
HAL Id: hal-01008765
https://hal.science/hal-01008765

Submitted on 14 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

COL: A data collection protocol for VANET
Yoann Dieudonné, Bertrand Ducourthial, Sidi-Mohammed Senouci

To cite this version:
Yoann Dieudonné, Bertrand Ducourthial, Sidi-Mohammed Senouci. COL: A data collection pro-
tocol for VANET. 2012 IEEE Intelligent Vehicles Symposium, 2012, Madrid, Spain. pp.711-716,
�10.1109/IVS.2012.6232266�. �hal-01008765�

https://hal.science/hal-01008765
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

COL: a Data Collection Protocol for VANET

Yoann Dieudonné, Bertrand Ducourthial, Sidi Mohammed Senouci

Abstract— In this paper, we present a protocol to collect data
within a vehicular ad hoc network (VANET). In spite of the
intrinsic dynamic of such network, our protocol simultaneously
offers three relevant properties: (1) It allows any vehicle
to collect data beyond its direct neighborhood (i.e., vehicles
within direct communication range) using vehicle-to-vehicle
communications only (i.e., the infrastructure is not required);
(2) It tolerates possible network partitions; (3) It works on
demand and stops when the data collection is achieved. To the
best of our knowledge, this is the first collect protocol having
these three characteristics.

All that is chiefly obtained thanks to a specific tool, namely
Operator ant, borrowed from the self-stabilization area which
confers to our algorithm the nice property to recover by itself
from topology changes. In addition to a theoretical proof of
correctness, our protocol has been implemented and tested
through the Airplug Software Distribution: Road and lab
experiments are presented and discussed.

I. INTRODUCTION

A. Context

Following the current trend in Automotive Engineering,

motor vehicles are equipped with more and more sensors in

order to improve the safety of the driver and passengers as

well as ride comfort.

Taken individually, local information provided by sen-

sors gives an imperfect knowledge to cars and to their

passengers. However, by comparing information collected

from several vehicles, the knowledge can be built up. Some

works have begun on the diagnosis or the collaborative

perception among vehicles. In other terms, by exchanging

information and estimations from vehicle sensors and analog

computers, information becomes more accurate and relevant

and thus, the confidence level is increased. For instance, it

has been demonstrated [1], [2] that collaborative localization

uncertainty in groups of agents or vehicles is less com-

pared to the situation where individual agents estimate their

position separately. Various techniques have been proposed

to integrate relative observations, like maximum likelihood

estimation [3], particle filters [4], Kalman filters [5], [6],

and Monte-Carlo simulation. Although the design of the

previous schemes have led to practical implementations and

have demonstrated their effectiveness in certain settings

This work has been supported by Orange Labs (FTR&D), France.
Y. Dieudonné was with Université de Technologie de Compiègne and

is now at Université de Picardie Jules Vernes, 80000 Amiens, France.
Yoann.Dieudonne@u-picardie.fr

B. Ducourthial is with Lab. Heudiasyc UMR CNRS-UTC, Uni-
versité de Technologie de Compiègne, 60200 Compiègne, France.
Bertrand.Ducourthial@utc.fr

S.-M. Senouci was with Orange Labs and is now with the Institut
Supérieur de l’Automobile et des Transports, Université de Bourgogne,
France. Sidi-Mohammed.Senouci@u-bourgogne.fr

through extensive simulations or experiments, before doing

so, vehicles need to collect data from the whole network

or to a lesser extent in their neighborhood. Through a

network operator (NO), we can envisage to directly send

and receive collected data on a large scale: Recipients are

then vehicles but also the infrastructure managers and users

of cellular networks. Various applications are possible, such

as traffic estimation, average speed, available parking spaces,

etc. While a mere 3G connection can transmit data arising

from a single car, it seems more appropriate to aggregate

data before forwarding them. This modus operandi helps to

analyze information from vehicles, to contextually filter and

merge them with respect to different selection criteria. As a

result, it becomes possible to send only useful information

so as to save bandwidth. In this context, the architecture

has to be compounded of a data collection protocol specific

to highly dynamic networks best known as VANET (which

stands for Vehicular Ad Hoc Networks) associated with a

protocol for forwarding aggregated data to the core network

of the NO. In this paper, we aim to focus on the process of

collecting data in VANET.

B. Related works

Most of the data collections in vehicular ad hoc networks

are tackled by using a mechanism of dissemination which

is a process whereby each vehicle periodically broadcasts

information about itself. A large number of data dissem-

ination protocols have been recently proposed within the

framework of VANET [7], [8], [9], [10], [11], [12]. For

instance, we can refer to opportunistic dissemination, such

as [7], as well as geographical dissemination [9]. In the first

case, propagation is performed with the use of opportunistic

diffusion of data: In particular, messages are stored in each

intermediate node and forwarded to every encountered node

until the destination is reached. The second one consists

in sending the message to the closest vehicle toward the

destination until it reaches it. Likewise, many other types of

dissemination exist: Thereby, we can mention peer-to-peer

[9] and cluster-based dissemination [10]. Notwithstanding,

all the dissemination protocols, and by extension every data

collection relying on them, are generally not upon request.

Consequently, information is recurrently diffused even if it is

not necessary, leading to bandwidth waste. Moreover, since

vehicles do not know which data will be relevant, they will

tend to broadcast more than expected.

To circumvent this problem, data collection would have

to issue from a demand started by some initiator. In a

fixed network, such a data collection can be achieved with

no difficulty through a wave algorithm, the PIF algorithm

1

being certainly the most emblematic example [13]. The PIF

algorithm, like most of general wave algorithms [14], works

in two steps –both of them being suggestive of a wave.

The first step corresponds to a broadcast phase started by

a sink which is called an initiator. During this step, the sink

sends a broadcast message to all its neighbors. In particular,

in the context of a data collection, this message has to contain

the types of data to be collected. The neighbor, that receives

the broadcast message for the first time, considers the node

that has sent it as its parent and forwards the broadcast

message to all its neighbors with the exception of its parent.

Behaving like this, a spanning tree is built.

The second step corresponds to a feedback phase started

by the leaves of the spanning tree. More precisely, when the

leaves receive broadcast messages from all theirs neighbors,

they send their own data to their parents as feedback for the

broadcast message. Obviously, data are related to the types of

data which appear in the broadcast message. The other nodes,

which are not leaves, will receive the feedback messages with

the collected data from their children. These nodes will join

their own data to those of their children through a mechanism

of aggregation and send them to theirs parents until the sink

has taken in all the aggregated data of the complete network.

Unfortunately, due to their intrinsic dynamic, the PIF

algorithm is doomed to failure in dynamic networks such

as VANET. The deep reason stems from the fact that the

PIF algorithm requires the spanning tree to remain invariant:

However such a property cannot be fulfilled because links

between nodes are subject to incessant breakages.

In [15], the authors bypass the problem by adapting a

decentralized wave algorithm from [16] to a vehicular net-

work. Nevertheless, their protocol relies on the assumption

that the network remains permanently connected, otherwise

their algorithm would be unable to terminate. In particular,

it is assumed that no node can disappear but, in reality, this

frequently occurs in dynamic networks such as VANET.

C. Contribution

In this paper, we describe a protocol for collecting data

in VANET using vehicle-to-vehicle communications only. In

our design, every data collection follows a demand including,

among others, types of data as well as the maximal duration

and depth for the collect process. Contrary to [15], it is

not required for vehicular networks to remain continuously

connected (the network can temporarily split). To achieve

this, each vehicle recurrently confronts its local network

view with the other views so as to update it by involving

an r-operator. An r-operator is a specific tool which brings

the nice property of self-stabilization to our algorithm. A

self-stabilizing algorithm has the ability to recover by itself

from an inconsistent state caused by transient failures. Since

topology changes can be viewed as transient failures, our

protocol is guaranteed to sustain the dynamic of the vehicular

network. In particular, every local view will tend to be quite

accurate in spite of the network dynamic.

We proved that our algorithm named COL can be practi-

cally implemented. In this way, we built a prototype using

the Airplug Software Distribution (ASD) in order to test

it via real experimentions on road. ASD is a software

suite which allows to develop distributed protocols suited

to dynamic networks and allows to validate them via field

or lab experiments [17], [27]. In addition to that, we tested

our protocol over several ranges of wireless communication

scenarios by varying several parameters notably the network

dynamic and the communication reliability to demonstrate

the robustness of our algorithm.

Due to the lack of space several proofs and experiments

are omitted. However, a full version of the paper is available

on-line. In addition, a pedagogical movie relates the field

experiments [18], [19].

D. Roadmap

The rest of this paper is organized as follows. First,

some preliminaries are given in Section II. Then, Section III

introduces our data collection protocol. Finally some field

and lab experiments are presented in Section IV before

concluding the paper in Section V.

II. PRELIMINARIES

In this section, we first introduce the specifications of

the data collection problem considered in this paper. Next,

we present two concepts, namely local network view and

Operator ant, which are used in our protocol in Section III.

A. Collecting data: specifications

A data collection application can be divided into four

phases namely, 1) a preparing phase, 2) a gathering phase, 3)

an aggregating phase and 4) a sending phase. In this paper,

we focus only on the distributed algorithm (second phase)

able to gather data in the vehicular network. For more details

about Phases 1, 3 and 4 the inquiring reader is referred to

[18], [20], [21].

The gathering phase consists in gathering the data spread

out in the vehicles to a given one, called initiator. It is

started by the initiator vehicle and involves necessarily a

limited number of vehicles around the initiator. Obviously

several concurrent collects from different initiators could run

simultaneously but to simplify the algorithm presentation, we

consider a single collect, launched by a single initiator.

We limit the number of vehicles involved by using a

maxdst parameter, representing the maximal distance in

number of hops from the initiator. Indeed, each hop (vehicle-

to-vehicle communication) increases the total duration of the

collect as well as the number of messages in the network;

maxdst is then an interesting parameter, impacting directly

the performances. Note that we may use complex data type

to limit the collect to a specific geographical area for instance

(e.g., identity of vehicles in the road r).

Note that, in a dynamic network, defining the termination

of the algorithm using the distance from the initiator is not

sufficient (values may change and new vehicles may appear

in the area and contribute to the collect with new values).

Besides the difficulty, it is not always desirable. Indeed,

for quickly meeting requests from vehicles about possible

2

proximity events such as traffic jams, road covered in snow

or covered in ice, fog, etc., the collect would also have to

be restricted in terms of duration. We then introduce two

parameters: maxdur and maxstb. The first one gives the

maximal duration of the algorithm on each node. The second

one allows to optimize the duration; it gives the maximal

number of successive stable values produced by a node

before locally ending: if a node always produces the same

value, it could locally end the algorithm before maxdur. By

the way, even if new vehicles enter into the area of collect

defined by maxdst during the collect, they will not delay

the collect because other nodes will stop to propagate these

values after maxdur units of time.

Parameters maxdst, maxdur and maxstb are used all

together. Obviously, some combinations are not pertinent.

For instance, too short values of maxdur may avoid to

explore the network up to maxdst hops, and maxstb

should be smaller than maxdur to be useful. Durations are

measured in multiple of aTimer which is a constant for the

duration of a timer (see hereafter).

The type of data to be collected is given by the initiator and

is included in the collect messages: parameter typedt. For

instance, in our experiments, typedt is equal to ident to

collect the id of vehicles or to speed to collect their speed

(the first case allows to compute the density of the vehicles in

a given area, while the second allows to compute the average

speed in a given road). It is worth noting that, depending on

their type, data can be unstable (e.g., typedt=speed), and

can change during the gathering phase. The collect algorithm

should then include a conflict operator denoted ⊙ to deal

with the case where a vehicle receives two different data (or

more) coming from a single vehicle. This operator depends

on the application; it may for instance return the latest of the

values in conflict or the smallest one, etc.

B. Local view

At a given time t, a vehicular network can be viewed as

a directed graph in which each vehicle is viewed as a vertex

and such that there exists a directed edge from u to v if,

and only if, v can send a message to u at time instant t.

In the remainder, G (t) will indicate the graph at Time t (or

G when no ambiguity arises). As the vehicular network is

dynamic, it is modeled by a sequence of graphs G1, G2, . . .

where two consecutive graphs are not necessarily different.

A dynamic path in a sequence of graphs G1, G2, . . . is a

sequence of directed edges (u0,u1), (u1,u2), . . . ,(un−1,un)
such that (u0,u1) belongs to G1, (u1,u2) belongs to G2, . . . ,

(un−1,un) belongs to Gn. The length of this dynamic path is n.

The distance from u to v in a graph G , denoted by dist(u,v),
is the length of the shortest path from u to v. The dynamic

distance from u to v at step k in a sequence of graphs G1,

G2, . . ., denoted by ddistk(u,v), is the length of the shortest

dynamic path from u to v among those having the last edge

in Gk. Let us denote by xv the piece of data in vehicle v which

has to be collected. Let consider a graph G . We call local

view of depth p of vehicle v the list Vv = (N0,N1, . . . ,Np)
such that, for all j ∈ {1, . . . , p}, N j is the set of couples

(u,xu) satisfying dist(u,v) = j and N0 = {(v,xv)}. Similarly,

in a sequence of graphs G1, G2, . . ., we call dynamic local

view of depth p at step k of vehicle v the list (N0,N1, . . . ,Np)
such that, for all j∈{1, . . . , p}, N j is the set of couples (u,xu)
satisfying ddistk(u,v) = j and N0 = {(v,xv)}.

C. Operator Ant

In our protocol, each vehicle periodically updates its local

view with respect to the local view of its neighbors, by using

Operator ant [22], [23]. This operator belongs to the family of

r-operator [24], [23]. When used for distributed computation

on networks, these operators have interesting properties for

fault tolerance, providing they fulfill some requirements. By

modeling a local algorithm with such an operator, global

properties of the distributed algorithm operating on the whole

distributed system can be stated by simply checking the

algebraic properties of the operator.

Operator Ant has already be defined in previous work [22],

[24], [23]. We give here the intuition behind its construction

in order to explain its use for computing local views.

Let S be the set of well formed local views (views with

empty sets Ni or with repetitive couples (x,xv) are discarded

by the nodes at the reception). We consider the operator

⊕ on S that merges two views while deleting needless or

repetitive information so that a vehicle appears only once in

a local view. To do so, for each vehicle v, we keep only the

couple (v,xv) having the lowest level i.e., the leftmost. In case

of conflict between two couples (v,xv) and (v,x′v) of same

level, the ambiguity is resolved by using a conflict operator

⊙, as explained in Section II-A: only the couple (v,xv⊙ x′v)
is kept. Providing that the binary operator ⊙ is associative

(a⊙ (b⊙ c) = (a⊙b)⊙ c), commutative (a⊙b = b⊙a) and

idempotent (a⊙ a = a), we can show that operator ⊕ is

associative, commutative and idempotent on S (note that this

is for instance the case when ⊙ gives the latest or the smallest

value produced by a vehicle in case of unstable data).

Since it is associative, commutative and idempotent, op-

erator ⊕ defines an order relation �⊕ on S by: V1 �⊕
V2 ≡ V1⊕V2 = V1. By the way, when using such operator,

vehicles compute the smallest view of all those they received,

preferring then small paths from ancestors instead of longer.

Nevertheless, each time a view is sent to a neighbor, its

sets of couples have to be shift to the right because distances

increase by one. This is done by an endomorphism r of S,

that inserts an empty set at the beginning of the view: r(V)=
(/0,N0,N1, . . . ,Np) where V = (N0,N1, . . . ,Np).

Hence, any vehicle v periodically updates its local view

Vv by computing the smallest view among Vv and r(Vu)
for any view Vu sent by a neighbor u since the last local

computation. The result operator is named ant; it is defined

by: ant(Vv,Vu) = Vv⊕r(Vu). We can show that it is a strictly

idempotent r-operator inducing a partial order relation on

S and the resulting distributed algorithm supports transient

faults [22], [24]. Note that, to keep views of at most depth p,

it is sufficient to truncate them just after the ant computation.

3

III. COL ALGORITHM DESIGN

In this section, we present our collect algorithm called

COL, corresponding to the second phase in Section II-A.

A. Algorithm Intuition

The intuition underlying the algorithm is simple and we

briefly describe it here (see Algorithm 1 for details). At

a high level, as soon as it is implicated in the collect,

every vehicle periodically broadcasts its local view to all its

neighbors. Of course, at the beginning of the data collection,

only the initiator is concerned by the collect. However, during

the process of the messages propagation, the number of

concerned vehicles will grow whilst complying the maximum

distance criterion (maxdst).

In the same way, every vehicle periodically recomputes

its own view by applying Operator ant to the received local

views. This recurrent process allows to take into account

possible new vehicles implicated in the collect as well

as possible topology changes due to the dynamic of the

network. In particular, obsolete local views will be rectified

thanks to Operator ant and its intrinsic property of self-

stabilization.

When the data collection draws to a close, the result

corresponds to the local view of the initiator.

So, to achieve that, our protocol considers two aspects

namely handling the dynamic vicinity and collecting data.

B. Handling the dynamic vicinity

To handle the instability of the vicinity, each time a node v

receives a message from a node u, it locally grants a lifetime

of maxloss timers to u (lines 15 and 23). In this way, if

ever v does not receive another message from u at the end

of maxloss timers, v will consider u is no longer in its

vicinity. More precisely, after a timer expires, the lifetime

of u will be decremented by one. When the lifetime reaches

the value of zero, all the data relative to u is erased from v

(lines 28-30).

Algorithm 1: Collect protocol COL, for any node v

1 Starting action(typedt, maxdst, maxdur, maxstb):
⊲ Starting the collect on the initiator

2 col state ← active ⊲ A collect is now running

3 col initiator ← v
4 col param ← (typedt, maxdst, maxdur, maxstb)
5 local data ← item of data of v of datatype typedt
6 local view ← {(v, local data)}
7 count dur ←0 ⊲ Count until maxdur

8 count stb ← 0 ⊲ Count until maxstb

9 tab views ← /0 ⊲ List of last received views

10 send(col initiator, col param, local view)
11 start timer with duration aTimer

12 Upon message arrival:

13 receive(rcv init, rcv par, rcv view) from u

14 if col state == active then

⊲ Node has already been reached by the collect

15 tab lifetime[u] ← maxloss

16 tab views[u] ← rcv view ⊲ Store the received view

17 else if col state 6= terminated
⊲ Node enters into the collect

18 col state ← active
19 col initiator ← rcv init

20 (typedt, maxdst, maxdur, maxstb) ← rcv par

21 count dur ← 0 ⊲ Count until maxdur

22 count stb ← 0 ⊲ Count until maxstb

23 tab lifetime[u] ← maxloss

24 tab views[u] ← rcv view ⊲ Store the received view

25 start timer with duration aTimer

26 end if

⊲ Messages are ignored when the node has leaved the collect.

27 Upon timer expiration:

⊲ Detecting neighbors disappearance

28 tab lifetime[u] -= 1 for any u in tab lifetime

29 for each u such that lifetime[u] == 0 do

30 Delete entry u in tab lifetime and tab views

31 end for

⊲ Computing the new local view

32 old local view ← local view

33 local data ← item of data of v of datatype typedt

34 local view ← {(v, local data)}
35 for each u such that tab views[u] exists do

36 local view ← ant(local view, tab views[u])
37 end for

38 Truncate local view to the first maxdst elements

⊲ Termination detection

39 count dur += 1

40 if old local view and local view are equivalent then

41 count stb += 1

42 else

43 count stb ← 0

44 end if

45 col state ← terminated

46 if col initiator ∈ local view then

⊲ Valid view regarding the collect

47 send(col initiator, col param, local view)
48 if count stb 6= maxstb and

count dur 6= maxdur then

49 restart timer with duration aTimer

50 col state ← active

51 else if col initiator == v

⊲ End of the collect on the initiator. Aggregating phase,

see Section II-A)
52 Compute the final result using local view

53 end if

54 end if

C. Collecting data

1) Starting the collect: Every data collection is triggered

by a single node called the initiator. We consider here a single

collect to simplify. Nevertheless the algorithm can easily be

extended to allow several concurrent or successive collects.

As soon as the initiator decides to start a collect, it

sends a message in its neighborhood made up of three

fields (line 10): Identity of the initiator (col initiator); Collect

parameters (col param) ; Its current local view (local view).

The collect parameters are selected by the initiator and

are 4 in number (see Section II-A): typedt (datatype to

be collected), maxdst (maximal distance from the initiator

for which the collect is desirable), maxdur (local maximal

duration), maxstb (local maximal duration in case of stable

view).

At the time of the first emission from the initiator, its

vicinity knowledge is reduced to the empty set. In particular,

its local view contains only its identity and its local data.

However, it is to be expected that its local view will expand.

4

2) Receiving a message: At the arrival of a message

(line 13), in case v has already been reached by the collect,

the view of the sender is stored (line 16). In the converse

case, we have to check whether the node has not yet been

reached by the collect, or has been reached but has already

terminated (line 17). If it is the first reception of a message

of the collect, the parameters are stored and the variables are

initialized (lines 18-22); the timer is then started (line 25).

3) Periodic computation: Node v computes a new local

view at timer expiration. The new view of v depends only

on views sent by neighbor nodes considered still present in

its vicinity (i.e., nodes for which lifetime is not null, as

explained in Section III-B): lines 28-31 delete entries for

nodes that did not sent a message recently.

The new view is computed using Operator ant introduced

in Section II-C (line 36). The resulting new local view is

truncated to the first maxdst elements in order to respect

the distance from the initiator (line 38).

The last step consists in detecting the termination of the

collect (lines 39-54). The number of computations since the

beginning of the current collect is increased (line 39); the

number of successive computations with the same result

is increased or reset, depending on the successive views

(lines 40-44) . Then, col state is set to terminated (line 45)

and will be set to active only if the collect has to continue

(line 50).

If the initiator is not in the new local view (line 46),

then Node v is not concerned by the collect: it is too far

from the initiator. In that case, Node v no longer participates

in the data collection. In the converse case, the message

is broadcast in the neighborhood (line 47). This allows to

prevent excessive messages in the network, propagated by

nodes that left the collection area.

If the number of computations (count dur) has not reached

maxdur and the number of identical successive views (cou-

nt stb) has not reached count stb (line 48), the timer is

restarted for a new computation (line 49). In the converse

case, the node has locally terminated. If it is the Initiator,

the final result is obtained. Phases 3 and 4 can begin (see

Section II-A): aggregating the collected data, sending the

result.

D. Sketch of proof

A self-stabilizing algorithm has the property to recover

from transient faults [25]. More details about correctness can

be found in [18].

Property 3.1: The COL protocol is self-stabilizing and

builds a local view of the network centered on the initiator,

providing it has enough time to converge.

This property is due to the fact that the aforementioned

collection protocol is mainly based on Operator ant which

confers to COL the property of self-stabilization. Indeed, Op-

erator ant leads to a large range of self-stabilizing tasks, such

as computing local views, in a kind of distributed systems

which admit bounded communication links. As stated in [26],

since wireless communications can be viewed as bounded

links and seeing that topology or data changes can be viewed

as transient failures, the nice property of self-stabilization can

be directly extended to the present framework.

The self-stabilizing property of the COL algorithm ensures

that it can support any transient failure providing it has

enough time to converge. However, in order to obtain a result

in bounded time, the COL algorithm includes a termination

detection using both maxdur and maxstb. Nevertheless,

even when the convergence has not be reached, the algorithm

outputs a dynamic local view centered on the initiator:

Property 3.2: The COL protocol builds a dynamic local

view of the network, centered on the initiator (providing there

is no corruption of volatile memories).

These properties ensure that the COL protocol always

returns a valid dynamic local view. Moreover it supports

transient faults when the parameters are well chosen.

IV. ROAD AND LAB EXPERIMENTS

Some road and lab experiments were conducted using the

Airplug Software Distribution (ASD) [17], [27]. Full details

can be found in [18]. A short movie is also available on [19].

A. Proof of Concept: Road Experiments

To demonstrate the feasibility of our collect protocol, we

have tested Algorithm 1 via some road experiments after

implementing it into a Tcl/Tk Airplug application (see [19]

for screenshot movies). For this purpose, five cars have been

mobilized. Within each of them, exactly one PC (Dell mini-

9 Model DP118) under Ubuntu and running the Airplug

core program as well as the COL application was installed.

All the PCs are equipped with an external WiFi card with

USB connectors (Alfa AWUS036EH), allowing to connect

an antenna on the roof of the vehicles (D-LINK ANT24-

0700, 2.4 GHz, 7 dBi, omni-directional).

Our experiments were conclusive: the COL algorithm

is operational in practice for collecting data issued from

vehicles. Moreover we confirmed the formal validation: data

are collected despite network dynamic and disconnections,

to the contrary of previous known algorithms (that we also

implemented for comparison purpose). See [18] for details.

B. Lab experiments

For lab tests, the mobility of the vehicles has been emu-

lated through Airplug-emu [27] in order to study many road

scenarios and parameters, with more vehicles. We varied sev-

eral parameters such as the reliability of the communication

links, aTimer, maxloss, etc.

The reliability of the communication links is measured

by dividing the number of successful communications over

the total number of communications. Airplug-emu allows to

vary such a parameter in order to replay conditions observed

on the road or to study what would happen in case of poor

network conditions. Figure 1 shows that the more reliable

the links are, the greater the percentage of collected data is.

This experiment shows that our data collection protocol still

works in presence of many messages lost due to the dynamic.

To study the impact of maxloss on the number of

collected data, for each maxloss ∈ {1, . . . ,10}, we run

5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

20

30

40

50

60

70

Reliability [0−1]

P
e

rc
e

n
ta

g
e

 o
f

c
o

lle
c
te

d
 d

a
ta

 (
%

)

Fig. 1. Percentage of collected data as a function of links reliability

50 simulations and we recorded the average percentage of

collected data. Reliability and duration are respectively fixed

at 1 and 2000 ms. As expected, when maxloss= 1, the

initiator collects no data except its own because in this case,

according to Algorithm 1, all the received data are deleted

before computation. On our scenarios with low dynamic,

we observed that maxloss= 2 allowed to collect all the

data. However, that is no longer the case through a less

stable scenario. Indeed, we tested the impact of maxloss

via a scenario which consists of two convoys with opposite

directions that repeatedly cross each other on a circular

route. Due to their opposite directions, the two convoys are

repeatedly disconnected and reconnected. As a result, the

greater maxloss is, the greater the percentage of collected

data is.

To conclude all these experiments either on the road or

on the emulator, i) the COL algorithm is able to collect data

even in case of high network dynamic; ii) parameter aTimer

depends mainly on the density of vehicles and a value of

1 s is convenient for almost all scenarios; iii) parameter

maxloss depends mainly on the network dynamic and a

value of 3×aTimer (3 s) is a reasonable choice in practice.

V. CONCLUSION

In this paper, we proposed a distributed embedded protocol

which collects information produced by vehicles using inter-

vehicle communications only. It is based on the operator ant

allowing to construct a local view of the network and thus,

to collect data in spite of the topology changes. A formal

proof is available for its convergence and robustness.

Our protocol has been compared during road tests with

previous known algorithms, showing our contribution: it can

collect data even on dynamic networks subject to discon-

nection and messages losses. Complementary experiments

were conducted on a network emulator [27] under several

road scenarios. Parameters influence has been discussed and

pertinent values have been determined for practical cases.

This protocol has been used in an experiment consisting

in collecting the average speed of a convoy of vehicles on

a web server, by combining it with an Internet connection

discovery [21] (see movie and screenshot on-line at [19]).

Future work will consist in combining our protocol with on

board sensors and data fusion algorithms [20] to increase the

perception of a vehicle and build new ITS applications.

REFERENCES

[1] S. Capkun, M. Hamdi, and J.-P. Hubaux, “GPS-free positioning in
mobile ad hoc networks,” Cluster Computing, vol. 5, no. 2, pp. 157–
167, 2002.

[2] S. Roumeliotis and I. Rekleitis, “Propagation of uncertainty in co-
operative multirobot localization: Analysis and experimental results,”
Autonomous Robots, vol. 17, no. 1, pp. 41–54, July 2004.

[3] E. Karami and M. Shiva, “Maximum likelihood MIMO channel
tracking,” in VTC, 2004, pp. 876–879.

[4] N. A. M. Efatmaneshnik, A. T. Balaei and A. Dempster, “A modified
multidimensional scaling with embedded particle filter algorithm for
cooperative positioning of vehicular networks,” in IEEE International

Conference on Vehicular Electronics and Safety, 2009.
[5] R. Parker and S. Valaee, “Vehicular node localization using received-

signal-strength indicator,” in IEEE TVT, vol. 56, 2007, pp. 3371–3380.
[6] Z. Mo, H. Zhu, K. Makki, N. Pissinou, and M. Karimi, “On peer-

to-peer location management in vehicular ad hoc networks,” Interna-

tional Journal of Interdisciplinary Telecommunications and Network-

ing (IJITN), vol. 1, no. 2, pp. 28–45, 2009.
[7] H. Wu, R. M. Fujimoto, R. Guensler, and M. Hunter, “Mddv: a

mobility-centric data dissemination algorithm for vehicular networks,”
in Vehicular Ad Hoc Networks, 2004, pp. 47–56.

[8] T. Nadeem, S. Dashtinezhad, C. Liao, and L. Iftode, “Trafficview:
traffic data dissemination using car-to-car communication,” Mobile

Computing and Communications Review, vol. 8, no. 3, pp. 6–19, 2004.
[9] U. Lee, E. Magistretti, B. Zhou, M. Gerla, P. Bellavista, and A. Cor-

radi, “Efficient data harvesting in mobile sensor platforms,” in PerCom

Workshops, 2006, pp. 352–356.
[10] L. Bononi and M. D. Felice, “A cross layered mac and clustering

scheme for efficient broadcast in vanets,” in IEEE Internatonal Con-

ference on Mobile Adhoc and Sensor Systems, 2007, pp. 1–8.
[11] I. Salhi, M. O. Cherif, and S.-M. Senouci, “A new architecture for

data collection in vehicular networks,” in ICC, 2009, pp. 1–6.
[12] U. Lee and M. Gerla, “A survey of urban vehicular sensing platforms,”

Computer Networks, vol. 54, no. 4, pp. 527–544, 2010.
[13] A. Segall, “Distributed network protocols,” IEEE Transactions on

Information Theory, vol. 29, no. 1, pp. 23–34, 1983.
[14] G. Tel, Introduction to Distributed Algorithms. Cambridge University

Press, 1994.
[15] S.-H. Chen and T.-L. Huang, “A wave algorithm for mobile ad hoc

networks,” in Workshop on Algorithms and Computational Molecular

Biology co-located with ICS, 2002.
[16] S. Finn, “Resynch procedures and a fail-safe network protocol,” IEEE

Transactions on Communications, vol. 27, no. 6, pp. 840–845, 1979.
[17] B. Ducourthial and S. Khalfallah, “A platform for road experiments,”

in VTC Spring, 2009.
[18] Y. Dieudonné, B. Ducourthial, and S.-M. Senouci, “Design and experi-

mentation of a self-stabilizing data collection protocol for vehicular ad-
hoc networks, extended version,” Lab. Heudiasyc UMR CNRS UTC
6599, Université de Technologie de Compiègne, Tech. Rep., 2010.

[19] Airplug website. [Online]. Available: https://www.hds.utc.fr/airplug
[20] V. Cherfaoui, T. Denoeux, and Z. Cherfi, “Distributed data fusion:

application to confidence management in vehicular networks,” in Proc.

of FUSION 2008, Cologne, Germany, 2008.
[21] B. Ducourthial and F. Elali, “A light architecture for opportunistic

vehicle-to-infrastructure communications,” in ACM International Sym-

posium on Mobility Management and Wireless Access, 2010.
[22] B. Ducourthial and S. Tixeuil, “Self-stabilization with r-operators,”

Distributed Computing, vol. 14, no. 3, pp. 147–162, 2001.
[23] B. Ducourthial, S. Khalfallah, and F. Petit, “Best-effort group service

in dynamic networks,” in SPAA, 2010, pp. 233–242.
[24] B. Ducourthial, “r-semi-groups: A generic approach for designing

stabilizing silent tasks,” in 9th Stabilization, Safety, and Security of

Distributed Systems (SSS’2007), 2007, pp. 281–295.
[25] S. Dolev, Self-Stabilization. MIT Press, 2000.
[26] S. Delaët, B. Ducourthial, and S. Tixeuil, “Self-stabilization with r-

operators revisited.” in Journal of Aerospace Computing, Information,

and Communication, 2006.
[27] A. Buisset, B. Ducourthial, F. E. Ali, and S. Khalfallah, “Vehicular

networks emulation,” in 19th International Conference on Computer

Communication Networks (ICCCN), 2010.

6

