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ABSTRACT: Heterogeneous materials involve different length scales in their mechanical properties. Obviously a 
mechanical description taking into account all the microscopic details is impossible from a computational point of view 
except for parts of very small dimensions. The main aim of material homogenization is defining macroscopic 
homogeneous properties able to represent at the macroscopic scale the real material and allowing for ignoring the 
microscopic scale in the numerical representation.  
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1 INTRODUCTION  

The interest and issues of material homogenization are 
today well established. Two important recurrent issues 
concern the definition of homogenized properties when 
the microstructure evolves from one point to other at the 
macroscopic scale, that is, throughout the macroscopic 
part. This evolution of the microstructure needs the 
definition of a homogenized model at each node (or 
integration point) in the macroscopic part, even in the 
linear case. The second issue concerns precisely the 
eventual non-linearity of thermomechanical properties. 
In that case moreover, one should solve a 
homogenization problem at each location throughout the 
part as well as at each time step because the evolution of 
microscopic properties with the model solution itself.  
In this work we present a technique able to alleviate the 
difficulty related to the evolution of the microstructure in 
the macroscopic scale. This technique is based on the 
consideration of a representative volume element 
consisting of different cells whose properties will be 
introduced as extra-coordinates of the thermo-
mechanical model. Thus, the original thermo-mechanical 
model is transformed into a multi-dimensional 
parametric model suffering the redoubtable curse of 
dimensionality illness. The use of the proper generalized 
decomposition – PGD - allows circumventing this 
difficulty [1,2]. Section 2 revisits the application of PGD 
on parametric models.  Some preliminary results 
involving heterogeneous linear thermal behaviours, 
perfectly defined at the microscopic scale, will be 
presented and discussed in section 3.  

2 THERMAL PARAMETRIC MODEL 

In this section we illustrate the application of the Proper 
Generalized Decomposition for solving a parametric 
thermal model involving a single extra-coordinate, the 
thermal conductivity characterizing an isotropic 
homogenous medium. This procedure will be extended 
later for including many extra-coordinates. 
Consider the heat transfer equation: 
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where ( , , )t k I x  and for the sake of 

simplicity the source term is assumed constant, 
i.e. f cte . Because the conductivity is considered 

unknown, it is assumed as a new coordinate defined in 
the interval  . Thus, instead of solving the thermal 
model for different values of the conductivity parameter 
we prefer introducing it as a new coordinate. The price 
to be paid is the increase of the model dimensionality; 
however, as the complexity of the PGD scales linearly 
with the space dimension the consideration of the 
conductivity as a new coordinate allows for faster and 
cheaper solutions.  
The solution of Eq. (1) is searched under the form:   
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In what follows we are assuming that the approximation 
at iteration n  is already done: 
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and at present iteration we look for the next functional 

product      1 1 1n n nX T t K k   x  that for 

alleviating the notation will be denoted by 

     R S t W k x . Prior to solve the resulting non

linear model related to the calculation of these three 
functions a model linearization is compulsory. The 
simplest choice consists in using an alternating 
directions fixed point algorithm. It proceeds by assuming 

 S t  and  W k  given at the previous iteration of the

non-linear solver and then computing  R x . From the

just updated  R x  and  W k  we can update  S t ,

and finally from the just computed  R x  and  S t  we

compute  W k . The procedure continues until reaching

convergence. The converged functions  R x ,  S t

and  W k  allow defining the searched functions:

   1nX R x x ,    1nT t S t   and 

   1nK k W k  . 

We are illustrating each one of the just referred steps: 

I.  Computing   R x  from  S t  and  W k :

We consider the global weak form of Eq. (1): 
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where the trial and test functions write respectively: 
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and  

       * *, ,u t k R S t W k  x x   (6) 

Introducing (5) and (6) into (4) it results: 
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with ( )

1 1

i n i n
n i

i i i i i
i i

T
X K k X T K f

t

 

 


        

  . 

Now, being known all the functions involving the time 
and the parametric coordinate, we can integrate Eq. (7) 
in their respective domains I  . Integrating in I   
and taking into account the notation 
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Eq. (7) reduces to: 
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(9) 
Eq. (9) defines an elliptic steady state boundary value 
problem that can be solved by using any discretization 
technique operating on the model weak form (finite 
elements, finite volumes …). Another possibility 
consists in coming back to the strong form of Eq. (9): 

1 2 2 1

4 4 5 5 3 3
1 1

i n i n
i i i i

i i
i i

w s R w s R

w s X w s X w s f
 

 

     

 
          

 
 

 (10) 

that could be solved by using any collocation technique 
(finite differences, SPH …). 

II. Computing   S t  from   R x and  W k :

In the present case the test function writes: 

       * *, ,u t k S t R W k  x x (11) 

Now, the weak form reads 
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that integrated in the domain    and taking into 
account the notation (8) results: 
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Eq. (13) represents the weak form of the ODE defining 
the time evolution of the field S that can be solved by 
using any stabilized discretization technique (SU, 
Discontinuous Galerkin, …). The strong form of Eq. 
(13) reads: 
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than can be solved by using backward finite differences, 
or higher order Runge-Kutta schemes, among many 
other possibilities. 

III. Computing  W k  from   R x and  S t :

In the present case the test function writes: 

       * *, ,u t k W t R S k  x x (15) 

Now, the weak form reads 
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that integrated in  I  and taking into account the 
notation (8) results: 
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Eq. (17) does not involve any differential operator. The 
strong form of Eq. (17) reads: 
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that represents an algebraic equation. Thus, the 
introduction of parameters as additional model 
coordinates has not a noticeable effect in the 
computational cost, but can increase the number of sums 
involved in finite sums decomposition (2). 
There are other minimization strategies more robust and 
exhibiting faster convergence for building-up the PGD 
(see [3]). 

3 NUMERICAL EXAMPLES 

In this section we are focusing in the thermal models 
defined in heterogeneous materials. Imagine a composite 
material involving a matrix and a fibrous reinforcement. 
A typical representative volume showing the 
microstructure heterogeneity is depicted in figure 1. 

Figure 1. Microstructure of a composite material 

Now, in order to apply the PGD one should perform a 
separated representation of the thermal conductivity, 
allowing for an efficient thermal simulation, i.e. 
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This separated representation can be performed by 
applying the SVD (singular value decomposition) to the 
matrix containing as entries the image pixels.  
However, because the irregular distribution of the 
inclusions the number of sums in (19) becomes very 
high. Different possibilities exist to alleviate this 
representation some of them are being analyzed at 
present. A first possibility lies in considering only a 
reduced number of the modes of the SVD. The 
computational cost is significantly reduced and 
sometimes the precision is not too much degraded. 
Figure 2 depicts the image reconstruction for different 
number of sums in (20). 

Figure 2. Reconstructed microstructure for 23P   (left)

and 46P   in (19).

Another possibility lies in the substitution of each cercle 
by a square parallel to the coordinate axes, whose area 
equals the one of the associated circle. Eq. (20) 
represents a generic rectangle: 

   , ,a b a bx x y y x   (20) 

Now, we define the characteristic function: 
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Using this notation, the square defined in (20) can be 
represented in a separated form by: 
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   , ,a b a bx x y yx y  .  

Obviously, if the representative volume contains P 
inclusions, each one represented by a square, the 
separated representation (19) will contain P sums. 
Obviously, all these approaches imply the solution of a 
thermal model for each representative volume (as soon 
as the microstrucvture evolve, the thermal conductivity 
is modified and then a new solution of the thermal model 
is required). If we consider a stochastic nature of the 
microstructure many realizations of the microstructure 
must be solved. One possibility for alleviating this task 
consists of considering the representative volume 
composed of a certain number of cells related to a grid of 
the representative volume as depicted in figure 3. Now, 
rather than solving a thermal model for each existing 
microstructure (represented by the different values of the 
thermal conductivity in each cell), we are introducing the 
thermal conductivity of each cell as an extra coordinate. 
In the example depicted in Fig. 3 the model will be 
defined in a space of dimension 27 (the x and y space 
coordinates and the 5 5  cells thermal conductivities). 

Figure 3. Cellular microstructure of the representative 
volume element. 

Thus, the solution is searched under the form: 
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Thus, the thermal field for any possible microstructure 
only needs the solution of only one multidimensional 
problem, solution that can be performed efficiently by 
applying the PGD. As soon as the solution (22) is 
computed, the thermal field for any microstructure 
realization is obtained by substituting the known 
conductivities of each cell in Eq. (22). Thus, the thermal 
field related to the microstructure shown in Fig. 3 is 
depicted in Fig. 4 (a simple boundary condition 

1,1 5,5( , , , )u k k x x L  was enforced) 

Figure 4. Thermal field associated with the 
microstructure depicted in Fig. 3. 

4. CONCLUSIONS

This paper explores some possibilities related to the use 
of Proper Generalized Decomposition in the advanced 
simulation. This novel discretization technique allows 
the efficient solution of highly multidimensional models 
by circumventing the redoubtable curse of 
dimensionality that mesh based discretization techniques 
suffer.  
As soon as an efficient solver for multidimensional 
models is available, many models of computational 
mechanics can be rewritten in higher dimensional 
spaces. Thus, one could for example compute the 
thermal field for any value of the thermal conductivity 
(as illustrated in this paper for homogeneous and 
heterogenous materials) simplifying inverse 
identification of optimization. 
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