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ABSTRACT: The paper deals with the random frequency response of uncertain structure in the low frequency band and with a
parametric vision of uncertainties. The dynamic analysis of uncertain structures requires fine spatial and stochastic approximations
to well describe the non smooth random response with respect to the input parameters for the studied excitation frequency can be a
resonance or anti-resonance depending depending on the values taken by the input parameters. In order to ease the solution of the
stochastic partial differential equations in the context of spectral stochastic methods, we use the Proper Generalized Decomposition
method which relies on thea priori construction of a separated representation of the solution and which only requires the solution
of relatively small deterministic or stochastic problems. Two strategies are considered for multidimensional dynamic problems.
The first one introduces a full separated representation associated with the tensor product space of the solution. The second one
consists in first applying a two dimensional separated representation (deterministic/stochastic) and to consider a second level of
separation by exploiting the tensor product structure of stochastic approximation spaces.

KEY WORDS: Dynamics; Vibration; Uncertainty quantification; Spectral stochastic methods; Proper Generalized Decomposition;
Tensor product approximation; Separated representation.

1 INTRODUCTION

The introduction of uncertainties in the physical models is
essential for the robust design of structures, especially in
dynamics for which the random response happens to be
highly irregular with respect to the uncertain parameters. In
a parametric stochastic framework, the random frequency
responseu : I ×Ξ 7→ Cn on a frequency bandI is solution of
a system of random equations:

(−ω2M(ξ )+ iωC(ω,ξ )+K(ξ ))u(ω,ξ ) = f(ω,ξ ) (1)

where ω denotes the frequency inI and ξ is a set of
random variables which are the classical random parameters
of the continuous mechanical model that define the probability
space. Galerkin type spectral methods define the approximate
solution using a weak formulation of problem (1) in which
the solution is searched under the form of a development
u(ω,ξ ) = ∑P

α=1Hα (ξ )uα (ω) where Hα form a basis of the
stochastic approximation space. While spectral approaches are
attractive because they give accurate and explicit predictions of
the response in terms of the random variables (see [1], [2], [3],
[4], [5], [6]), they also are time and memory consuming since
they require the solution of large systems of equations. This
matter is especially encountered in dynamic analyses for which
the numerical models need to be refined at the stochastic level
because of the irregularity of the random response with respect
to ξ .

We propose to use a model reduction method based on Proper
Generalized Decomposition (PGD) for an efficient resolution
of problem (1). PGD methods consist in buildinga priori
separated variables representations of the solution of models

defined in tensor product spaces (see [7], [8], [9], [10]). The
particular case where the deterministic and random variables are
separated,u(ξ )≈ um(ξ ) = ∑m

i=1 wiλi(ξ ), have been introduced
in [11][12], where definitions and algorithms were proposed
for generating quasi-optimal representations of the solution
on a reduced basis of deterministic vectors and of stochastic
functions (m ≪ P). It has been extended to the complex
framework in [13] in order to solve the stochastic problem (1) on
the frequency bandI . The deterministic and stochastic functions
are defined progressively and a global basis of deterministic
modes valid on the whole frequency bandI can be easily
constructed. The drastic reduction of computational costs allows
for the use of refined discretization and even for adaptive
strategies at the stochastic level to control the accuracy of the
representation of the irregular random response with respect
to the random variables. For higher stochastic dimensions, a
multidimensionnal PGD method for the representation of the
solution in separated variables at the stochastic level is proposed
in [14] so to circumvent the so-called curse of dimensionality
and which consists in introducing ana priori representation
of the stochastic functions. The strategy is studied here for
dynamic analyses.

The paper is articulated as follows. The stochastic dynamic
problem is first presented in section 2. Sections 3 and
4 present two strategies for the separated representation in
order to deal with multidimensional problems. The first
one relies on the full exploitation of the tensor structure
of the solution where the PGD is used for the construction
of the separated representation of the solution under the
form u(ξ ) ≈ uZ(ξ ) = ∑Z

i=1 wil
1

i (ξ
1)...l ri (ξ

r), whereξ 1, ...,ξ r

are r independent sets of random variables. The second
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strategy consists in performing a hierarchic PGD. The idea is
to perform a quasi-optimal deterministic-stochastic separation
u(ξ )≈ ∑m

i=1 wiλi(ξ ) (based on Galerkin orthogonality criteria),
where the stochastic functionsλ i are approximated with a
second level of accurate separated representations. Finally these
methodologies are illustrated in section 5.

2 STOCHASTIC DYNAMICAL PROBLEM

2.1 Modeling of the uncertainties and dynamic problem

In the parametric vision of uncertainties, the uncertainties are
supposed to be represented with a finite number of random
parametersξ = (ξ 1, ...,ξ r) associated with the probability space
(Ξ,B,Pξ ), Ξ ⊂ Rr being the range ofξ , B the associatedσ-
algebra andPξ the probability measure ofξ .

We consider a forced vibration problem at frequencyω and
a finite element approximation is used at the spatial level. The
stochastic problem then reduces to the resolution of a system of
random equations: find the random frequency responseu : Ξ →
C

n such that we havePξ almost surely

Re
(
vHA(ξ )u(ξ )

)
= Re(vHb(ξ )) ∀v ∈ C

n⊗S (2)

whereRe denotes the real part and·H denotes the conjugate
transpose.A(ξ ) =−ω2M(ξ )+ iωC(ξ )+K(ξ ) is the dynamic
stiffness matrix whereM, K et C designate respectively the
mass, stiffness and damping matrices. These matrices are
random and can be frequency dependent.b(ξ ) is the excitation
vector at frequencyω.

2.2 Spectral stochastic methods

In the context of the spectral stochastic methods, an approx-
imation of the solution is searched under the formu(ξ ) =
∑P

α=1 uα Hα (ξ ) ∈ Cn ⊗ SP. {Hα (ξ )}P
α=1 is a basis of an

approximation spaceSP ⊂ S anduα ∈ Cn are the coefficients
of u on this basis.
The Galerkin type spectral methods use a weak formulation of
the dynamic problem (2) and the approximationu ∈ C

n⊗SP is
then defined by:

u ∈ C
n⊗SP, < v,Au >=< v,b > ∀v ∈ C

n⊗SP (3)

with

< v,Au >= E
(
Re

(
vHAu

))
(4)

< v,b >= E
(
Re

(
vHb

))
(5)

where E denotes the mathematical expectation defined by
E(v) =

∫
Ξ v(y)dPξ (y). The determination of an approximation

of the frequency response at a given frequency requires the
solution of the discretized problem (3) which is a system of
equations in the complex field of sizen× P. Its solution
may reveal important for dynamic analyses. In fact, at the
spatial level, dynamic problems usually need a fine spatial
approximation space which means an important number of
degree of freedomn. Furthermore, the frequency response can
be highly irregular with respect to the random variables. An
accurate description of the non smooth behavior then requires
the use of very fine approximation spaces at the stochastic
level (large P). The use of standard Krylov type iterative

algorithms for the solution of (3) can consequently become
prohibitive, especially when dealing with high dimensional
stochastic problems involving a large number of parametersξ .

3 PROPER GENERALIZED DECOMPOSITION

Here, we propose a model reduction method based on Proper
Generalized Decomposition (PGD) for the solution of problem
(3) in the case of multidimensional problems where the
uncertainties are represented withr independant sets of random
parametersξ = (ξ 1, ...,ξ r). PGD methods exploit the tensor
structure of the solutionu ∈ C

n ⊗ SP with SP = ⊗r
j=1S

j
Pj

and
consist in constructing ana priori separated representation of
the solution. The idea is thus to search the solutionu(ξ ) ∈
Cn⊗SP of problem (3) at a given frequencyω under the form

u(ξ )≈ uZ(ξ ) =
Z

∑
i=1

wi l
1

i (ξ
1)...l ri (ξ

r) (6)

where wi ∈ C
n are deterministic vectors andl j

i ∈ S
j
Pj

are
stochastic functions. This decomposition can be seen as a
generalized spectral expansion

u(ξ )≈ uZ(ξ ) =
Z

∑
i=1

wiHi(ξ ) (7)

where theHi(ξ ) = l 1i (ξ 1)...l ri (ξ r) are not knowna priori but
are constructed in an optimal way.

The tensor product representation enables to handle mul-
tidimensional stochastic problems, The Proper Generalized
Decomposition method is used for an optimal construction
of the separated representation. Several definitions have
been proposed in [14], sole the so-called progressive PGD is
presented here.

The progressive PGD consists in determining a rank-one
elementwZl

1
Z (ξ 1)...l rZ (ξ r) which is added to a previously com-

puted decompositionuZ−1 to obtain the rank-Z approximation:
uZ = uZ−1+wZl

1
Z ...l

r
Z .

3.1 Progressive Minimal Residual PGD

Bilinear form < v,Au > being non symmetric for dynamic
problems, problem (3) is reformulated as an optimization
problem with a minimal residual formulation. The new rank one
elementwZl

1
Z ...l

r
Z of the progressive Minimal Residual PGD is

defined by the optimization problem
∥∥b−A(uZ−1+wZl

1
Z ...l

r
Z )
∥∥2

=

min
w∈Cn,l j∈S

j
Pj

∥∥b−A(uZ−1+wl 1...l r)
∥∥2 (8)

where‖.‖ is the norm associated with the inner product< ·, ·>
defined in equations (4) and (5). Denotingr = b − AuZ−1,
the new rank one elementwZl

1
Z ...l

r
Z must then verify ther +1

following coupled equations

< w̃l 1Z · · · l rZ ,A
HAwZl

1
Z · · · l rZ >=< w̃l 1Z · · · l rZ ,A

Hr >,∀w̃ ∈C
n

< wZ l̃
1 · · · l rZ ,A

HAwl 1Z · · · l rZ >=< wZ l̃
1 · · · l rZ ,A

Hr >,∀l̃ 1 ∈ S
1
P1

· · ·

< wZl
1

Z · · · l̃ r ,AHAwZl
1

Z · · · l rZ >=< wZl
1

Z · · · l̃ r ,AHr >,∀l̃ r ∈ S
r
Pr
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These equations are necessary conditions of optimality of
problem (26) and the optimal element must verify these
r + 1 equations simultaneously. An alternated minimization
algorithm can be used to construct the rank one element
wZl

1
Z · · · l rZ solution of (26).

Though robust for non symmetric problems, PGD based on
Minimal Residual formulation may lead to a poor convergence
rate of the decomposition. Besides, the efficiency of PGD
methods relies on the separated representations of the operator
AHA and right handAHb, the ranks of which are much higher
than the ranks ofA andb.

3.2 Progressive Galerkin PGD

For the reasons mentioned above, we introduce the PGD based
on the Galerkin formulation. In the progressive Galerkin PGD,
an optimal rank one elementwZl

1
Z ...l

r
Z is searched such that it

verifies ther +1 following Galerkin orthogonality criteria

< w̃l 1Z · · · l rZ ,AwZl
1

Z · · · l rZ >=< w̃l 1Z · · · l rZ ,r >, ∀w̃ ∈C
n

< wZ l̃
1 · · · l rZ ,Awl 1Z · · · l rZ >=< wZ l̃

1 · · · l rZ ,r >, ∀l̃ 1 ∈ S
1
P1

· · ·

< wZl
1

Z · · · l̃ r ,AwZl
1

Z · · · l rZ >=< wZl
1

Z · · · l̃ r ,r >, ∀l̃ r ∈ S
r
Pr

A construction of the separated representation of the solution
based on Galerkin orthogonality criteria should be preferred
when convergent although monotone convergence is not
guaranted for non symmetric problems.

Remark In order to improve the convergence of the
decomposition, update steps can be performed along the
deterministic dimension and ther stochastic dimensions, or
along some of them only. The idea can be resumed from that
explained in 4.2.1 and the authors refer to [14] for more details.

It is to be noted that in the particular case of symmetric
operator A, the progressive PGD can be interpreted as
a generalization of the multidimensional Singular Valued
Decomposition.

4 GENERALIZED SPECTRAL DECOMPOSITION

Here is presented an alternative to the previous definition of the
separated representation (7) which consists in a hierarchic PGD
of the solution. The idea is to introduce a first level of separation
in two dimensions, deterministic and stochastic, of the form

u(ξ )≈ um(ξ ) =
m

∑
i=1

wiλ i(ξ ) (9)

which is constructed with the PGD method. In [11] and
[12] different definitions and algorithms were proposed for
generating quasi-optimal representations of the solution on
a reduced basis of deterministic vectors and of stochastic
functions (m≪ n andm≪ P) in two dimensional problems. In
[12], the author shows that in the case of a symmetric operator
A the PGD in the deterministic-stochastic separation framework
can be interpreted as a generalization of the Karhunen Loève
decomposition and was then introduced as the Generalized
Spectral Decomposition (GSD).

In practice, the two dimensional (deterministic-stochastic)
PGD based on the Galerkin formulation leads to good

convergence properties in many cases and has notably proved
robust for dynamic analyses in [13].

In order to deal with multidimensional stochastic problems,
a second tensor product approximation is introduced at the
stochastic level where the stochastic functions are themselves
searched under the separated form

λm(ξ ) =
s

∑
k=1

λ 1
k (ξ

1) · · ·λ 1
k (ξ

r) (10)

and defined using the progressive Galerkin or Minimal Residual
definition of the PGD. Here only the Minimal Residual PGD for
the definition of the separated form of the stochastic functions
will be considered.

4.1 GSD method for the deterministic-stochastic separated
representation

In the progressive Galerkin GSD, a new optimal rank one
element wmλm should verify the two following Galerkin
orthogonality criteria

< w̃λm,Awmλm >=< w̃λm,bm
>, ∀w̃ ∈ C

n (11)

< wmλ̃ ,Awλm >=< wmλ̃ ,bm
>, ∀λ̃ ∈ SP (12)

wherebm = b−Aum−1. The optimal couple(wm,λm verifies
simultaneouslywm = Fm(λm) and λm = fm(wm) where Fm :
SP → Cn and fm : Cn → SP are the mappings defined by
equations (11) and (12).

Although not based on an optimality criterion, in many cases
this definition based on Galerkin projection proves efficient to
capture good rank-one approximations.

An alternated direction algorithm for solving (11) and (12) is
used to find the approximation of an optimal couple(wm,λm).
Starting from an initial random functionλ 0 ∈ SP, wk+1 ∈ Cn

andλ k+1 ∈ SP with k ≥ 0 are successively constructed with the
definitions

wk+1 = Fm(λ k) and λ k+1 = fm(wk+1) (13)

In practice only few iterations are sufficient to obtain a good
estimation of the optimal couple(wm,λm).

In [12], the author shows that problem (26) can be seen as
successive pseudo eigen problems wherewm (respectivelyλm)
is the dominant eigen function of the operatorTm = Fm ◦ fm
(respectivelyT∗

m = fm ◦ Fm). It is then shown that the above
algorithm for the progressive construction of the decomposition
corresponds to a power-type algorithm with deflation to solve
the pseudo-eigen problem which defines the couples(wi ,λ i) of
the separated representation (7).

4.1.1 Application of mappingFm

For a fixed stochastic functionλ , the calculation ofw = Fm(λ )
appears as a simple deterministic problem of sizen (2n in the
real field)

Re
(
w̃HAλ w

)
= Re

(
w̃Hbm

λ
)

∀w̃ ∈ C
n (14)

whereAλ = E(Aλλ ) andbm
l
= E(bmλ ). Considering the real

and imaginary parts of the quantities, equation (14) can be
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written under the form
[
E(ARλ 2) −E(AI λ 2)
E(AI λ 2) E(ARλ 2)

][
wR

wI

]
=

[
E(rm

Rλ )
E(rm

I λ )

]
(15)

where .R and .I denote the real and imaginary parts of the
quantities and which express, for the operator,AR = K−ω2M
andAI = ωC.

4.1.2 Application of mappingfm

For a fixed deterministic functionw, the calculation ofλ =
fm(w) appears as a stochastic algebraic equation approximated
in SP (problem of sizeP)

E

(
λ̃ Awλ

)
= E

(
λ̃ bm

w

)
∀λ̃ ∈ SP (16)

with

Aw(ξ ) = Re(wHA(ξ )w) =

[
wR

wI

]T [AR −AI

AI AR

][
wR

wI

]
(17)

bm
w(ξ ) = Re(wHbm(ξ )) =

[
wR

wI

]T [bm
R

bm
I

]
(18)

4.2 PGD method for the seperated representation of the
stochastic functions

At this stage, the tensor product structure of the stochastic
approximation space can be exploited when applying mapping
fm. We thus propose to use the PGD method for the solution of
equation (16) which can be equivalently written

< λ̃ ,Awλ >=< λ̃ ,bm
w > ∀λ̃ ∈ SP (19)

We introduce a tensor product approximation of the stochastic
functionλ (ξ ) ∈⊗r

k=1S
k
Pk

λ (ξ )≈
s

∑
j=1

λ 1
j (ξ 1) · · ·λ r

j (ξ r) (20)

A rank(s−1) separated representationλs−1 being computed,
the progressive Minimal Residual PGD defines a new rank one
element with the optimization problem

∥∥bm
w−Aw(λs−1+ λ 1

s ...λ
r
s)
∥∥2

=

min
λ k∈Sk

Pk

∥∥bm
w−Aw(λs−1+ λ 1

...λ r)
∥∥2 (21)

Necessary conditions of optimality are

< λ̃ 1 · · ·λ r
,AwAwλ 1 · · ·λ r

>=< λ̃ 1 · · ·λ r
,Awbm

w >, ∀λ̃ 1 ∈ S
1
P1

· · ·

< λ 1 · · · λ̃ r
,AwAwλ 1 · · ·λ r

>=< λ 1 · · · λ̃ r
,Awbm

w >, ∀λ̃ r ∈ S
r
Pr

4.2.1 Updated progressive PGD

In order to improve the convergence of the progressive PGD,
an update along the stochastic dimension is performed [12],
[10]. Let W = (w1 · · ·wm) and Λ = (λ1 · · ·λm)

T denote the

bases of deterministic and stochastic functions respectively. An
approximation of the solution can be written

um(ξ ) = WΛ(ξ ) (22)

Given the deterministic basisW of a rank-mdecompositionum,
the update of the stochastic functions consists in solving

Λ ∈R
m⊗SP, < WΛ̃,AWΛ >=< WΛ̃,b > ∀Λ̃ ∈ R

m⊗SP

(23)

It can be seen as a stochastic problem projected on the reduced
basisW, WHAW and WHb being the reduced operator and
right hand side. DenotingB = Re(WHAW) andd = Re(WHb),
equation (23) can be equivalently written

< Λ̃,BΛ >=< Λ̃,d > ∀Λ̃ ∈ R
m⊗SP (24)

We introduce the separated representation

Λ(ξ )≈ ΛZ(ξ ) =
Z

∑
s=1

φ0
sφ1

s (ξ
1) · · ·φr

s(ξ
r) (25)

with φ0
k ∈ Rm andφk

s ∈ Sk
Pk

for k= 1· · · r.
A rank-(Z− 1) separated representationΛZ−1 being com-

puted, the progressive Minimal Residual PGD defines a new
rank one elementφ0

Zφ1
Z ...φr

Z with the optimization problem

∥∥d−B(ΛZ−1+φ1
Zφ1

Z ...φ
r
Z)
∥∥2

=

min
φ0∈Rm,φk∈Sk

Pk

∥∥d−B(ΛZ−1+φ0φ1
...φr)

∥∥2 (26)

The r +1 coupled equations below are necessary conditions of
optimality of the new rank one elementφ0

Zφ1
Z...φr

Z

< φ̃
0
φ1 · · ·φr

,BT Bφ0φ1 · · ·φr
>=< φ̃0φ1 · · ·φr

,BT d >,∀φ̃0 ∈ R
m

< φ0φ̃1 · · ·φr
,BT Bφ0φ1 · · ·φr

>=< φ0φ̃1 · · ·φr
,BT d >,∀φ̃1 ∈ S

1
P1

· · ·

< φ0φ1 · · · φ̃r
,BT Bφ0φ1 · · ·φr

>=< φ0φ1 · · · φ̃r
,BT d >,∀φ̃r ∈ S

r
Pr

The rank-one element solution is constructed using an alternated
minimization algorithm.

Finally, the PGD approximation (22) can thus be recasted
under the separated form (7) by lettingws = Wφ0

s andl ks = φk
s.

5 ILLUSTRATION

5.1 Description of the example, stochastic modeling and
approximation

The method is applied on a two plate elastic structure
represented in figure 1. Homogeneous Dirichlet conditions and
a harmonic loading are imposed on partsΓ1 and Γ2 of the
boundary respectively. The complementary part of the boundary
is a free boundary. A spatial finite element approximation is
used and the discrete deterministic model containsn = 5556
degrees of freedom.

We consider a non-dimensional analysis were the mass
density is chosen equal to 1 and the Young modulusE is a
uniform random variable on[0.9,1.1] and is expressed as a
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(a)Model problem (b)Finite element mesh

Figure 1. Mesh and boundary conditions of an elastic plate
structure under harmonic bending load.

function of a uniform random variableξ1: E = 0.9+ 0.2ξ1
with Ξ1 = (0,1). We consider proportional damping in the
structure withC = βK, where the damping is a log-uniform
random variable on(0.005,0.01) expressed asβ = 0.005 2ξ2

with ξ2 a uniform random variable onΞ2 = (0,1). The source of
uncertainties is thus represented withr = 2 independent uniform
random variables. Figure 2 shows some realizations of the
frequency response function of the out of plane displacement
of the upper right node of the structure. The associated response
surfaces for three excitation frequencies obtained by evaluating
the semi-discretized solutionure f ∈ C

n ⊗ S for samples ofξ ,
are plotted in Figure 3 and show that the dynamic behavior can
significantly change when considering an excitation frequency
near the resonances of the mean structure. Therefore a good
description of this non-linear behavior at the stochastic level
is carried out using a fine stochastic approximation. Here we
introduce a finite element approximation space forSP = S1

P1
⊗

S2
P2

whereSl
Pl

are finite elements spaces with a uniform partition
of Ξl with 32 elements and and polynomial degree 4 in the
first dimension (l = 1) and a polynomial degree 2 on 1 element
in the second dimension (l = 2), which leads to a stochastic
approximation space of dimensionP= 480.
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Figure 2. Samples of the random frequency response functions.

5.2 Multidimensional PGD

First a multidimensional progressive PGD using the strategy
presented in section 3 is performed for the three selected
frequencies above. An update step only among the 2 stochastic
dimensions is performed. The convergence of the rank-Z
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(c)ω = 0.84 rad.s−1

Figure 3. Reference response surface of the modulus of the
out of plane displacement|u| of the upper right node of the
two-plate structure for three frequencies.

Galerkin or Minimal progressive PGD is estimated with the
relative error defined by

εZ =

∥∥ure f −uZ
∥∥

∥∥ure f
∥∥ (27)

where the norm is estimated with Monte-Carlo simulations.
The evolutions of the relative errors for the three mentioned
frequencies above are plotted in Figure 4. It comes out
that the Galerkin PGD converges for the sole frequencyω =
0.41 rad.s−1 far from a resonance zone and fails for the other
frequencies that can be eigen frequencies of the structure for
some parameterξ . As for the Minimal residual PGD, it
appears to converge but with an extremely small convergence
rate. To illustrate these comments, the response surfaces of
the PGD approximation of rankZ = 30 are ploted in figures
5 and 6 respectively using Galerkin and the Minimal Residual
definitions respectively. They are to be compared to those of
figure 3.
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ω=0.41 rad.s−1, Galerkin PGD

ω=0.67 rad.s−1, Galerkin PGD

ω=0.84 rad.s−1, Galerkin PGD

Figure 4. Evolution of the errorεZ with Z.

In order to improve the convergence of the Minimal residual
PGD, an update along the deterministic dimension could
be performed but this update step reveals computationally
cumbersome for it involves the solution of a system of sizeZ×n.
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Figure5. Response surface of the modulus of the out of plane
displacement|uZ=30| of the upper right node of the two-
plate structure obtained with the progressive Galerkin PGD
for three frequencies.
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Figure 6. Response surface of the modulus of the out of
plane displacement|uZ=30| of the upper right node of the
two-plate structure obtained with the progressive Minimal
Residual PGD for three frequencies.

5.3 Generalized spectral decomposition

In this section we illustrate the two level separated repre-
sentation of the solution presented in section 4. Given the
good convergence of the Galerkin PGD for two dimensional
(deterministic-stochastic) separated representation and given the
non convergence of the Galerkin PGD for multidimensional
separated representation, here a progressive Galerkin PGD
is performed for construction of a deterministic-stochastic
separated representation, and a progressive Minimal Residual
PGD is performed within the stochastic dimension for an
approximation of the stochastic functionsλ i . We introduce a
first residual error to achieve the separated representation of the
stochastic functions defined by equation (21)

εs
res(λ ) =

‖bw−Awλs‖

‖bw‖
(28)

The PGD method for thea priori separated representation of the
stochastic functions is here completed with a given tolerance
εs

res(λ ) < 10−2. The separated representation of the updated
progressive PGD usesZ = 30 stochastic functions.

A second residual error is introduced to assess the conver-
gence of the two dimensionsional decomposition (9) and is
defined by

εm
res(u) =

‖b−Aum‖

‖b‖
(29)

The evolution ofεm
res with m is plotted in figure 7. The relative

errors, defined as in (27), between the PGD approximation of
rank m = 10 and the semi-discretized solutionure f ∈ Cn ⊗ S

areε(m=10) = 2.710−5, 4.110−3 and 1.810−3 for the respective
frequenciesω = 0.41 rad.s−1, ω = 0.67 rad.s−1 and ω =
0.84 rad.s−1.

Figure 8 depicts the response surfaces of the PGD approxi-
mationum=10 of rankm= 10 that are to be compared with those
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Figure 7. Evolution of the residual errorεm
res(u) with m.

of figure 3. Figures 9 and 10 compare the reference solution
ure f and the PGD approximationum=10 for the respective
frequenciesω= 0.67 rad.s−1 andω= 0.84 rad.s−1. We observe
a good concordance between the response computed with the
PGD and the reference.
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Figure 8. Response surface of the modulus of the out of plane
displacement|um=10| of the upper right node of the two-
plate structure obtained with the progressive hierarchic
PGD for three frequencies.

(a)ure f (b)um=10

Figure 9. Samples of the solution|u| at frequencyω =
0.67 rad.s−1. Comparison of the reference solutionure f

(a) and the approximationum=10 of rankm= 10(b).

We can see that the generalized spectral decomposition
converges on the whole but still may encounter some difficulties
for frequencies concerned with resonances as can be observed
for the rankm= 7 of the excitation frequencyω= 0.67 rad.s−1.
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(a)ure f (b)um=10

Figure 10. Samples of the solution|u| at frequencyω =
0.84 rad.s−1. Comparison of the reference solutionure f

(a) and the approximationu(m=10) of rankm= 10(b).

Furthermore, the convergence properties for the frequencies in
the resonance zones seem sensitive to the initial random function
λ 0 chosen in the alternated direction algorithm for the solution
of (11) and (12).

6 CONCLUSION

In this work, we have shown that the PGD method provides
a good mean to deal with multidimensional problems and
enables to automatically generate a separated representation
of the frequency response at a given frequency. Although
the PGD based on the Galerkin formulation has proved robust
for the construction of a deterministic-stochastic separated
representation, it has not revealed robust in the case of a
multidimensional separated representation for dynamic analyses
and the use of the PGD method based on a Minimal Residual
formulation in multidimensional cases has not shown efficient
either. Meanwhile, the Galerkin PGD in the context of
a two dimension, deterministic and stochastic, separated
representation combined with a tensor product approximation
of the stochastic approximation constructed with the Minimal
Residual PGD has proved convergent. However further studies
need to be conducted to propose robust and more efficient
methods for the frequencies in the resonance zones.

ACKNOWLEDGMENTS

This work is supported by the French Research agency TYCHE
ANR-2010-BLAN-0904.

REFERENCES
[1] R. Ghanem and P. Spanos,Stochastic finite elements: a spectral approach,

Springer, Berlin, 1991.
[2] C. Soize and R. Ghanem, “Physical systems with random uncertainties:

chaos representations with arbitrary probability measure,”SIAM J. Sci.
Comput., vol. 26, no. 2, pp. 395–410, 2004.

[3] H. G. Matthies, “Stochastic finite elements: Computational approaches
to stochastic partial differential equations,” Zamm-Zeitschrift Fur
Angewandte Mathematik Und Mechanik, vol. 88, no. 11, pp. 849–873,
2008.

[4] A. Nouy, “Recent developments in spectral stochastic methods for the
numerical solution of stochastic partial differential equations,”Archives
of Computational Methods in Engineering, vol. 16, no. 3, pp. 251–285,
2009.

[5] D. Xiu, “Fast numerical methods for stochastic computations: a review,”
Comm. Comput. Phys., vol. 5, pp. 242–272, 2009.

[6] O. P. Le Maitre and O. M. Knio, “Spectral methods for uncertainty
quantification with applications to computational fluid dynamics,”
Scientific Computation, 2010.

[7] F. Chinesta, A. Ammar, and E. Cueto, “Recent advances in the use of the
Proper Generalized Decomposition for solving multidimensional models,”
Archives of Computational Methods in Engineering, vol. 17, no. 4, pp.
327–350, 2010.
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