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Abstract. Dynamic Data-Driven Application Systems - DDDAS - appear as a new paradigm in
the field of applied sciences and engineering, and in particular in simulation-based engineering sci-
ences. By DDDAS we mean a set of techniques that allow the linkage of simulation tools with
measurement devices for real-time control of systems and processes. DDDAS entails the ability to
dynamically incorporate additional data into an executing application, and in reverse, the ability
of an application to dynamically steer the measurement process. DDDAS needs for accurate and
fast simulation tools using if possible offline computations to limit as much as possible the online
computations. We could define efficient solvers by introducing all the sources of variability as extra
coordinates in order to solve offline only once the model to obtain its most general solution, to be
then considered for online purposes. However, such models result defined in highly multidimen-
sional spaces suffering the so called curse of dimensionality. We proposed recently a technique,
the Proper Generalized Decomposition - PGD-, able to circumvent the redoubtable curse of dimen-
sionality. The marriage of DDDAS concepts and tools and PGD "offline" computations could open
unimaginable possibilities in the field of dynamics data driven application systems. In this work
we explore some possibilities in the context of process control, malfunctioning identification and
system reconfiguration.

INTRODUCTION

Traditionally, Simulation-based Engineering Sciences - SBES- relied on the use of static
data inputs to perform the simulations. However, a new paradigm in the field of Applied
Sciences and Engineering has emerged in the last decade known as DDDAS. A dynamic
data driven application system or DDDAS "entails the ability to dynamically incorporate
additional data into an executing application, and in reverse, the ability of an application
to dynamically steer the measurement process" [1]. While research on DDDAS should
involve many applications and algorithms, our work focuses on the development of
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mathematical and statistical algorithms for the simulation within the framework ofsuch
a system. In brief, we intend to incorporate a new generation of simulation techniques
into the field, allowing to perform faster simulations, able to cope with uncertainty,
multiscale phenomena, inverse problems and many other features. This new generation
of simulation techniques has received the name of Proper Generalized Decompositions
-PGD- and has received an increasing level of attention by the SBES community [2].
The PGD yields an approximate solution in the separated form :

u(x1, · · · ,xd) ≈
N

∑
i=1

F1
i (x1)×·· ·×Fd

i (xd) (1)

Thus the complexity of the solution scales linearly with the dimension of the problem
[3], and not exponentially as for classical algorithms. The iterative constructor assumes
the firstN functions products already computed, therefore, looking for the next term,
i.e.:

u(x1, · · · ,xd) ≈
N

∑
i=1

F1
i (x1)×·· ·×Fd

i (xd)+F1
N+1(x1)×·· ·×Fd

N+1(xd) (2)

Before solving the resulting non linear model related to the calculation of these
functions, a model linearization is performed. The simplest choice consists in us-
ing an alternating directions fixed point algorithm. First of all, we proceed by as-
sumingF2

N+1(x2), · · · ,Fd
N+1(xd) given at the previous iteration of the non-linear solver

and then computingF1
N+1(x1). From the just updatedF1

N+1(x1) and previously used
F3

N+1(x3), · · · ,Fd
N+1(xd) we can updateF2

N+1(x2) and so on until reaching convergence
[3]. For more information about the construction of the PGD, readers can refer to [3]
[4].

In this paper, we propose an alternative approach in optimisation and real-time control
using PGD, to our knowledge never explored. In fact, we propose to consider the
unknown process parameters as new coordinates of the model. Thus, we obtain a very
general solution for all possible parameters, inside a fixed domain.

Once the general solution computed, we can consider optimization. Various optimi-
sation methods have been tested, here we show the Levenberg-Marquardt method, a fast
and reliable minimization algorithm designed for non-linear least squares [5]. The same
method is used while controlling the process. In this part of the work, we introduce the
combination of "offline" heavy computation with "online" light control computations
based on machine feedback. The work scheme is illustrated in figure (1).

OFFLINE COMPUTATIONS

In this section we are introducing the main ideas related to process optimization trough
the analysis of a quite simple thermal model. Despite the apparent simplicity, the strategy
here described can be extended for addressing more complex scenarios. The steady state
temperature fieldu(x) in any point of the diex = (x,y) ∈ Ω ⊂ R2 can be obtained
from the solution of the 2D heat transfer equation that involves advection and diffusion
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Figure 1. The global work scheme

mechanisms aswell as an eventual source termQ. The velocity field is everywhere
unidirectional, i.e.vT = (v,0) and then the heat transfer equation reduces to:

Figure 2. Material forming process illustration

ρ ·c·

(

v·
∂u
∂x

)

= k ·∆u+Q (3)

wherek is the thermal conductivity,ρ is the density andc is the specific heat. The die
is equipped with two heating devices as depicted in figure (2) whose flux constitute
the process parameters to be optimized. For simplicity’s sake we consider constant
the internal heat generationQ, the velocityv and the inlet temperatureu0, all of them
assumed known. The prescribed boundary conditions write:







u(x = 0,y,θ1,θ2) = u0
∇u(x∈ L1,y = 0 or y = H,θ1,θ2)n = θ1
∇u(x∈ L2,y = 0 or y = H,θ1,θ2)n = θ2

(4)

n being the unit outward vector defined on the domain boundary,L1 andL2 are the length
of heater 1 and 2 respectively. A null heat flux is assumed in the remaining part of the
domain boundary.
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In the optimisation procedure, we consider only the coldest thermal history of an
imaginary material particletraversing the die, thus the cost function is written as :

C (θ1,θ2) =
1
2

(

∫ L

0
u

(

x,y =
H
2

,θ1,θ2

)

dx−β
)2

=
1
2

( f (p)−β )2 (5)

whereL is the die length andβ is defined as the optimal value able to give a certain
material transformation. During optimization, having a separated representation of the
solution enables to easily compute gradients and jacobians, thus permitting the use
of minimization algorithms, such as Levenberg-Marquardt. This algorithm is briefly
described below :

1. We definep = (θ1,θ2), thus cost function writes :

C (p) =
1
2

( f (p)−β )2 (6)

2. Computation of the Jacobian at iterationk :

Jk =

(

∂ f (p)

∂θ1

∣

∣

∣

∣

θk
1 ,θk

2

∂ f (p)

∂θ2

∣

∣

∣

∣

θk
1 ,θk

2

)

(7)

3. Compute the residual at iterationk :

rk = f (pk)−β (8)

4. Update the optimal values vectorpk+1 = (θ k+1
1 ,θ k+1

2 ) according to:

pk+1 = pk
−

(

(

Jk
)T

Jk +λ I
)

−1

·

(

Jk
)T

· rk (9)

whereI is in the present case the 2×2 unit matrix.
5. If the cost function decreases very fast we can reduce the relaxation coefficientλ

and then the Levenberg-Marquardt algorithm approaches the Newton one. On the
other hand, if the cost function decreases slowly we can increase the value ofλ to
approach a classical gradient strategy. We consider a standard adaptation of such
coefficient.

The solution given by this algorithm is shown in figure (3).

ONLINE COMPUTATIONS

We now consider two positions on the symmetry axis,P1 = (1,0.5) andP2 = (2,0.5)
(see figure (2)). The resulting temperature at those points, when the heating devices
runs optimally, i.e. whenθ1 = θ op

1 andθ2 = θ op
2 are:uop(P1) = u(x = 1,y = 0.5,θ op

1 =
1030,θ op

2 = 686.9) =264.2 anduop(P2) = u(x= 2,y= 0.5,θ op
1 = 1030,θ op

2 = 686.9) =
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361.7. In order to control the process we could introduce a thermocouple at position
P1 and another one at positionP2. As long as both "online" measurements ˜u1 and
ũ2 give values close enough touop(P1) and uop(P2) respectively, the process can be
considered working in optimal conditions, the one related to the optimal flux of both
heating devices. In this section, we simulated a breakdown by assuming a malfunction
of the second heating device, that instead of imposing the fluxθ op

2 = 686.9 only applies a
fraction of this optimal value, in our numerical exercise we consideredθ2 = 0.4×θ op

2 =
274,8. If we particularize the general solution in the location of the thermocouples we
obtain:ũ(P1) = u(x = 1,y = 0.5,θ op

1 = 1030,θ2 = 274.79) =210.3 and ˜u(P2) = u(x =
2,y = 0.5,θ op

1 = 1030,θ2 = 274.7) =266.9.

Inverse analysis

The analysis for identifying the flux imposed by the heating devices from the sen-
sors’ measurements defines an inverse problem. We propose to proceed by minimizing
"online" the following cost function:

C̃ (θ1,θ2) =
1
2

i=2

∑
i=1

(ũ(Pi)−u(xi ,y = 0.5,θ1,θ2))
2 (10)

wherexi (i = 1,2) are the coordinates of the points at which the thermocouples are
located.

Again, we apply the Levenberg-Marquardt algorithm for minimizing the cost function
(10). In the present minimization problem we havep = (θ1,θ2). However in this case
we define a vectorf(p) = f(θ1,θ2) as:

f(p) =

(

f1(p)
f2(p)

)

=

(

u(x1,y = 0.5,θ1,θ2)
u(x2,y = 0.5,θ1,θ2)

)

(11)

such that the cost function (10) can be rewritten as:

C̃ (θ1,θ2) =
1
2

(ũ− f(p))2 (12)

After three iterations we obtain anestimation of the flux on both heating devices
θ̃1 = 1033.5 andθ̃2 = 269 that agree with the scenario that we considered (θ1 =
1030, θ2 = 274.7). The inverse identification runs very fast and it only involves slight
calculations, so it could be performed "online" and using very light computing devices,
as for example a smartphone.

Process reconfiguration

Finally, we should reconfigure the process to his optimum, by selecting the new values
of the flux of both heating devicesθ ∗

1 andθ ∗

2 respectively. To ensure the optimization of
the process, we will minimize again the cost function expressed in equation (5). There
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are many possibilities that a control strategy could evaluate automatically before choos-
ing the optimalreconfiguration, but we are considering here only a simple possibility.
Our action consists of keeping the second heating device in its present state, i.e.θ ∗

2 = 146
and looking for the optimal value ofθ ∗

1 minimizing the cost function:

C (θ ∗

1) =
∫ L

0
u

(

x,y =
H
2

,θ ∗

1 ,θ2 = 269

)

dx−β (13)

We perform the minimization by using the Levenberg-Marquardt algorithm that in
three iterations converges to the valueθ ∗

1 = 2871,3. Figure 3 depicts the resulting
temperature field related to the new optimal process parametersθ ∗

1 = 2871,3 andθ ∗

2 =
269.
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Figure 3. Multidimensional solution particularized for the optimaltemperatures to the left and after
reconfiguring the system to the right

CONCLUSIONS

This work presents a first attempt of applying dynamic data driven simulation for con-
trolling industrial processes whose modelling involves complex linear or non-linear par-
tial differential equations. In the numerical examples here addressed "offline" calcula-
tions need around two minutes of computing time (using matlab, a standard laptop and a
non optimized simulation code) whereas all the "online" calculations were performed in
1.5 ms. The examples here addressed are too simple to be conclusive, but at least, they
prove the pertinence of the proposed approach.
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