(x , α 1 ), • • • , g(x , α d )) ∀i
hence Deg(r i ) ≤ H(f )! Deg(g) d for all i by Corollary 3.12. From (12), Lemma 3.7 and Lemma 3.6 (ii) we obtain

H(r i+1 ) ≤ H r -(r 0 + r 1 x n + • • • + r i x i n ) x i n = H r x i n - r 0 x i n -• • • - r i-1 x n -r i ≤ (i + 2) Deg(r) Deg(r 0 ) • • • Deg(r i ) max{H(r) + i, H(r 0 ) + i, • • • , H(r i-1 ) + 1, H(r i )} ≤ (d + 1)(H(f )! Deg(g) d ) d+1 (max{H(r), H(r 0 ), • • • , H(r i-1 ), H(r i )} + d) .
Thus, by induction on i and using the bound on H(r) proven above, we see that

H(r i ) ≤ 2 2 O(H(f ) 1+ε ) Deg(g) O(d 4 ) (H(g) + 1) ∀i.
In the case char (k) = p > 0 the proof is completely similar using Lemma 4.3 instead of Lemma 4.2 so we skip the details.

Remark 4.6. We could prove directly the Weierstrass Division Theorem from the Weierstrass Preparation Theorem as done in [START_REF] Cluckers | Strictly convergent analytic structures[END_REF]. But this would give a bound on the height of the remainder which is not linear in H(g). This linear bound in H(g) is exactly what we need to prove Theorem 1.1.

Ideal membership problem in localizations of polynomial rings

Before bounding the complexity of the Ideal Membership Problem in the ring of algebraic power series we review this problem in the ring of polynomials and give extensions to localizations of the ring of polynomials that may be of independent interest.

Let k be a field and x := (x 1 , • • • , x n ). The following theorem is well known (such a result has first been proven by G. Hermann [START_REF] Hermann | Die Frage der endlich vielen Schritte in der Theorie der Polynomideale[END_REF] but a modern and correct proof is given in the appendix of [START_REF] Mayr | The complexity of the word problems for commutative semigroups and polynomial ideals[END_REF]):

Theorem 5.1. [He26][MM82] Let k be a infinite field. Let M be a submodule of k[x] q generated by vectors f 1 , • • • , f p whose components are polynomials of degrees less than d. Let f ∈ k[x] q . Then f ∈ M if and only if there exist a 1 , • • • , a p ∈ k[x] of degrees ≤ deg(f ) + (pd) 2 n such that f = a 1 f 1 + • • • + a p f p .

If we work over the local ring

k[x] (x) the situation is a bit different. Saying that f ∈ k[x] q is in k[x] (x) M is equivalent to say that there exist polynomials a 1 , • • • , a p and u, u / ∈ (x), such that (13) uf = a 1 f 1 + • • • + a p f p .
There exists an analogue of Buchberger algorithm to compute Gröbner basis in local rings introduced by T. Mora [START_REF] Mora | An algorithm to compute the equations of tangent cones, Computer algebra[END_REF] but it does not give effective bounds on the degrees of the a i . We can also do the following: Saying that (13) is satisfied is equivalent to say that there exist polynomials a 1 ,

• • • , a p , b 1 ,.., b n such that f = a 1 f 1 + • • • + a p f p + b 1 x 1 f + • • • + b n x n f.
In this case u = 1i x i b i . Thus by applying Theorem 5.1, we see that

f ∈ k[x] (x) M if and only if (13) is satis- fied for polynomials u, a 1 , • • • , a p of degrees ≤ deg(f )+((p + n) max{d, deg(f ) + 1}) 2 n
. But this bound is not linear in deg(f ) any more, which may be interesting if f 1 , • • • , f p are fixed and f varies. Nevertheless we can prove the following result: Theorem 5.2. For any n, q and d ∈ N there exists an integer γ(n, q, d) such that γ(n, q, d) = (2d) 2 O(n+q) and satisfying the following property: Let k be an infinite field, M be a submodule of k

[x 1 , • • • , x n ] q generated by vectors f 1 , • • • , f p of degree ≤ d and let f ∈ k[x] q . Let P be a prime ideal of k[x]. Then f ∈ k[x] P M if and only if there exist polynomials a 1 , • • • , a p of degrees ≤ deg(f ) + γ(n, q, d) and u, u / ∈ P , of degree ≤ γ(n, q, d) such that uf = a 1 f 1 + • • • + a p f p .
Proof. Let R be the ring defined as follows (this is the idealization of M -see [START_REF] Nagata | Local Rings[END_REF]): the set R is equal to k[x] × k[x] q and we define the sum and the product as follows:

(p, f ) + (p , f ) := (p + p , f + f ) (p, f ).(p , f ) := (pp , pf + p f ) ∀(p, f ), (p , f ) ∈ k[x] × k[x] q .
Let I := {0} × M ⊂ R. Then I is an ideal of R and it is generated by (0, f 1 ), • • • , (0, f q ). Moreover R is isomorphic to the ring

R := k[x 1 , • • • , x n , y 1 , • • • , y q ] (y 1 , • • • , y q ) 2
and the isomorphism σ : R -→ R is defined as follows:

If (p, f ) ∈ R, f := (f (1) , • • • , f (q) ), then σ(p, f ) is the image of p+f (1) y 1 +• • •+f (q) y q in R .
The image I by σ is an ideal of R and we denote by I an ideal of k[x, y] whose image in R is equal to σ(I). Thus, by identifying R and R , we have the following equivalences:

f ∈ M ⇐⇒ (0, f ) ∈ I ⇐⇒ f (1) (x)y 1 + • • • + f (q) (x)y q ∈ I + (y) 2 .
Let us assume that the theorem is proven when q = 1. We will apply it when

M = I + (y) 2 is an ideal of k[x, y]. If we write f i = (f i,1 , • • • , f i,q ) for 1 ≤ i ≤ p then I + (y) 2 is generated by f 1 (x, y) := q j=1 f 1,j y j , • • • , f p (x, y) := q j=1
f p,j y j and the y i y j for 1 ≤ i ≤ j ≤ q, whose degrees are less than d + 2. Thus, by assumption, there exist u(x, y), a 1 (x, y), • • • , a p (x, y), a i,j (x, y) for 1 ≤ i ≤ j ≤ with u(0, 0) = 0 and such that

(14) u f (1) (x)y 1 + • • • + f (q) (x)y q = p i=1 a i f i + 1≤i≤j≤q a i,j y i y j and deg(a k ), deg(a i,j ) ≤ deg(f ) + γ(n + q, 1, d + 2)
where γ(n + q, 1, d + 2) ≤ (2d) 2 O(n+q) . By identifying the coefficients of y 1 ,..., y q of both sides of the Equality (14) we obtain

u(x, 0)f (x) = p i=1 a i (x, 0)f i (x)
and this proves the theorem. Thus we only need to prove the theorem when M = I is an ideal of k[x] (i.e. for q = 1).

Let I = Q 1 ∩ • • • ∩ Q s be an irredundant primary decomposition of I in k[x]. Let us assume that Q 1 , • • • , Q r ⊂ P and Q i ⊂ P for i > r. Then Ik[x] P = Q 1 k[x] P ∩ • • • ∩ Q r k[x] P is an irredundant primary decomposition of Ik[x] P in k[x] P (see Theorem 17, Chap. 4 [ZS58]). Let J be the ideal of k[x] defined by J = Q 1 ∩ • • • ∩ Q r . Obviously Ik[x] P = Jk[x] P and moreover for any f ∈ k[x], f ∈ Jk[x] P if and only if f ∈ J. If r = s, then I = J and for every f ∈ k[x], f ∈ Ik[x] P if and only if f ∈ I.
So this case is exactly Theorem 5.1. In the general case r < s the problem can also be reduced to Theorem 5.1 as follows. Each ideal Q i may be generated by polynomials of degree ≤ (2d) 

, • • • , x n of degree ≤ (2d) 2 O(n) , thus t ≤ (2d) 2 O(n) +n n ≤ (2d) 2 O(n) also. If f ∈ Ik[x] P , then f ∈ J and by Theorem 5.1, there exist polynomials c 1 , • • • , c t such that f = c 1 g 1 + • • • + c t g t where deg(c i ) ≤ deg(f ) + (td) 2 n ≤ deg(f ) + (2d) 2 O(n) for every i. Let J be the ideal of k[x] equal to Q r+1 ∩ • • • ∩ Q s .
Then as for J, J is generated by polynomials of degrees ≤ (2d) 2 O(n) . Since J ⊂ P , one of these generators is not in P . Let u be such a polynomial. Then we have ug i ∈ J ∩ J = I for every i. Thus there exist polynomials b i,j , for 1 ≤ i ≤ t and 1 ≤ j ≤ p, such that

ug i = j b i,j f j .
Still by Theorem 5.1, we may choose the b i,j such that deg

(b i,j ) ≤ (2d) 2 O(n) . Hence uf = j i c i b i,j f j .
Then the result follows since deg(u)

≤ (2d) 2 O(n) and deg i c i b i,j ≤ deg(f ) + (2d) 2 O(n) .
Let S be a multiplicative closed subset of k[x]. The proof of Theorem 5.2 gives also the following result:

Proposition 5.3. Let k be an infinite field. Let M be a submodule of k[x 1 , • • • , x n ] q generated by the vectors f 1 , • • • , f p and S be a multiplicative closed subset of k[x].
Then there exists a constant C > 0 (depending only on M ) such that the following holds:

For any f ∈ k[x] q , f ∈ S -1 M if and only if there exist polynomials a 1 , • • • , a p of degrees ≤ deg(f ) + C and u, u ∈ S, of degree ≤ C such that uf = a 1 f 1 + • • • + a p f p .
Proof. We can adapt the proof of Theorem 5.2 as follows (we keep the same notations): the reduction to the case where M = I is an ideal of k[x] remains the same.

Then if I = Q 1 ∩ • • • ∩ Q s is an irredundant primary decomposition of I in k[x], we may assume that Q 1 , • • • , Q r ⊂ k[x]\S and Q i ∩ S = ∅ for i > r.
Then as before

I • S -1 k[x] = Q 1 • S -1 k[x] ∩ • • • ∩ Q r • S -1 k[x]
is an irredudant primary decomposition of

I • S -1 k[x]. If J denotes the ideal Q 1 ∩• • •∩Q r of k[x], then for any f ∈ k[x], we also have f ∈ I •S -1 k[x] = J •S -1 k[x]
if and only if f ∈ J.

Then we follow the proof of Theorem 5. n) for any i and g 1 ,..., g t are generators of J. Moreover the degrees of the g i and the integer t are bounded by (2d) 2 O(n) . Now the only difference with the proof of Theorem 5.

2: if f ∈ k[x] and f ∈ I • S -1 k[x] then f ∈ J and there exist polynomials c 1 , • • • , c t such that f = c 1 g 1 + • • • + c t g t where deg(c i ) ≤ deg(f ) + (td) 2 n ≤ deg(f ) + (2d) 2 O(
2 is that k[x]\S is not an ideal of k[x]. So let us choose a non-zero polynomial u ∈ Q r+1 ∩ • • • ∩ Q s ∩ S (such a
polynomial exists since S is a multiplicative system and Q i ∩ S = ∅ for all i > r) and let us denote by D its degree: D = deg(u). Then ug i ∈ I for every i.

Still by following the proof of Theorem 5.2 we see by Theorem 5.1 that there exist polynomials b i,j , for 1 ≤ i ≤ t and 1 ≤ j ≤ p, such that n) for every i and j. Then

ug i = j b i,j f j with deg(b i,j ) ≤ D + (2d) 2 O(
uf = j i c i b i,j f j and deg i c i b i,j ≤ deg(f ) + D + (2d) 2 O(n) .
So the proposition is proven with C = D + (2d) 2 O(n) .

Ideal membership in rings of algebraic power series

Theorem 6.1. Let k be any infinite field. Then there exists two computable functions C 1 (n, q, p, H 1 , D 1 , D 2 ) and C 2 (n, q, p, H 1 , D 1 , D 2 ) such that the following holds:

Let n, q, p, H 1 , H 2 , D 1 and D 2 be integers and

f = (f 1 , • • • , f q ) and g 1 = (g 1,1 , • • • , g 1,q ), • • • , g p = (g p,1 , • • • , g p,q ) be vectors of k x 1 , • • • , x n q satisfying H(g i ) ≤ H 1 for all i, H(f ) ≤ H 2 , [k(x, g i,j ) 1≤i≤p, 1≤j≤q : k(x)] ≤ D 1 , [k(x, f j ) 1≤j≤q : k(x)] ≤ D 2 .
Let us assume that f is in the k x -module generated by the vectors g i . Then there exist algebraic power series a i for 1 ≤ i ≤ p such that (15)

f j = p i=1 a i g i,j , 1 ≤ j ≤ q and H(a i ) ≤ C 1 (n, q, p, H 1 , D 1 , D 2 ) • (H 2 + 1) ∀i, Deg(a i ) ≤ C 2 (n, q, p, H 1 , D 1 , D 2 ) ∀i.
Proof. The theorem is proven by induction on n. For n = 0 and any q, p, H 1 , H 2 , D 1 , D 2 any solution (a i ) of (15) will have height equal to 0 and degree equal to 1. Let us assume that theorem is proven for an integer n -1 ≥ 0 and any integers q, p, H 1 , H 2 , D 1 , D 2 and let us prove it for n.

We set H g := max i,j H(g i,j ), D g := max i,j Deg(g i,j ), H f := max j H(f j ) and D f := max j Deg(f j ). Let G be the p×q matrix whose entries are the g i,j . We assume that the rank of G is q ≤ p (otherwise some equations may be removed) and that the first q columns are linearly independent. Let ∆ be the determinant of these first q columns. By a linear change of coordinates me may assume that ∆ is x n -regular of degree d since k is infinite. By Lemma 3.7 d ≤ H(∆). Moreover ∆ is a sum of q! elements which are the product of q entries of G. Thus by Lemma 3.6 (ii) and (vi) we have

H(∆) ≤ q!D q! g qD q g H g = q!qD q!+q g H g .
Of course ∆ ∈ k(x, g i,j ) 1≤i≤p, 1≤j≤q thus

Deg(∆) ≤ D g .
By Lemma 4.1 we can write ∆ = u • P where u is a unit and P a Weierstrass polynomial of degree d with

H(P ) ≤ 2d H(∆) d+1 ≤ 2 H(∆) H(∆)+2 ≤ 2 q!qD q!+q g H g q!qD q!+q g Hg+2 . Set F j (x, A) := p i=1 g i,j (x)A i -f j (x) ∀j where A 1 , • • • , A p are new variables.
Let a i,k (x ) be algebraic power series of k x for 1 ≤ i ≤ p and 0 ≤ k ≤ d -1.

Then let us set (16)

a * i := d-1 k=0 a i,k (x )x k n for 1 ≤ i ≤ p, a * := (a * 1 , • • • , a * p ). Let A i,k , 1 ≤ i ≤ p, 0 ≤ k ≤ d -1,

be new variables and let us set

A * i := d-1 k=0 A i,k x k n , 1 ≤ i ≤ p and A * := (A * 1 , • • • , A * p ).
Let us consider the Weierstrass division of F j (x, A * ) by ∆ with respect to the variable x n :

F j (x, A * ) = ∆.Q j (x, A * ) + R j where R j = d-1 l=0 R j,l (x , A * )x l n .
Let us consider the following Weierstrass divisions:

g i,j (x)x k n = ∆.Q i,j,k (x) + R gi,j , where R gi,j = d-1 l=0 R i,j,k,l (x )x l n ,
and

f j (x) = ∆.Q j (x) + R fj ,
where

R fj = d-1 l=0 R j,l (x )x l n .
By unicity of the remainder and the quotient of the Weierstrass division we obtain:

(17) Q j (x, A * ) = p i=1 d-1 k=0 Q i,j,k (x)A i,k -Q j (x), R j,l (x , A * ) = p i=1 d-1 k=0 R i,j,k,l (x )A i,k -R j,l (x ),
Hence Q j (x , A * ) and R j,l (x , A * ) are linear with respect to the variables A i,k .

If

(18) R j,l (x , a * ) = 0 for all j and l, then F j (x, a * ) ∈ (∆) ∀j. This means that there exists a vector of k x q , denoted by b(x), such that

(19) G(x).a * (x) -f (x) = ∆(x).b(x)
where G(x) is the q × p matrix with entries g i,j (x) and f (x) is the vector with entries f j (x). In fact we can choose b(x) to be the vector of entries Q j (x, a * ).

Let G (x) be the adjoint matrix of the q × q matrix built from G(x) by taking only the first q columns. Then G (x).G(x) = ∆(x).1 1 q .

Thus, by multiplying (19) by G (x) on the left side, we have

     ∆(x)a * 1 (x) + P 1 (a * q+1 (x), • • • , a * p (x)) ∆(x)a * 2 (x) + P 2 (a * q+1 (x), • • • , a * p (x) . . . ∆(x)a * q (x) + P q (a * q+1 (x), • • • , a * p (x))      -G (x).f (x) = ∆(x).G (x).b(x)
for some P i depending linearly on a

* q+1 (x), • • • , a * p (x). Then we set a i (x) := a * i (x) -c i (x) for 1 ≤ i ≤ q, a i (x) := a * i (x) for q < i ≤ p, (20) 
where c(x) is the vector G (x).b(x). Since G (x) has rank q, this shows that G(x).a(x) -f (x) = 0 i.e. a(x) is a solution of (15). Now we have to bound the height and the degree of a(x) in terms of the height and the degree of a * . For simplicity we will bound the height and the degree of a(x) when char (k) = 0. The bounds in positive characteristic are obtained in the same way and they are similar (the only difference comes from Theorem 4.5 -see also Remark 6.2).

First by Lemma 3.6 (iv) we have

H(g i,j (x)x k n ) ≤ H g + kD g . Let us remind that d ≤ H(∆) ≤ q!qD q!+q g H g ≤ q q D q!+q g H g .
Thus by theorem 4.5 we have (by choosing ε = 1 for simplicity and since k < d):

H(R i,j,k,l (x )) ≤ 2 2 O(H(∆) 2 ) D O(d 4 ) g (H g + kD g + 1) ≤ 2 2 O(q 2q D 2(q!+q) g H 2 g ) , H(R i,l (x )) ≤ 2 2 O(H(∆) 2 ) D O(d 4 ) f (H f + 1) ≤ 2 2 O(q 2q D 2(q!+q) g H 2 g ) D O(d 4 ) f (H f + 1), H(Q i,j,k (x)) ≤ 2 2 O(q 2q D 2(q!+q) g H 2 g ) D d 4 +d 3 +6d 2 -3d+5 g Deg(∆)(H g + kD g + 1) ≤ 2 2 O(q 2q D 2(q!+q) g H 2 g ) , H(Q j (x)) ≤ 2 2 O(q 2q D 2(q!+q) g H 2 g ) D d 4 +d 3 +6d 2 -3d+5 f Deg(∆)(H f + 1) ≤ 2 2 O(q 2q D 2(q!+q) g H 2 g ) D 8d 4 f (H f + 1), Deg(R i,j,k,l (x )) ≤ H(∆)!D H(∆) g ≤ (H(∆)D g ) H(∆) ≤ (q!qD q!+q+1 g H g ) q!qD q!+q g Hg ≤ 2 2 O(q 2q D 2(q!+q) g H 2 g ) , Deg(R i,l (x )) ≤ H(∆)!D H(∆) f ≤ (q!qD q!+q g D f H g ) q!qD q!+q g Hg ≤ (2D f ) 2 O(q 2q D 2(q!+q) g H 2 g ) , Deg(Q i,j,k (x)) ≤ H(∆)!D H(∆)+1 g Deg(∆) ≤ (q!qD q!+q+1 g H g ) q!qD q!+q g Hg+2 D g ≤ 2 2 O(q 2q D 2(q!+q) g H 2 g ) , Deg(Q j (x)) ≤ (q!qD q!+q g D f H g ) q!qD q!+q g Hg D q!qD q!+q g Hg f ≤ (2D f ) 2 O(q 2q D 2(q!+q) g H 2 g )
.

We set D a * := Deg(a * ), H a * := H(a * ). By Lemma 3.6 (vi) we have

H(Q i,j,k (x)a i,k (x )) ≤ 2 Deg(Q i,j,k (x))D a * max{H(Q i,j,k (x )), H a * } ≤ 2 2 O(q 2q D 2(q!+q) g H 2 g ) D a * H a * . Moreover Deg(Q i,j,k (x)a i,k (x )) ≤ 2 2 O(q 2q D 2(q!+q) g H 2 g ) D a * .
Since the components of b(x) are the Q j (x, a * ) we obtain by (17) and Lemma 3.6 (ii)

H(b(x)) ≤ (pd + 1) 2 2 O(q 2q D 2(q!+q) g H 2 g ) D a * pd max j {Deg(Q j (x))}× max 2 2 O(q 2q D 2(q!+q) g H 2 g ) D a * H a * , H(Q j (x)) . Since d ≤ H(∆) ≤ q!qD q!+q g H g we get (21) H(b(x)) ≤ (2 p+1 D f ) 2 O(q 2q D 2(q!+q) g H 2 g ) D pd+1 a * max{H a * , (H f + 1)}.
Moreover (17) gives ( 22)

Deg(b(x)) ≤ (2 p+1 D f ) 2 O(q 2q D 2(q!+q) g H 2 g ) D a * .
We have H(∆) ≤ q.q!D q!+q g H g and, by Lemma 3.6 (ii) and (vi) the height any (q -1) × (q -1) minor of G is bounded by (q -1)!D (q-1)! g ((q -1)D q-1 g H g ) ≤ q.q!D q!+q g H g . Thus, by Lemma 3.6 (vi), the height of the coefficients of G (x) is less than 2D 2 g q.q!D q!+q g H g = 2q!qD q!+q+2 g H g . Hence, by Lemma 3.6 (ii) and (vi), using (21), ( 22) and since Deg(G (x)) ≤ D g we obtain

H(G (x).b(x)) ≤ q(Deg(G (x)) Deg(b(x))) q × 2 Deg(G (x)) Deg(b(x)) max{H(G (x)), H(b(x))} ≤ (2 p+1 D f ) 2 O(q 2q D 2(q!+q) g H 2 g ) D q+pd+1
a * max{H a * , (H f + 1)}. Hence, by (20) and Lemma 3.6 (ii)

H(a(x)) ≤ (2D f + 2 p ) 2 O(q 2q D 2(q!+q) g H 2 g ) D 2Hgp+3 a * max{H a * , (H f + 1)}. Moreover Deg(a(x)) ≤ D a * Deg(b(x)) ≤ (2 p+1 D f ) 2 O(q 2q D 2(q!+q) g H 2 g ) D 2 a * .
Let Φ := q 2q D 2(q!+q) g H 2 g . By the inductive assumption we can find a solution a (x ) = (a i,k (x )) 1≤i≤p, 0≤k≤d-1 of the system (18) such that 16) and Lemma 3.6 (ii), the solution a(x) of (15) satisfies

H(a (x )) ≤ C 1 n -1, qd, pd, 2 2 O(Φ) , 2 2 O(Φ) , (2D f ) 2 O(Φ) • D O(Φ 2 ) f 2 2 O(Φ) (H f + 1), Deg(a (x )) ≤ C 2 n -1, qd, pd, 2 2 O(Φ) , 2 2 O(Φ) , (2D f ) 2 O(Φ) . Since D a * ≤ Deg(a (x )), H a * ≤ d • Deg(a (x )) d (H(a (x )) + d -1) by (
H(a(x)) ≤ (2D f + 2 p ) 2 O(Φ) × C 2 n -1, qd, pd, 2 2 O(Φ) , 2 2 O(Φ) , (2D f ) 2 O(Φ) 2Hgp+3 × C 1 n -1, qd, pd, 2 2 O(Φ) , 2 2 O(Φ) , (2D f ) 2 O(Φ) • D O(Φ 2 ) f 2 2 O(Φ) (H f + 1). Deg(a(x)) ≤ (2 p+1 D f ) 2 O(Φ) C 2 n -1, qd, pd, 2 2 O(Φ) , 2 2 O(Φ) , (2D f ) 2 O(Φ) 2 .
Then the result is proven with Φ = q 2q D 2(q!+q) 1

H 2 1 , C 1 (n, q, p, H 1 , D 1 , D 2 ) = (2D 2 + 2 p ) 2 O(Φ) × C 2 n -1, qd, pd, 2 2 O(Φ) , 2 2 O(Φ) , (2D 2 ) 2 O(Φ) 2H1p+3 × C 1 n -1, qd, pd, 2 2 O(Φ) , 2 2 O(Φ) , (2D 2 ) 2 O(Φ) • D O(Φ 2 ) 2 2 2 O(Φ)
and

C 2 (n, q, p, H 1 , D 1 , D 2 ) = (2 p+1 D 2 ) 2 O(Φ) × C 2 n -1, qd, pd, 2 2 O(Φ) , 2 2 O(Φ) , (2D 2 ) 2 O(Φ) 2 .
Remark 6.2. The proof of this result does not give a nice bound on the functions C 1 (n, q, p, H 1 , D 1 , D 2 ) or C 2 (n, q, p, H 1 , H 2 , D 1 , D 2 ). One can check that C 2 (n, q, p, H 1 , H 2 , D 1 , D 2 ) is bounded by a tower of exponentials of length 2n + 1 of the form

(2 p+1 D 2 ) 2 2 . . . O(qD 1 H 1 )
. For C 1 (n, q, p, H 1 , D 1 , D 2 ) we obtain the same kind of bound. In positive characteristic, the bounds are more complicated and are not polynomial in D 2 since the bounds on the complexity of the Weierstrass Division are not polynomial in D 2 .

Proof of Theorem 1.1

In this part we will denote by R n the ring of algebraic power series in n variables over a field k and R n its (x 1 , • • • , x n )-adic completion. If k is a finite field we replace k by k(t) where t is transcendental over k -this does not change the problem. Thus we may assume that k is infinite. l i,j e j for 1 ≤ i ≤ l, and let H (resp. D) be a bound on the height (resp. the degree) of the l i,j . The proof is done by a double induction on s and n. Let

f = f 1 e 1 + • • • + f s e s ∈ R s n \N.
We consider the following cases:

-(1) If s = 1 and N = (0), then M = R n and in this case

ord M (f ) = ord Rn (f ) ≤ H(f )
for any algebraic power series f by Lemma 3.7.

-(2) Assume that s = 1 and N = (0) is an ideal of R n . After a linear change of variables there exists a Weierstrass polynomial g(x) ∈ N with respect to x n , whose coefficients are in R n-1 , of degree d in x n . Then M is isomorphic to

R d n-1 /N for some sub-module N of R d n-1 . The isomorphism M R d n-1 /N is induced by the morphism R n -→ R d n-1 sending a power series f (x) ∈ R n onto (r 0 , • • • , r d-1 ) where r = r 0 + r 1 x n + • • • + r d-1 x d-1 n
is the remainder of the Weierstrass division of f (x) by g(x). Then N is the R n-1sub-module of R d n-1 generated by the vectors of coefficients of the remainders of the Weierstrass division of the elements of M by g(x). If f (x) ∈ R n then the remainder r of the division of f by g has height less than C 1 •(H(f )+1) for some C 1 > 0 depending only on g(x) and Deg(f ) (by Theorem 4.5 -moreover C 1 is polynomial in Deg(f ) when char (k) = 0). We remark that f and r have the same image in

M . If r = r 0 + r 1 x n + • • • + r d-1 x d-1
n , with r i ∈ R n-1 for all i, then (r 0 , r 1 , • • • , r d-1 ) has height less that C 1 • (H(f ) + 1) again by Theorem 4.5. Moreover ord M (f ) = ord M (r). Since x n is integral over R n-1 , there exists a constant a > 0 such that x a n ∈ (x ), with x = (x 1 , • • • , x n-1 ). Thus (x) ac ⊂ (x ) c for any integer c. So we have:

ord R d n-1 /N (r) = sup{c ∈ N / r ∈ (x ) c R d n-1 /N } ≥ 1 a + 1 ord M (r).
By the induction hypothesis on n there exists C > 0 such that

ord R d n-1 /N (r) ≤ C • H(r) ∀r ∈ R d n-1 .
Thus we have

ord M (f ) = ord M (r) ≤ (a+1) ord R d n-1 /N (r) ≤ (a+1)C H(r) ≤ (a+1)CC 1 (H(f )+1
). If char (k) = 0 and C is assumed to depend polynomially on Deg(r) by the induction hypothesis, then (a + 1)CC 1 depends polynomially on Deg(f ) by Theorem 4.5.

-(3) Assume that s ≥ 2 and f s is in the ideal of R n generated by l 1,s , • • • , l κ,s . Then we can write

f s = a 1 l 1,s + • • • + a κ l κ,s
where the a i are algebraic power series with H(a i ) ≤ C 2 • (H(f s ) + 1) for all i and C 2 > 0 depends only on the l i,s and Deg(f s ) (by Theorem 6.1). Moreover, when char (k) = 0, C 2 depends polynomially on Deg(f s ) ≤ Deg(f ) by Remark 6.2. Let us set

f := f - κ i=1 a i L i (e).
We set N = N ∩ (R s-1 n × {0}). We denote by M the sub-module of M equal to

R s-1 n × {0} N .
By Artin-Rees Lemma there exists a constant c 0 > 0 such that

(x) c+c0 M ∩ M ⊂ (x) c M ∀c ∈ N.
Hence we have

ord M (f ) = ord M (f ) ≤ ord M (f ) + c 0 .
By the induction hypothesis on s, there exists C > 0 depending on Deg(f ) (thus on Deg(f ) by Theorem 6.1) such that

ord M (f ) ≤ C • H(f ).
If char (k) = 0 and we assumed that C depends polynomially on Deg(f ) by the induction hypothesis, then C depends polynomially on Deg(f ) by Remark 6.2. Hence

ord M (f ) ≤ ord M (f ) + c 0 ≤ C • H(f ) + c 0 ≤ (C + c 0 ) H(f )
and C + c 0 depends polynomially on Deg(f ) in characteristic zero.

-(4) Assume that s ≥ 2 and f s is not in the ideal of R n generated by l 1,s , • • • , l κ,s .

Then by the case s = 1, there exists C > 0 depending only on the l i,s and Deg(f s ) such that

ord Rn (f s + a 1 l 1,s + • • • + a κ l κ,s ) ≤ C • H(f s )
for every a i ∈ R n . Moreover C depends polynomially on Deg(f s ) ≤ Deg(f ) when char (k) = 0. Let us remark that for every f ∈ R s n we have

ord M (f ) = sup{k / f ∈ (x) k M } = sup{k / f ∈ (x) k R s n modulo N } = sup{k / ∃a 1 , • • • , a κ ∈ R n , f + a 1 L 1 (e) + • • • + a κ L κ (e) ∈ (x) k R s n } = sup a1,••• ,aκ∈Rn ord R s n (f + a 1 L 1 (e) + • • • + a κ L κ (e)) .
Thus

ord M (f ) ≤ sup a1,••• ,aκ∈Rn {ord Rn (f s + a 1 l 1,s + • • • + a κ l κ,s )} ≤ C • H(f s ) ≤ C • H(f ) since ord R s n (g) = min i=1,••• ,s {ord Rn (g i )} ≤ ord Rn (g s ) for every g = (g 1 , • • • , g s ) = g 1 e 1 + • • • + g s e s ∈ R s n .
From now on we assume that

I = P n1 1 ∩ • • • ∩ P n l l
for some primes P i with ht(P i ) = ht(P j ) ∀i, j 

Ψ(d) := dim k R (x) d .
The function d -→ Ψ(d) coincides with a polynomial function of degree q := dim(R) = n-ht(I) for d large enough. So Ψ(d p ) and Φ(d q ) are polynomial functions of same degree (equal to pq) for d large enough. By choosing a > 0 large enough the leading coefficient of Φ(ad q ) will be strictly greater than the leading coefficient of Ψ(d p ). Thus for such a constant a > 0 we have

Ψ(d p ) < Φ(ad q ) ∀d >> 0.
This means that the canonical k-linear map k[x] ad q J ad q -→ R (x) d p is not injective for d large enough. For every d large enough let p d be a non-zero element of the kernel of this map. By assumption there exists a constant

C such that ord R (p d ) ≤ C • deg(p d ) ≤ Cad q ∀d.
Since p d is in the kernel of the previous k-linear map, we have ord R (p d ) ≥ d p , thus

Cad q ≥ d p .
But such an inequality is satisfied (for some constant a > 0) if and only if q ≥ p,

i.e. if dim(R) ≥ dim k[x] J
. This last inequality is equivalent to ht(I) ≤ ht(J).

Thus, by Lemma 3.10, such an inequality is satisfied if and only ht(I) = ht(J), i.e. if and only if I is generated by algebraic power series. This proves Theorem 1.3.

An example

Here we show through an example that Lemma 8.1 and Theorem 1.3 are not true in general.

Let k = C and n = 3. For simplicity we denote the variables x 1 , x 2 , x 3 by x, y, z. We set

f (z) := -log(1 -z) = k≥1 1 k z k . Let Q = (x, y) 2 = (x 2 , y 2 , xy) and Q = Q + (x + f (z)y) be ideals of C x, y, z . Then Q = Q = (x, y).
(1) Q is not generated by algebraic power series but ht(Q ∩C[x, y, z]) = ht(Q ) = 2:

We have (x, y) 2 = Q Q since x + f (z)y / ∈ (x, y) 2 , but there is no algebraic power series g(x, y, z) such that x + f (z)y = g(x, y, z) modulo Q.

Indeed, if it were the case, by replacing x 2 , y 2 and xy by zero in the expansion of g, we would find an algebraic power series h(z) such that y,z]). This proves the claim.

x + f (z)y = x + h(z)y which is not possible since f (z) is transcendental. So Q ∩ C[x, y, z] = (x, y) 2 and Q is not generated by algebraic power series. Since (x, y) 2 ⊂ Q ⊂ (x, y), we have ht(Q ) = 2 = ht((x, y) 2 ) = ht(Q ∩ C[x,
(2) A = C x, y, z /Q satisfies the local zero estimate (2) of Corollary 1.2:

(23) ord A (p) ≤ 2 deg(p) ∀p ∈ C[x, y, z]\Q .
Since Q ⊂ Q ⊂ (x, y) we have the canonical quotient morphisms:

A := C x, y, z Q -→ A := C x, y, z Q -→ B := C x, y, z (x, y) .
We consider two cases:

(a) if p is a polynomial of k[x, y, z], p / ∈ (x, y), then we have ord A (p) ≤ ord B (p). But we claim that ord B (p) ≤ deg(p). Indeed, let f ∈ C x, y, z be equal to p modulo (x, y). Since p / ∈ (x, y), p has a nonzero monomial of the form az k for some a ∈ C and k ≤ deg(p). Since f -p ∈ (x, y), then f has also a non zero monomial az k . So ord C x,y,z (f ) ≤ k. Thus we have Let n be an integer such that n + 1 ≤ ord A (p) = ord A (p ). This means that p ∈ (x, y, z) n+1 + (x, y) 2 + (x + f (z)y),

thus p = ε + η + c • (x + f (z)y)
for some ε ∈ (x, y, z) n+1 , η ∈ (x, y) 2 and c ∈ C x, y, z , . Since p = a(z)x + b(z)y we obtain

(a(z) -c(0, 0, z))x + (b(z) -c(0, 0, z)f (z))y = η + (c -c(0, 0, z))(x + f (z)y) + ε (25) But η := η + (c -c(0, 0, z))(x + f (z)y) ∈ (x, y) 2 . Moreover ε can be written as ε = ε (x, y, z) + ε x (z)x + ε y (z)y + ε 1 (z) where ε (x, y, z) ∈ (x, y) 2 , ε x (z), ε y (z) ∈ (z) n C z and ε 1 (z) ∈ (z) n+1 C z . Thus (25) shows that a(z) -c(0, 0, z) = ε x , b(z) -c(0, 0, z)f (z) = ε y (z), η + ε = 0, ε 1 (z) = 0.

This proves that if ord

A (p) ≥ n + 1 then there exists c(z) ∈ C z such that ord z (a(z) -c(z)) ≥ n and ord z (b(z) -c(z)f (z)) ≥ n. Let us write a(z) = k a k z k , b(z) = k b k z k and c(z) = k c k z k . If deg(p) ≤ d for some integer d, then deg(a), deg(b) ≤ d -1 thus a k = b k = 0 ∀k ≥ d. Since ord z (a(z) -c(z)) ≥ n then a k = c k ∀k < n.
In particular, if d < n, we have

b d = • • • = b n-1 = c d = • • • = c n-1 = 0. Since ord z (b(z) -c(z)f (z)) ≥ n then        0 0 0 0 0 1 0 0 0 0 1 2 1 0 0 0 . . . . . . . . . . . . . . . 1 n-1 1 n-2 • • • 1 0               c 0 c 1 c 2 . . . c n-1        =        b 0 b 1 b 2 . . . b n-1       
.

There 

     1 d 1 d-1 1 d-2 • • • 1 1 d+1 1 d • • • • • • 1 2 . . . . . . . . . . . . . . . 1 n-1 1 n-2 • • • • • • 1 n-d           c 0 c 1 . . . c d-1      =      b d b d+1 . . . b n-1      =      0 0 . . . 0      .
Let us assume that the local zero estimate (23) is not satisfied, i.e. ord A (p) > 2 deg(p). Then we can choose n = 2d. But for n = 2d the matrix

     1 d 1 d-1 • • • 1 1 d+1 1 d • • • 1 2 . . . . . . . . . . . . 1 2d-1 1 2d-2 • • • 1 d     
is a Hilbert matrix and is not singular. This means that Equation (26) for n = 2d has no nontrivial solution, hence c 0 = • • • = c n-1 = 0. This proves that a k = b k = 0 for every k which contradicts the assumption that p = 0. This proves that for every polynomial

p ∈ C[x, y, z], p / ∈ Q , we have (27) ord A (p) ≤ 2 deg(p).

Grauert-Hironaka-Galligo Division of power series

Let λ be a linear form on R n with positive coefficients. Let us consider the following order on N n : for all α, β ∈ N n , we say that α ≤ β if

(λ(α), α 1 , • • • , α n ) ≤ lex (λ(β), β 1 , • • • , β n )
where ≤ lex is the lexicographic order. This order induces an order on the set of monomials

x α1 1 • • • x αn n : we set x α ≤ x β if α ≤ β. This order is called the monomial order induced by λ. If f := α∈N n f α x α ∈ k x ,
the initial exponent of f with respect to the previous order is

exp(f ) := min{α ∈ N n / f α = 0} = inf Supp(f )
where the support of f is Supp(f ) := {α ∈ N n / f α = 0}. The initial term of f is f exp(f ) x exp(f ) and is denoted by in(f ). This is the smallest non-zero monomial in the expansion of f with respect to the previous order.

Let g 1 , • • • , g s be elements of k x . Set

∆ 1 := exp(g 1 ) + N n and ∆ i = (exp(g i ) + N n )\ 1≤j<i ∆ j , for 2 ≤ i ≤ s.
Finally, set

∆ 0 := N n \ s i=1 ∆ i .
We have the following theorem:

Theorem 10.1. [Gr72][Hi77][Ga79] Set f ∈ k x .
Then there exist some unique power series q 1 , • • • , q s , r ∈ k x such that f = g 1 q 1 + • • • + g s q s + r exp(g i ) + Supp(q i ) ⊂ ∆ i and Supp(r) ⊂ ∆ 0 . The power series r is called the remainder of the division of f by g 1 , • • • , g s with respect to the given monomial order. Moreover if k is a valued field and f , g 1 , • • • , g s are convergent power series, then the q i and r are convergent power series.

The uniqueness of the division comes from the fact the ∆ i 's are disjoint subsets of N n . The existence of such decomposition in the formal case is proven through the division algorithm:

Set α := exp(g). Then there exists an integer i 1 such that α ∈ ∆ i1 .

• If i 1 = 0, then set r (1) := in(g) and q

(1) i := 0 for any i.

• If i 1 ≥ 1, then set r (1) := 0, q (1) i := 0 for i = i 1 and q

(1) i1 := in(g) in(gi 1 ) .

Finally set g (1) := g -s i=1

g i q

(1)

i -r (1) . Thus we have exp(g (1) ) > exp(g). Then we replace g by g (1) and we repeat the preceding process.

In this way we construct a sequence (g (k) ) k of power series such that, for any k ∈ N, exp(g (k+1) ) > exp(g (k) ) and g

(k) = g - s i=1 g i q (k) i -r (k) with exp(g i ) + Supp(q (k) 
i ) ⊂ ∆ i and Supp(r (k) ) ⊂ ∆ 0 . At the limit k -→ ∞ we obtain the desired decomposition.

But in general if f and the g i are algebraic power series (or even polynomials) then r and the q i are not algebraic power series as shown by the following example: as formal power series in k x, y with an integer a > 1 (here we choose a monomial order induced by the linear form λ(α 1 , α 2 ) = α 1 + α 2 ). By symmetry the remainder of this division can be written r(x, y) := s(x) + s(y) where s(x) is a formal power series. By substituting y by x a we get s(x a ) + s(x) -x a+1 = 0.

This relation yields the expansion

s(x) = ∞ i=0 (-1) i x (a+1)a i .
Thus the remainder of the division has Hadamard gaps and thus is not algebraic if char (k) = 0. Hadamard gaps are defined as follows:

Definition 10.3. Let x = (x 1 , • • • , x n ). A power series f = k f k where f k is a homogeneous polynomial of degree k for every k has Hadamard gaps if the indices n 1 < n 2 < n 3 < • • • of all non-zero homogeneous terms of f satisfy the condition n k+1 > Cn k for all k where C > 1.

Over a characteristic zero field, a power series having Hadamard gaps cannot be algebraic.

Example 10.4. Let k be a field of any characteristic. Set

f n := xy - n i=0
(-1) i x (a+1)a i .

Then by the previous example

f n ≡ i>n (-1) i x (a+1)a i mod. (g).

Thus

ord k x /(g) (f n ) ≥ (a + 1)a n+1 .

Since f n is a polynomial of degree (a + 1)a n , this shows that the bound of Corollary 1.2 is optimal.

Generic Kashiwara-Gabber Example

In this part we will investigate a particular case of division. Mainly we will consider the problem of dividing an algebraic power series f (x, y) in two variables by an algebraic power series g(x, y) whose initial term is equal to xy with respect to a given monomial order as defined in the previous part. In this case the remainder of the division is the sum R(x) + S(y) of one power series in x and one power series in y.

Definition 11.1. Let k be a characteristic zero field and x be a single variable. A D-finite power series f is a formal power series in k x satisfying a linear differential equation with polynomial coefficients, i.e. there exist D ∈ N and a j (x) ∈ k[x] (not all equal to 0) for 0 ≤ j ≤ D such that

a D f (D) + a D-1 f (D-1) + • • • + a 0 f = 0.
Let us mention that by [START_REF] Stanley | Differentiably finite power series[END_REF] any algebraic power series is D-finite. In Example 10.2, if char (k) = 0, the remainder is not D-finite since D-finite power series have no Hadamard gaps (see [START_REF] Stanley | Differentiably finite power series[END_REF] or [START_REF] Lipshitz | A gap theorem for power series solutions of algebraic differential equations[END_REF] for instance). We will show that the situation of Example 10.2 is generic in some sense. Set g a (x, y) = xy -(i,j)∈E a i,j x i y j where a denotes the vector of entries a i,j ∈ k for some field k and E is a finite subset of N 2 such that:

(1) (0, 0), (0, 1), (1, 0) and (1, 1) / ∈ E, (2) {(2, 0), (0, 2)} ⊂ E.

If (0, 2) / ∈ E, let us choose the linear form λ defined by λ(e 1 , e 2 ) = 3e 1 + 2e 2 . Then for any e = (e 1 , e 2 ) ∈ E we have λ(e) = 3e 1 + 2e 2 > λ(1, 1) = 5 since only three situations may occur:

-either e 1 ≥ 2 so λ(e) ≥ 6, -either e 1 = 1 and e 2 ≥ 2 so λ(e) ≥ 7, -either e 1 = 0 and e 2 ≥ 3 so λ(e) ≥ 6. This means that there exists a monomial order induced by a linear form such that xy is the initial term of g a (x, y). By symmetry this is also true if (2, 0) / ∈ E. From now on we fix such monomial order and we perform the division of xy by g a (x, y): xy = g a (x, y)Q a (x, y) + R a (x) + S a (y).

Lemma 11.2. Let k = Q(a) where a is the set of new undeterminates a i,j for (i, j) ∈ E. Then R a (x) (resp. S a (y), Q a (x, y)) is a power series with coefficients in Q[a]. In particular if k is a characteristic zero field and α ∈ k Card(E) is a vector of elements α i,j ∈ k for every (i, j) ∈ E, then the coefficients of R α (x) (resp. S α (y), Q α (x, y)) are those of R a (x) (resp. S a (y), Q a (x, y)) evaluated in α.

Proof. Since the coefficient of the leading term xy of xy -(i,j)∈E a i,j x i y j is equal to 1, we see directly from the division algorithm given in Section 10 that the coefficients of R a (x), S a (y) and Q a (x, y) are in Q[a]. Then by evaluating the terms of the equality xy = g a (x, y)Q a (x, y) + R a (x) + S a (y) in a we necessarily obtain the equality xy = g α (x, y)Q α (x, y) + R α (x) + S α (y) by unicity of the division.

For every k ∈ N\{0, 1} we set E k = {(0, k + 1), (k + 1, 0), (k, k)}.

We have the following result: Proposition 11.3. Let E be a finite set as before such that E k ⊂ E for some integer k > 1. Let (α i,j ) ∈ C Card(E) whose coordinates are algebraically independent over Q. Then R α (x) is not a D-finite power series. In particular this is not an algebraic power series. We may assume that the polynomials P i = P (a, b, c, x), coefficients of the Relation (28), are globally coprime, otherwise we factor out their common divisor. For 0 ≤ i ≤ d, let V i be the subvariety of C 3 which is the zero locus of the coefficients of P i (a, b, c, x) (seen as a polynomial in x). Let V be the intersection of V 0 , • • • , V d . Then if (α) / ∈ V , one of the P i (α, x) is non-zero and R α (x) is D-finite over C[x]. Since we have assumed that the P i (a, b, c, x) are globally coprime, V is a finite union of algebraic curves and points, except if all but one P i are equal to 0. In this latter case, we have P d (a, b, c, x)R k-1 x (k+1)k i .

  Thus P (x , T, 0) is a non-zero polynomial vanishing at α, proving that α is algebraic, and H(α) ≤ deg x (P (x , T, 0)) ≤ deg (x ,xn) (P (x , x n , T )) = H(f ) and Deg(α) ≤ deg T (P (x , T, 0)) ≤ deg xn (P (x , x n , T )) ≤ H(f ).

  1 and e is a positive integer. Thus P ∈ k x [x p e n ] by Lemma 4.1 and d = Dp e . By the Weierstrass Division Theorem for formal power series we have g = P q + r where r = r 0 + r 1 x n + • • • + r d-1 x d-1 n and r i ∈ k x . Let us write g = g 0 (x , x p e n ) + g 1 (x , x p e n )x n + • • • + g p e -1 (x , x p e n )x p e -1 n

For

  any k x -module M , we have ord M (m) = ord c M (m) for all m ∈ M , thus we may assume that M is equal to R s n /N for some R n -submodule N of R s n . We set e := (e 1 , • • • , e s ) where the e 1 , • • • , e s is the canonical basis of R s n . Let us assume that N is generated by L 1 (e), • • • , L l (e) where L i (e) = s j=1

  and R denotes the ring k x /I. Let k[x] d be the set of polynomials of degree ≤ d and J d := J ∩ k[x] d for every integer d. We set for every integer d ≥ 0: Φ(d) := dim k k[x] d J d . The function d -→ Φ(d) coincides with a polynomial function of degree p := dim k[x] J = n-ht(J) for d large enough. Then we define for every integer d ≥ 0:

  (24) ord A (p) ≤ deg(p) ∀p ∈ C[x, y, z]\(x, y). (b) Now let p be a polynomial with p ∈ (x, y) but p / ∈ Q . In particular p = 0. Then there exists a unique polynomial p of the form p = a(z)x + b(z)y where a(z), b(z) ∈ k[z], deg(p ) ≤ deg(p) and p ≡ p modulo Q.

  Example 10.2 (Kashiwara-Gabber's Example). ([Hi77] p. 75) Let us perform the division of xy by g := (x -y a )(y -x a ) = xy -x a+1 -y a+1 + x a y a

  Proof. Let N = Card(E). The proof is made by induction on N . If N = 3, then E = E k . If α 0,k+1 , α k+1,0 , α k,k ∈ C are algebraically independent over Q and R(x) := R α (x) is a D-finite power series, then R(x) satisfies a differential equation:(28) P d (x)R (d) (x) + • • • + P 1 (x)R(x) + P 0 (x) = 0 where P 1 (x), • • • , P d (x) ∈ C[x].If we expand this relation in terms of a Q(α)-basis of the Q(α)-vector space C, we obtain at least one non-trivial relation of the same type where theP i (x) are in Q(α)[x]. So we assume that P i (x) ∈ Q(α)[x]for all i and evenP i (x) ∈ Q[α][x]for all i by multiplying this relation by a common denominator of the coefficients of the P i . Since α k+1,0 , α 0,k+1 and α k,k are algebraically independent over Q, we are reduced to assume that R a,b,c (x) is D-finite over Q[a, b, c] where a, b and c are new indeterminates and R a,b,c (x) is the x-depending part of the remainder of the division of xy by xy -ax k+1 -by k+1 -cx k y k : xy = xy -ax k+1 -by k+1 -cx k y k Q a,b,c (x, y) + R a,b,c (x) + S a,b,c (y). By Lemma 11.2 R a,b,c (x) ∈ Q[a, b, c] x , S a,b,c (y) ∈ Q[a, b, c] y and for every point α = (α 0,k+1 , α k+1,0 , α k,k ) ∈ C 3 , the power series R α (x) and S α (y) are equal to R a,b,c (x) and S a,b,c (y) evaluated in α.

  ,c (x) = 0 which means that R (d) a,b,c (x) = 0, thus we may replace P d by 1 and in this case V = ∅.From now on we replace c by -ab and we have the relation:(29) xy = (x -by k )(y -ax k )Q a,b,-ab (x, y) + R a,b,-ab (x) + S a,b,-ab (y).By symmetry we have R b,a,-ab (y) = S a,b,-ab (y). If we replace (x, y) by (by, ax) in (29) we getabxy = ab(y -a k x k )(x -b k y k )Q a,b,-ab (by, ax) + R a,b,-ab (by) + S a,b,-ab (ax),thus we obtain(30) 1 ab R a,b,-ab (by) = S a k ,b k ,-(ab) k (y).By replacing y by ax k in (29) we obtain:ax k+1 = R a,b,-ab (x) + S a,b,-ab (ax k ) so a k x k+1 = R a k ,b k ,-a k b k (x) + S a k ,b k ,-a k b k (a k x k ) and (31) a k x k+1 = R a k ,b k ,-a k b k (x) + 1 ab R a,b,-ab (a k bx k ) by (30). By writing R a,b,-ab (x) = l≥1 r l (a, b)x l and plugging it in (31) we obtain r l (a, b) = 0 ∀l ≤ k and r k+1 (a k , b k ) = a k .Moreover the coefficient of x kl on both sides of (31), for every l ≥ 1, is equal to0 = r kl (a k , b k ) + 1 ab r l (a, b)a kl b l hence r kl (a k , b k ) = -r l (a, b)a kl-1 b l-1 . Thus r k+1 (a, b) = a, r k(k+1) (a, b) = -a k+1 b, r k 2 (k+1) (a, b) = a k(k+1)+1 b k+1and by inductionr k i (k+1) (a, b) = (-1) i a r l (a, b) = 0 if l k+1 is nota power of k. Thus we obtain R a,b,-ab (x) = ∞ i=0 (-1) i a k i+1 -1 k-1 b k i -1

  2 O(n) and this bound depends only on n and d (see Statements 63, 64 and 64[START_REF] Seidenberg | Constructions in algebra[END_REF]). By Statement 56 of[START_REF] Seidenberg | Constructions in algebra[END_REF], the ideal J is generated by polynomials of degrees ≤ (2d) 2 O(n) and once more this bound depends only on n and d. Let g 1 , • • • , g t be such generators of J. Since deg(g i ) ≤ (2d) 2 O(n) for any i, then t will be bounded by the number of monomials in x 1

  are two cases to be considered: either ord A (p) ≤ deg(p) and the local zero estimate (23) is satisfied, either ord A (p) > deg(d). In the latter case we can choose n ≥ d. In particular

	(26)

Proof of Theorem 1.3

Let I be an ideal of R n . We set J := I ∩ k[x]. We have the following lemma: Lemma 8.1. We have ht(I) ≥ ht(J) and if I is generated by algebraic power series then ht(I) = ht(J). On the other hand if I is the intersection of a finite number of ideals which are powers of prime ideals of the same heights, i.e.

for some primes P i with ht(P i ) = ht(P j ) ∀i, j, then the equality ht(I) = ht(J) implies that I is generated by algebraic power series.

Proof. We have

. Thus we may assume that I and J are proper ideals. In this case J ⊂ (x)k[x] so ht(J) = ht(Jk[x] (x) ). Since the morphism k

Let us assume that I is generated by algebraic power series. By Noetherianity there exists a finite number of algebraic power series a 1 ,..., a r ∈ k x that generate I. Since k x is the Henselization of k[x] (x) , there exists an étale map k

Now we assume that ht(I) = ht(J).

First we consider the case where I is a prime ideal. Then J is also a prime ideal. If ht(J) = ht(I), then ht(Jk x ) = ht(I) and since Jk x ⊂ I, then I is a prime associated to Jk x . Since J is radical, then Jk x is also a radical ideal: indeed since k[x]/J is reduced, then its completion k x /Jk x is also reduced (see (1) p. 180 of [START_REF] Huneke | Integral closure of ideals, rings, and modules[END_REF]) so k x /Jk x is reduced. If Jk x = P 1 ∩ • • • ∩ P r is a prime decomposition of Jk x , then the ideals P i k x are prime ideals by Lemma 5.1 [START_REF] Kurke | Die Approximationseigenschaft lokaler Ringe[END_REF] so

is a prime decomposition of Jk x and I is equal to one of the P i k x , let us say P 1 k x = I. In particular I is generated by algebraic power series. Now let us assume that I = P 1 ∩ • • • ∩ P l where the P i are prime ideals of the same height. Let

for every i we have ht(J i ) = ht(P i ) for all i, thus P i is generated by algebraic power series by the previous case, thus I is also generated by algebraic power series. Finally let us assume that

where the P i are prime ideals of the same height and the n i are positive integers. Let us set

I is generated by algebraic power series by the previous case. Thus the associated primes ideals of √ I, i.e. the P i , are generated by algebraic power series. Hence the P ni i are generated by algebraic power series and I also. Exactly as in the example of Kashiwara-Gabber, this shows that R α,β,-αβ (x) is not D-finite if αβ = 0. Let S ⊂ C 3 be the surface of equation ab + c = 0. In particular S is not included in V since the components of V have dimension ≤ 1. Then we see that for any (α, β, γ) ∈ S\{ab = 0}, R α,β,γ (x) is not D-finite. This contradicts the assumption that R a,b,c (x) is D-finite since we have shown that this would imply that R α,β,γ (x) is D-finite for every (α, β, γ) / ∈ V . Thus R a,b,c (x) is not D-finite.

Let us assume that N > 3 and that the proposition is proven for every set of cardinal N -1 containing E k . Let us assume that R a (x) is D-finite, i.e. there exist polynomials

As we did before, we may assume that

x] for all i. By dividing the previous relation by a common divisor of the P i , we may assume that the P i are globally coprime. For 0 ≤ i ≤ d let V i denote the subvariety of C N which is the zero locus of the coefficients of P i (x) (seen as a polynomial with coefficients in

As in the previous case, since the P i are globally coprime, then codim

(we may find such an α since codim C N (V ) is strictly larger than codim C N (W )), we see that R α (x) is not D-finite which is a contradiction since α / ∈ V . Thus R a (x) is not D-finite and the proposition is proven for sets E of cardinal N .

Example 11.4. If E does not contain any of the sets E k for k > 1 then Proposition 11.3 is no valid in general. For instance let us consider

We set F = {(i, j), (i, i + j) ∈ E}. Let us consider the Weierstrass division

where Q and R are algebraic power series by Lafon Division Theorem. Then by replacing z by xy we obtain the division of xy by g a (x, y):

Thus R a (x) = R(x) is an algebraic power series.

Example 11.5. Let h(x, y) and d(x, y) be two algebraic power series over C and let us assume that the initial term of d(x, y) is xy. The division of h by d yields the relation:

By Newton-Puiseux Theorem there exist n ∈ N and x(y) ∈ C y , y(x) ∈ C x such that d(x(y), y n ) = d(x n , y(x)) = 0. Thus we obtain h(x(y

This yields the relation:

By replacing x by x n we see that there exist two algebraic power series f (x) and

x by Schanuel's conjecture [START_REF] Ax | On Schanuel's conjectures[END_REF]. This shows that in general D-finite power series (here e x ) which are not algebraic are not remainders of such a Weierstrass division.

Gap Theorem for remainders of division of algebraic power series

By a Theorem of Schmidt (see Hilfssatz 5 [START_REF] Schmidt | Mehrfach perfekte Körper[END_REF]) an algebraic power series has no large gaps in its expansion. More precisely his result asserts that if an algebraic power series f is written as f = k f n(k) where f n(k) is a non-zero homogeneous polynomial of degree n(k) and (n(k)) k is increasing, then

We prove here the same result for remainders of the Grauert-Hironaka-Galligo Division, i.e. it does not have more than Hadamard gaps.

Theorem 12.1. Let g 1 , • • • , g s ∈ k x and let us fix a monomial order induced by a linear form as in Section 10. Then there exists a function C : N -→ R >0 such that the following holds: Let f ∈ k x be an algebraic power series and let r be the remainder of the division of f by g 1 , • • • , g s with respect to the given monomial order. Let us write r = ∞ k=1 r n(k) where r h is a homogeneous polynomial of degree h, (n(k)) k is an increasing sequence of integers and r n(k) = 0 for any k ∈ N. Then

In particular Remark 12.2. Example 10.4 shows that this result is sharp.