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Proper Generalized Decomposition for the dynamic analysis of uncertain structures
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ABSTRACT: The paper deals with the random frequency response of uncertain structure in the low frequency band and with
parametric vision of uncertainties. The dynamic analysis of uncertain structures requires fine spatial and stochastic approximati
to well describe the non smooth random response with respect to the input parameters for the studied excitation frequency can |
resonance or anti-resonance depending depending on the values taken by the input parameters. In order to ease the solution ¢
stochastic partial differential equations in the context of spectral stochastic methods, we use the Proper Generalized Decomposi
method which relies on the priori construction of a separated representation of the solution and which only requires the solution
of relatively small deterministic or stochastic problems. Two strategies are considered for multidimensional dynamic problem
The first one introduces a full separated representation associated with the tensor product space of the solution. The second
consists in first applying a two dimensional separated representation (deterministic/stochastic) and to consider a second leve
separation by exploiting the tensor product structure of stochastic approximation spaces.

KEY WORDS: Dynamics; Vibration; Uncertainty quantification; Spectral stochastic methods; Proper Generalized Decompositior
Tensor product approximation; Separated representation.

1 INTRODUCTION defined in tensor product spaces (see [7], [8], [9], [10]). The
The introduction of uncertainties in the physical models garticular case where the deterministic and random variables are

essential for the robust design of structures, especially SAParatedi(&) ~ um(&) =3, wiAi(&), have been introduced
dynamics for which the random response happens to | o[11][12], where definitions and algorithms were proposed

highly irregular with respect to the uncertain parameters. A generating quasi-optimal representations of the solution

a parametric stochastic framework, the random frequen% a reduced basis of deterministic vectors and of stochastic
responsal : | x =+ C" on a frequency bantlis solution of functions (n < P). It has been extended Fo the complex
a system of random equations: framework in [13] in order to solve the stochastic problem (1) on

the frequency band The deterministic and stochastic functions
(—w?M (&) +iwC(w, &) +K(E)u(w, &) =f(w,&) (1) are defined progressively and a global basis of deterministic
modes valid on the whole frequency bahdcan be easily
where w denotes the frequency ih and & is a set of constructed. The drastic reduction of computational costs allows
random variables which are the classical random parametias the use of refined discretization and even for adaptive
of the continuous mechanical model that define the probabilgtrategies at the stochastic level to control the accuracy of the
space. Galerkin type spectral methods define the approximaeresentation of the irregular random response with respect
solution using a weak formulation of problem (1) in whichio the random variables. For higher stochastic dimensions, a
the solution is searched under the form of a developmentltidimensionnal PGD method for the representation of the
u(w, &) = 2521 Hq (&)uq(w) whereHy form a basis of the solution in separated variables at the stochastic level is proposed
stochastic approximation space. While spectral approachesiarfl4] so to circumvent the so-called curse of dimensionality
attractive because they give accurate and explicit predictionsaofd which consists in introducing aan priori representation
the response in terms of the random variables (see [1], [2], [8], the stochastic functions. The strategy is studied here for
[4], [5], [6]), they also are time and memory consuming sinadynamic analyses.
they require the solution of large systems of equations. ThisThe paper is articulated as follows. The stochastic dynamic
matter is especially encountered in dynamic analyses for whigsfoblem is first presented in section 2. Sections 3 and
the numerical models need to be refined at the stochastic le¥epresent two strategies for the separated representation in
because of the irregularity of the random response with respeader to deal with multidimensional problems. The first
toé. one relies on the full exploitation of the tensor structure
We propose to use a model reduction method based on Pragfethe solution where the PGD is used for the construction
Generalized Decomposition (PGD) for an efficient resolutiosf the separated representation of the solution under the
of problem (1). PGD methods consist in buildimgpriori  form u(&) ~ uz(&) = T2, Wit (&Y)...67 ("), whereé?, ..., &'
separated variables representations of the solution of modais r independent sets of random variables. The second



strategy consists in performing a hierarchic PGD. The ideaadlgorithms for the solution of (3) can consequently become
to perform a quasi-optimal deterministic-stochastic separatiprohibitive, especially when dealing with high dimensional
u(é) = s, wiAi(§) (based on Galerkin orthogonality criteria) stochastic problems involving a large number of parameters
where the stochastic functiony are approximated with a
second level of accurate separated representations. Finally thesd”ROPER GENERALIZED DECOMPOSITION
methodologies are illustrated in section 5. Here, we propose a model reduction method based on Proper
Generalized Decomposition (PGD) for the solution of problem
2 STOCHASTIC DYNAMICAL PROBLEM (3) in the case of multidimensional problems where the

2.1 Modeling of the uncertainties and dynamic problem uncertainties are represented witimndependant sets of random

In the parametric vision of uncertainties, the uncertainties aqgrameterf = (El"“j";r)' PGD methods exploit the tensor
supposed to be represented with a finite number of rand§tcture of the solutiom € C" @ 8p with Sp = j_;Sp, and
parameter§ = (£1, ..., &") associated with the probability spacéonsist in constructing aa priori separated representation of
(Z,B,Ps), = C R" being the range of, B the associated- the solution. The idea is thus to search the soluti¢é) <

algebra andP the probability measure &. C"® 8p of problem (3) at a given frequenecy under the form
We consider a forced vibration problem at frequencgnd z

a finite element approximation is used at the spatial level. The u(é)=uz(é)= lei[il(fl)...[ir(ér) (6)

stochastic problem then reduces to the resolution of a system of i=

random equations: find the random frequency respanse—

: n iniati j j
C" such that we have; almost surely where w; € C" are deterministic vectors am;iJ € Spj are

stochastic functions. This decomposition can be seen as a
Re(VIA(E)u(&)) =ReVb(8)) weC'®s  (2) generalized spectral expansion

z
where Re denotes the real part andl denotes the conjugate u(é)~uz(é)= ZWiHi(g) (7)
transposeA (&) = —w?M (&) +iwC(&) + K (&) is the dynamic =

stiffness matrix whereM, K et C designate respectively the ey g1y orrer .
mass, stiffness and damping matrices. These matrices valpeere the; (§) = 4(£)...47(&") are not knowra priori but

. ... are constructed in an optimal way.
random and can be frequency dependb(¢) is the excitation The tensor product representation enables to handle mul-
vector at frequency.

tidimensional stochastic problems, The Proper Generalized
2.2 Spectral stochastic methods Decomposition method is used for an optimal construction

of the separated representation. Several definitions have

In the context of the spectral stochastic methods, an appPrgXen proposed in [14], sole the so-called progressive PGD is
imation of the solution is searched under the foatf) = presented here.

P P ;
Ya-1UaHa(¢) € C" @ 8p. {H“(E)}aﬁl is a basis of an = tpo hrogressive PGD consists in determining a rank-one
approximation spac8p C 8 anduy € C" are the coefficients elemenwz[zl(fl)m[zr(fr) which is added to a previously com-

of uon this basis. __puted decompositionz_; to obtain the rankZ approximation:
The Galerkin type spectral methods use a weak formulatlonlpf _ 1
z=Uz_1+Wzl7...[7.

the dynamic problem (2) and the approximatioa C"® Sp is

then defined by: 3.1 Progressive Minimal Residual PGD
ueC"®Sp, <V,AUS=<V,b> WeC"@8p (3) Bilinear form < v,Au > being non symmetric for dynamic
problems, problem (3) is reformulated as an optimization
with problem with a minimal residual formulation. The new rank one
" elementwzst...; of the progressive Minimal Residual PGD is
<V,Au> =E (Re(v"Au)) (4)  defined by the optimization problem
<v,b>=E(Re(V'b 5
(Re(v"b)) ©) b~ Auz_1+wzed..ch)||> =
where E denotes the mathematical expectation defined by - _ 1,02 (8)
E(v) = J=v(y)dP:(y). The determination of an approximation WE(CT,IPGSL o =AUz + w0
’ i

of the frequency response at a given frequency requires the
solution of the discretized problem (3) which is a system @fhere ||.|| is the norm associated with the inner product - >
equations in the complex field of sizex P. Its solution defined in equations (4) and (5). Denoting= b — Auz_1,
may reveal important for dynamic analyses. In fact, at thee new rank one elememtz5*...f must then verify the + 1
spatial level, dynamic problems usually need a fine spatfallowing coupled equations

approximation space which means an important number of _ .~ | 1 1 r AH _ n
degree of freedom. Furthermore, the frequency response cafr Wiz =~ 2, A AWzl - [z >=<Wiz iz, A"r >, VW C

be highly irregular with respect to the random variables. An- szl...[zf,AHAW[Zl...[zf S—c w271~~[zr,AHr >vrte 5%,1
accurate description of the non smooth behavior then requires

the use of very fine approximation spaces at the stochastic _ N N

level (largeP). The use of standard Krylov type iterative< wzi - ", AR AWz - g >=<wzit - ", Afr > V" e 8



These equations are necessary conditions of optimality adnvergence properties in many cases and has notably proved

problem (26) and the optimal element must verify thesebust for dynamic analyses in [13].

r + 1 equations simultaneously. An alternated minimization In order to deal with multidimensional stochastic problems,

algorithm can be used to construct the rank one elementsecond tensor product approximation is introduced at the

wz -+ & solution of (26). stochastic level where the stochastic functions are themselves
Though robust for non symmetric problems, PGD based eearched under the separated form

Minimal Residual formulation may lead to a poor convergence

rate of the decomposition. Besides, the efficiency of PGD Am(E) = Z ALEY) - ALED (10)

methods relies on the separated representations of the operator &

AMA and right handAHb, the ranks of which are much higher

than the ranks of andb. and defined using the progressive Galerkin or Minimal Residual

definition of the PGD. Here only the Minimal Residual PGD for
3.2 Progressive Galerkin PGD the definition of the separated form of the stochastic functions

For the reasons mentioned above, we introduce the PGD ba¥épe considered.
on the Galerkin formulation. In the progressive Galerkin PGI%,
an optimal rank one elementz&*...} is searched such that it
verifies ther + 1 following Galerkin orthogonality criteria

1 GSD method for the deterministic-stochastic separated
representation

In the progressive Galerkin GSD, a new optimal rank one
<WE - AWZG - >S=< WG, >, YweC"  element wmAm should verify the two following Galerkin
< Wz?l___[zr’AW[Zl_._[Zr e szl___[zr’r > vile 5%1 orthogonality criteria
< WAm, AWmAm >=< WAm,b™ >, vwe C" (11)
<WZ[zl'"F[vryAWZ[zl“'[zr >=<WZ[zl"'F[vr7r >, i € 8p < WA, AWA g >=< WA ,b™ > VA € 8p (12)

A construction of the separated representation of the solutigRereb™ = b — Aup,_1. The optimal coupléwm, Ay verifies

based on Galerkin orthogonality criteria should be preferregmultaneouslywm = Fin(Am) and Am = fim(Wm) Where Fy, :
when convergent although monotone convergence is #pf_, C" and fy, : C" — Sp are the mappings defined by
guaranted for non symmetric problems. equations (11) and (12).

Remark In order to improve the convergence of the Although not based on an optimality criterion, in many cases
decomposition, update steps can be performed along {A® definition based on Galerkin projection proves efficient to
deterministic dimension and the stochastic dimensions, orcapture good rank-one approximations.
along some of them only. The idea can be resumed from thajan alternated direction algorithm for solving (11) and (12) is
explained in 4.2.1 and the authors refer to [14] for more detalilgsed to find the approximation of an optimal coupgn, Am).

It is to be noted that in the particular case of symmetrigiarting from an initial random functioA® € Sp, wkt1 € CN
operator A, the progressive PGD can be interpreted amdak+! e 8p with k > 0 are successively constructed with the
a generalization of the multidimensional Singular Valuegefinitions
Decomposition.

W= Fr(AK) and  AKFL = £ (wktL) (13)
4 GENERALIZED SPECTRAL DECOMPOSITION
Here is presented an alternative to the previous definition of thepractice only few iterations are sufficient to obtain a good
separated representation (7) which consists in a hierarchic P&imation of the optimal couplevm, Am).
of the solution. The idea is to introduce a first level of separation!n [12], the author shows that problem (26) can be seen as

in two dimensions, deterministic and stochastic, of the form Successive pseudo eigen problems whefe(respectivelyAm)
is the dominant eigen function of the operaar = Fno fi

N e (respectivelyT;, = fmo Fm). It is then shown that the above
u(§) ~ um(§) = i;W')" (é) ©) algorithm for the progressive construction of the decomposition
corresponds to a power-type algorithm with deflation to solve
which is constructed with the PGD method. In [11] ang¢he pseudo-eigen problem which defines the couplesh;) of
[12] different definitions and algorithms were proposed fahe separated representation (7).
generating quasi-optimal representations of the solution on
a reduced basis of deterministic vectors and of stochastid.1 Application of mappingm

functions (n < nandm < P) in two dimensional problems. In g4, 4 fixed stochastic functioh, the calculation ofv = Fn(A)

[12], the author shows that in the case of a symmetric operalpinears as a simple deterministic problem of sién in the
A the PGD in the deterministic-stochastic separation framewqg, field)

can be interpreted as a generalization of the Karhunen Loéve
decomposition and was then introduced as the Generalized Re(\TVHA)\W) = Re(WHbT) vwe C" (14)
Spectral Decomposition (GSD).

In practice, the two dimensional (deterministic-stochastig)hereA, = E(AAA) andb” = E(b™A). Considering the real
PGD based on the Galerkin formulation leads to goahd imaginary parts of the quantities, equation (14) can be



written under the form bases of deterministic and stochastic functions respectively. An
approximation of the solution can be written
E(ARA2) —E(AA2)] [wr]  [E(rBA) (15)
E(AA%)  E(ARA?) | |wi |~ [E(rM) Um(&) = WA(E) (22)
where . and ., denote the real and imaginary parts of th&iven the deterministic basW/ of a rankmdecompositiony,

quantities and which express, for the operatar= K — w?M the update of the stochastic functions consists in solving

andA| = wC. - ~ ~
ANER"®8p, <WAAWA>=<WAb> VAcR"®S$p

4.1.2 Application of mappindm (23)
For a fixed deterministic functiomw, the calculation ofA = |; can pe seen as a stochastic problem projected on the reduced
.fm(w) appears as a stochastic algebraic equation approxma(;ggisw, WHAW and WHb being the reduced operator and
in 8p (problem of sizeP) right hand side. Denoting = ReWHAW) andd = RgWHb),
~ ~ - equation (23) can be equivalently written
E(AMu)) =E(ABY) VA €8 (16) N - B
<NABA>=<Ad> VAcR"®8p (24)
with
We introduce the separated representation
T
WR Ar —A|| [WR
Aul) = Retwa(Epw) = [ ]| o an z
wil A ArJ W NE) ~N2(&) =Y BR(EY- d(E)  (25)
T s=1
m Hpm WR bFJ
(&) = rews(@)) = oK) 18)
D wi | [bf with g € R™andgd € 8f fork=1.--r.

4.2 PGD method for the seperated representation of the” rank-(Z — 1) separated representatidry, being com-
stochastic functions puted, the progressive Minimal Residual PGD defines a new

rank one elemenp2@}...¢%5 with the optimization problem
At this stage, the tensor product structure of the stochastic

approximation space can be exploited when applying mapping Hd —B(Az_1+ ¢%¢%~~~(D£)HZ =
fm. We thus propose to use the PGD method for the solution of ) 0.1 2 (26)
equation (16) which can be equivalently written min ||d-B(Az1+¢ 9. )

m ke gk
@O cRM, ¢ €8g

<A A >=<Aby > VA E€Sp (19)  Ther +1 coupled equations below are necessary conditions of

. — optimality of the new rank one elem L)
We introduce a tensor product approximation of the stochasn% y equg(pz K

; r kK ~ ~ -~
functionA (&) € @ _, 8§, <0 @ BTB@@ ... ¢f >—< ¢°¢'...¢f BTd >, Vg € R"
< < @@t ¢ B Bgt- ¢ >=< ¢ ¢ ,BTd > Vol € Sé
ME= 3 AHED AN (20) 1

=

0 .1 o RrT 0 .1 r 0 .1 T or r
' . < ..-¢',B"B g >=< - ,B'd> Vg €8
Arank(s— 1) separated representatidg ; being computed, LA LA oo ¢ d
the progressive Minimal Residual PGD defines a new rank omge rank-one element solution is constructed using an alternated
element with the optimization problem minimization algorithm.
Finally, the PGD approximation (22) can thus be recasted

|2 = under the separated form (7) by letting = W¢2 andiX = ¢.

60— Aw(As 14+ A& AL
. 2 21
min {|bl) — Aw(As-1+ A% A")|| @D 5 | LusTRATION

Akesk
A . . .
5.1 Description of the example, stochastic modeling and

Necessary conditions of optimality are approximation

~ . 1 . ~, . o <1 The method is applied on a two plate elastic structure
AT AL AGAWA T AT S=<AT AT Anby >, VAT € 8B represented in figure 1. Homogeneous Dirichlet conditions and
a harmonic loading are imposed on pafts and ', of the
boundary respectively. The complementary part of the boundary
is a free boundary. A spatial finite element approximation is
used and the discrete deterministic model contains 5556
degrees of freedom.
In order to improve the convergence of the progressive PGD We consider a non-dimensional analysis were the mass
an update along the stochastic dimension is performed [1@§nsity is chosen equal to 1 and the Young modHus a
[10]. Let W = (wp---Wpy) and A = (A;---Am)" denote the uniform random variable 00.9,1.1] and is expressed as a

<AL AT AAAL AT >:<A1---Xr,AWbW>, VAT €8p

4.2.1 Updated progressive PGD



(@w=041rads? (b)w=067rads?  (c)w=0.84rads?

Figure 3. Reference response surface of the modulus of the
out of plane displacemeni| of the upper right node of the
(2)Model problem (b)Finite element mesh two-plate structure for three frequencies.

Figure 1. Mesh and boundary conditions of an elastic plate

structue under harmonic bending load. ) o ) ) ) )
Galerkin or Minimal progressive PGD is estimated with the

relative error defined by
function of a uniform random variablé;: E = 0.9+ 0.2¢;
with =; = (0,1). We consider proportional damping in the
structure withC = BK, where the damping is a log-uniform =
random variable 0rf0.005,0.01) expressed ag = 0.005 22 lures |
with &, a uniform random variable af, = (0,1). The source of ) ) . ) .
uncertainties is thus represented with 2 independent uniform Where the norm is estimated with Monte-Carlo simulations.
random variables. Figure 2 shows some realizations of thBe evolutions of the relative errors for the three mentioned
frequency response function of the out of plane displacemdffduencies above are plotted in Figure 4. It comes out
of the upper right node of the structure. The associated respofi&d the G?Ierkln PGD converges for the sole frequesmcy
surfaces for three excitation frequencies obtained by evaluatfhgl rads -~ far from a resonance zone and fails for the other
the semi-discretized solutiome; € C"® § for samples of, frequencies that can be eigen freq_u_enmes o_f the structure for
are plotted in Figure 3 and show that the dynamic behavior cépme parametet. As for the Minimal residual PGD, it
significantly change when considering an excitation frequengpPears to converge but with an extremely small convergence
near the resonances of the mean structure. Therefore a g&¥8- To illustrate these comments, the response surfaces of
description of this non-linear behavior at the stochastic leVé¥e PGD approximation of rank = 30 are ploted in figures
is carried out using a fine stochastic approximation. Here weand 6 respectively using Galerkin and the Minimal Residual
introduce a finite element approximation spaceSpr= 3%1 « definitions respectively. They are to be compared to those of

8,%2 whereS, are finite elements spaces with a uniform partitioﬂgure 3.

of =, with 32 elements and and polynomial degree 4 in the

first dimension (= 1) and a polynomial degree 2 on 1 element 1’
in the second dimension & 2), which leads to a stochastic --
approximation space of dimensién= 480. - Sl

zZ _ HurEf_uZH (27)

L2 error
5

log(JUl)

\ " 1 \
2| v Al ] \
10 - |
v 1 V=1 1} ‘3
S g \

@=0.41 rad.s ™, Minres PGD \
——— >=0.67 rad.s™*, Minres PGD N
——— w=0.84 rad.s™, Minres PGD
_10 . . . . . . . . . . = = = =0.41rad.s™%, Galerkin PGD
0 = = = w=0.67 rad.s™, Galerkin PGD
- = = w=0.84 rad.s”", Galerkin PGD

0 5 10 15 20 25 30

Figure 2. Samples of the random frequency response functions. z

Figure 4. Evolution of the erra? with Z.
5.2 Multidimensional PGD

First a multidimensional progressive PGD using the strategyln order to improve the convergence of the Minimal residual
presented in section 3 is performed for the three selecte@D, an update along the deterministic dimension could
frequencies above. An update step only among the 2 stochabtic performed but this update step reveals computationally
dimensions is performed. The convergence of the Ankeumbersome for itinvolves the solution of a system of Zizen.



Residual error

(@w=041lrads? (b)w=067rads’ (c)w=0.84rads?

Figure5. Response surface of the modulus of the out of plane ) .
displacementuz_zo| of the upper right node of the two- e oea
plate structure obtained with the progressive Galerkin PGD gl L e
for three frequencies. m

Figure 7. Evolution of the residual errqﬁs(u) with m.

of figure 3. Figures 9 and 10 compare the reference solution
Uref and the PGD approximationy—19 for the respective
frequencieso = 0.67 rads ! andw = 0.84 rads™*. We observe
a good concordance between the response computed with the
Figure 6 Response surface of the modulus of the out 6fGD and the reference.
plane displacementiz_3o| of the upper right node of the
two-plate structure obtained with the progressive Minimal .
Residual PGD for three frequencies.

(@w=041lrads? (b)w=067rads?  (c)w=0.84rads’

5.3 Generalized spectral decomposition

In this section we illustrate the two level separated repre- (@w=04lrads' (b)w=067rads ' (c)w=084rads*
sentation of the solution presented in section 4. Given the 8 R ; fth dul fth t of pl
good convergence of the Galerkin PGD for two dimensiona|gur:. | €sponse sur acf:eho € mo _uhus Od efom:] of plane
(deterministic-stochastic) separated representation and given the :SE[) actemetntumlt;ﬂg t de L.J,[F;]p?r: right no €o th? two—h'
non convergence of the Galerkin PGD for multidimensional plate structure obtained wi € progressive hierarchic
separated representation, here a progressive Galerkin PGD PGD for three frequencies.

is performed for construction of a deterministic-stochastic

separated representation, and a progressive Minimal Residual

PGD is performed within the stochastic dimension for an

approximation of the stochastic functiods We introduce a '\\ e '\\ .

first residual error to achieve the separated representation of the
stochastic functions defined by equation (21) ‘ a ‘ @
1w — Ak ‘ i ‘
gs = 10w —Awhsl] 28) \ \
res(A) ||wa )
The PGD method for tha priori separated representation of the
stochastic functions is here completed with a given tolerance \ \ lﬂ«
sfeq/\) < 1072, The separated representation of the updated ‘\ i ‘\ |
progressive PGD us&s= 30 stochastic functions.
A second residual error is introduced to assess the conver-

gence of the two dimensionsional decomposition (9) and is \ w \ :c
defined by \ 0 \ Im

|[b—Aum||
srrgs(u) = W (29) (@ret (b)um=10

The evolution of{Z with mis plotted in figure 7. The relative Figure 9. Samples of the solutiofu| at frequencyw =
errors, defined as in (27), between the PGD approximation of 0.67 rads~. Comparison of the reference solutiap

rank m = 10 and the semi-discretized solutiop; € C"® 8 (a) and the approximatiaiy—10 of rankm= 10(b).

aree(M=10 — 271075 41103 and 18102 for the respective

frequenciesw = 0.41 rads™?, w = 0.67 rads! and w = We can see that the generalized spectral decomposition
0.84 rads™1. converges on the whole but still may encounter some difficulties

Figure 8 depicts the response surfaces of the PGD apprdrr frequencies concerned with resonances as can be observed
mationum-1o of rankm= 10 that are to be compared with thoséor the rankm = 7 of the excitation frequenay = 0.67 rads 1.



(4

(5]
(6]

3

<>

&

(7]

8

B

[10]
(@ref (b)um=10
Figure 10. Samples of the solutiofu| at frequencyw = [11]
0.84 rads™1. Comparison of the reference solutiap
(a) and the approximationy,_1q of rankm= 10(b).
[12]

Furthermore, the convergence properties for the frequencies in
the resonance zones seem sensitive to the initial random function
A% chosen in the alternated direction algorithm for the solutidi’!
of (11) and (12).

[14]
6 CONCLUSION
In this work, we have shown that the PGD method provides
a good mean to deal with multidimensional problems and
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Archives of Computational Methods in Engineeringl. 17, pp. 403-434,
2010.

enables to automatically generate a separated representation

of the frequency response at a given frequency. Although
the PGD based on the Galerkin formulation has proved robust
for the construction of a deterministic-stochastic separated
representation, it has not revealed robust in the case of a
multidimensional separated representation for dynamic analyses
and the use of the PGD method based on a Minimal Residual
formulation in multidimensional cases has not shown efficient
either. Meanwhile, the Galerkin PGD in the context of
a two dimension, deterministic and stochastic, separated
representation combined with a tensor product approximation
of the stochastic approximation constructed with the Minimal
Residual PGD has proved convergent. However further studies
need to be conducted to propose robust and more efficient
methods for the frequencies in the resonance zones.
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