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Abstract. In  this  paper,  a  probabilistic  dynamic  analysis  of  a  five-storey building subjected to  a 
stochastic  earthquake  Ground-Motion  (GM)  is  presented.  The  entire  soil-structure  system  is 
considered in the analysis. The stochastic GM time-histories are based on a real recorded time history. 
The probabilistic dynamic analysis is performed using the classical Monte Carlo Simulation (MCS) 
methodology. As is well  known, this method requires a great number of calls of the deterministic 
model. To overcome the inconvenience of the time cost, a simple deterministic model based on the 
"macro-element" concept is used. The main advantage of the macro-element is that the time cost for a 
single deterministic calculation is relatively small and thus, this model is suitable for the probabilistic 
dynamic  analysis.  The simulation of  the  stochastic  GM time-histories  is  done  using a  fully non-
stationary stochastic model in both the time and the frequency domains. This model employs filtering 
of a discretized white-noise process. Non-stationarity is achieved by modulating the intensity and by 
varying the filter properties in time. As for the probabilistic analysis, a large number of samples (say 
100,000) of  the stochastic GM time-histories is  generated using Monte Carlo technique.  For each 
sample, a dynamic calculation using the macro-element is performed and the following responses are 
retained for the probabilistic  analysis:  (i)  the maximum horizontal  displacement  at  the top of  the 
building,  (ii)  the  three  maximum  displacements  of  the  footing  centre,  and  finally  (iii)  the  three 
maximum reaction forces at the contact of the soil and the footing. These results are used to compute 
the statistical moments of the different system responses together with the probability of exceeding of 
predefined thresholds for these responses. 

Keywords: dynamic analysis, stochastic ground-motion, macro-element.

1. INTRODUCTION

Different experimental results and in-situ observations after strong earthquakes [8, 13 among others] 
have shown that the soil plasticity and the uplift of the foundation (called hereafter the soil and soil-
structure interface nonlinearities) often result in structural isolation. This leads to a reduction in the 
forces and moments that may develop in the structure. The maximum values of the stresses in the 
structure  decrease  because  of  the  large  energy dissipation  in  the  soil  and  soil-structure  interface. 
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Notice however that an important increase in the displacement occurs at the top of the structure. This 
is due to (i) the inertial effects of the structure and (ii) the soil and soil-structure non-linearities.
In order to study a soil-structure interaction (SSI) problem, three methods can be found in literature 
[11]: (i) The superposition method which subdivides the complex SSI problem into simpler problems 
(kinematics interaction and inertial interaction [9]), this method being valid only for linear problems, 
(ii) The direct methods that use a classical finite element approach [12], but these methods require 
good knowledge  of  the  constitutive  laws  and  are  computationally-expensive  and  (iii)  The  hybrid 
methods that are a combination of the two previous methods and therefore they are more attractive 
because of their computational cost. The macro-element approach belongs to this last category. The 
macro-element  concept  developed by [10]  consists  in  condensing the soil  (material)  and interface 
(geometric) nonlinearities into a representative point (the centre of the foundation) and it works with 
generalized variables (forces and displacements). It  thus allows the simulation of the behaviour of 
shallow foundations in a simplified way. Several 2D macroelements exist in literature [2, 3, 10]. The 
2D  macro-element  developed  in  [4]  is  adequate  for  static,  cyclic  and  dynamic  loadings  (e.g. 
earthquake) and it considers both the plasticity of the soil and the uplift of the foundation. Grange et 
al. [6] have extended the macro-element of [4]. Their macro-element can simulate the 3D behaviour of 
foundations having different shapes (circular, rectangular and strip). This recent version of the macro-
element is adopted in this paper to perform the probabilistic dynamic analysis. The main reason for 
which the macro-element concept is chosen to perform the probabilistic analysis is that the time cost 
for  a  single  deterministic  calculation  is  relatively  small.  Thus,  this  model  is  suitable  for  the 
probabilistic analysis which requires a great number of calls of the deterministic model. 
In this paper, a probabilistic dynamic analysis of a five-storey building founded on a two rigid 
rectangular footings and subjected to a stochastic earthquake Ground-Motion (GM) is presented. The 
entire soil-structure system is considered and the soil and soil-footing interface are modelled using the 
macro-element. The stochastic GM time-histories are based on a real recorded time history. The 
probabilistic dynamic analysis is performed using the classical Monte Carlo Simulation (MCS) 
methodology. The paper is organized as follows: The next two sections aim at briefly presenting (i) 
the method used to generate the stochastic synthetic accelerograms based on a real target one, and (ii) 
the mathematical description of the macro-element. They are followed by the presentation of the 
numerical results. The paper ends with a conclusion. 

2. GENERATION OF STOCHASTIC GROUND MOTION ACCELEROGRAMS

In this paper, the method proposed by [15] was used to generate stochastic synthetic acceleration time 
histories from a target accelerogram which is a real recorded acceleration time history. This method 
consists in fitting a parameterized stochastic model that is based on a modulated, filtered white-noise 
process to a recorded ground motion. The parameterized stochastic model in its continuous form is 
defined as:

[ ]1
( ) ( , ) , ( ) ( )

( )

t

i
h

x t q t h t w d
t

α τ λ τ τ τ
σ −∞

   = −  
   

∫ (1)

In this expression,  ( , )q t α  is a deterministic, positive, time-modulating function with parameters  αi 

controlling its shape and intensity; ( )w τ  is a white-noise process; the integral inside the brackets is a 
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filtered white-noise process with  [ ], ( )h t τ λ τ− denoting the Impulse-Response Function (IRF) of 

the filter where ( )λ τ is a time-varying vector of parameters; and [ ]2 2( ) , ( )
t

h t h t dσ τ λτ τ
−∞

= −∫ is the 

variance  of  the  integral  process.  Because  of  the  normalization  by  ( )h tσ ,  the  process  inside  the 

brackets has unit variance. As a result, ( , )iq t α  equals the standard deviation of the resulting process 

x(t).  It  should  be  noticed  that  the  modulating  function  ( , )iq t α completely  defines  the  temporal 

characteristics of the process, whereas the form of the filter IRF and its time-varying parameters define 
the spectral characteristics of the process. In this study, a ‘Gamma’ modulating function is used as 
follows:

2 1
1 3( , ) exp( )iq t t tαα α α−= − (2)

In this  equation,  1 2 3( , , )iα α α α=  where ( )1 3, 0α α > ,  and  2 1α > .  Of the three  parameters,  α1 

controls the intensity of the process; α2 controls the shape of the modulating function and α3  controls 
the  duration  of  the  motion.  These  parameters  are  related  to  three  physically  based  parameters 

5 95( , , )a midI D t−  which describe the real recorded GM in the time domain; where  aI  is the Arias 
Intensity (AI) and D5−95 represents the effective duration of the motion. D5−95 is defined as the time 
interval between the instants at which the 5% and 95% of the expected AI are reached respectively. 
Finally, tmid is the time at the middle of the strong-shaking phase. It is selected as the time at which 
45% of the expected AI is reached. The relationship between 1 2 3( , , )iα α α α= and 5 95( , , )a midI D t−

are given in details in [15] and are not presented herein.
For the filter IRF, we select a form that corresponds to the pseudo-acceleration response of a single-
degree-of-freedom linear oscillator:
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where ( ) ( ( ), ( ))f fλ τ ω τ ζ τ=  is the set of time-varying parameters of the IRF with ( )fω τ  denoting 
the frequency of the filter and ( )fζ τ  denoting its damping ratio. These two parameters are related to 
the two physical parameters that describe the recorded GM in the frequency domain and which are 
respectively the predominant  frequency and the bandwidth of the GM. For more details about the 
identification procedure between the recorded GM and the stochastic model described previously, the 
reader may refer to [14-15]. 

3. MATHEMATICAL DESCRIPTION OF THE MACRO-ELEMENT

The purpose of this section is to describe a theoretical model  based on strain hardening plasticity 
theory which is capable of describing the behavior of a shallow footing when it is subjected to all 
possible combinations of vertical,  horizontal and moment  loading using the macro-element.  In the 
framework of the macro-element theory, any load or deformation path can be applied to the footing 
and  the  corresponding  unknowns  (deformations  or  loads)  can  be  calculated.  The  foundation  is 
assumed to be rigid and the nonlinearities of the soil and interface are assumed to be condensed in a 
representative point which is the footing centre. Within that framework, it is suggested to work with 
generalized (global) variables: (i) the force resultants, i.e. the vertical force V, the horizontal forces Hx, 
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Hy, and the moments Mx, My and (ii) the corresponding displacements; i.e. the vertical displacement 
uz, the horizontal displacements ux and uy, and the rotations θx and θy. The torque moment (Mz) and the 
corresponding displacement are not taken into account in the present analysis. The three-dimensional 
SSI macro-element takes into account three different mechanisms: the soil elasticity, the possible soil 
plasticity and the possible uplift of the foundation. The total displacement can thus be considered as a 
sum of three components related to the elastic and plastic behavior of the soil and the uplift behavior 
of  the  foundation.  These  three  different  mechanisms  and  their  mathematical  development  are 
extensively presented in [3, 6, 7] and are briefly described herein.

3.1. Elastic behaviour

The  elastic  constitutive  model  can  be  written  as  ( )el plF K u u= −
r r r

 where 

( )' ' ' ' 'z x y y xu u u uθ θ=r  and ( )' ' ' ' 'x y y xF V H M H M=
r

 are the vectors that 

represent the dimensionless generalized displacements and forces and Kel is the elastic stiffness matrix 
[6]. 

3.2. Plastic behaviour - failure criterion and loading surface

The loading surface used was initially developed in [3] to describe the behaviour of a 2D shallow 
foundation. The extension of this loading surface to cover the case of a 3D shallow foundation is a 
five-dimensional surface. It is given as follows:
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r

(4)

The coefficients a and b define the size of the surface in the plane (H'-M'), and the coefficients c, d, e 
and f define the parabolic shape of the surface in the planes (V'-M') and (V'-H'). Theses parameters can 
be  obtained  by  fitting  this  equation  to  experimental  results.  On  the  other  hand,  the  vector 

( ), , ,τ α β δ η=r  is  the  kinematics  hardening  vector.  It  is  composed  of  4  kinematics  hardening 
variables and  ρ  is  the isotropic hardening variable.  The variable γ is chosen to parameterize the 
second intersection point of the loading surface with the V' axis and its evolution in the V' axis (the 
other  point  is  the  origin  of  the  space).  The  evolution  of  the  hardening  variables  is  obtained  by 
considering experimental results and numerical simulations [3]. Notice finally that the failure criterion 
is given by equation (4) with ( ) ( ), , , , , 0,0, 0,0,1,1α β δ η ρ γ = .

3.3. Uplift behaviour - failure criterion and loading surface

The uplift behaviour is not influenced by the horizontal forces. For the uplift mechanism, the failure 
criterion is given by [6] as follows:
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where A is a parameter of the constitutive model and (q1, q2) is a couple of integers that takes into 
account the shape of the foundation. As for the loading surface, its evolution is more complicated than 
for a classical plasticity model. Thus, it is not presented herein. For more details, the reader may refer 
to [6]. The uplift mechanism is coupled with the plasticity mechanism by using the classical multi-
mechanism approach.

4. PROBABILISTIC NUMERICAL RESULTS

The aim of this section is to present the probabilistic numerical results. It should be remembered here 
that the dynamic analysis involves a five-storey building subjected to a stochastic earthquake Ground-
Motion (GM). The CAMUS IV structure [1] is chosen in this study.  This structure is a 1/3 scaled 
mock-up. It is composed of (i) two parallel five-floor reinforced concrete walls without opening and 
(ii) six square floors that link these walls (Figure 1(a)). The entire structure rests on two rectangular 
footings of 0.8mx2.1m (Figure 1(a)). The total height of the model is 5.1 m and the total mass is 
estimated to be equal to 36 tons. The wall of a given floor is 4m long, 1.70m high and 6 cm thick [1]. 
The building and the footings rest on a high density sand. The container which contains the sand has a 
horizontal cross-section of 4.6mx4.6m and a depth of 4m. 

(a) (b)

Figure 1. The five-storey building: (a) The CAMUS IV real model, and (b) the simplified numerical  
lumped mass system

For  the  numerical  calculations,  the  CAMUS  IV five-storey  building  is  modelled  using  a  simple 
lumped mass system (Figure 1(b)). In this system, the building is simulated using beam elements and 
concentrated masses. Each storey i is reduced to a single mass Mi that has an inertia equal to Ji. The 
values of the masses and the corresponding inertias for the different stories are given in Table 1. The 
material behaviour of the beams is considered linear elastic. The soil-foundation system is modelled 
using the macro-element which has two superposed nodes. The first node is considered fixed and the 
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second node is connected to the structure. The dynamic loading is applied to that first node. For the 
used height density sand, [7] have identified the different parameters of the macro-element by fitting 
the model to the experimental results given by [5]. These parameters are presented in Table 2 where 
qmax is the ultimate bearing capacity of the rectangular footing, a, b, c, d, e and f are the coefficients 
that appear in Equation (4), κ and ξ are parameters of the flow rule, and finally a1, a2, a3, a4 and a5 are 
parameters used to calculate the variable γ as may be seen in [5]. 

Table 1. Parameters used to model the five-storey 
building

Height hi [m] (see 
Figure 1)

Mass [Kg]
Inertia 

[Kg.m2]

h1=0.1 M1=4786 J1=1600
h2=1.4 M2=6825 J2=3202
h3=2.3 M3=6825 J3=3202
h4=3.2 M4=6825 J4=3202
h5=4.1 M5=6825 J5=3202
h6=5 M6=6388 J6=3124

Table 2. Parameters used to model the soil-
foundation (macro-element)

Elastic parameters
elKθθ =52MNm/rad

el
hhK =105MN/m
el
zzK =120MN/m

Plastic parameters

qmax=0.58MPa κ=1
a=0.93 ξ=1
b=0.8 a1=1
c=1 a2=1
d=1 a3=1
e=1 a4=1
f=1 a5=1

In the following sections, some typical stochastic synthetic acceleration time histories used to perform 
the probabilistic analysis are presented. The probabilistic results are then presented and discussed. 

4.1.  Realizations of the stochastic synthetic acceleration time histories

The target acceleration time history used to generate stochastic synthetic acceleration time histories is 
the Nice synthetic accelerogram shown in Figure 2(a).  This signal is  representative of  the French 
design  elastic  response  spectrum.  It  has  a  maximum  acceleration  equal  to  0.33g  and  its  Fourier 
amplitude spectrum is given in Figure 2 (b). The target acceleration time history shown in Figure 2 is 
used to identify the parameters of the stochastic model given in Equation (1). Once these parameters 
are calculated using the target accelerogram, realizations of the stochastic synthetic acceleration time 
histories can be performed by generating for each simulation a new white noise which is a series of 
standard normal random variables.
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Figure 2. (a) The target acceleration time history, and (b) its corresponding Fourier amplitude 

spectrum

Figure 3 presents five realizations of the stochastic synthetic acceleration time histories. This figure 
shows that the different simulated acceleration time histories have different maximum accelerations 
which will  induce different dynamic responses. The aim of the next two subsections is to present 
respectively (i) the probability density function PDF of the dynamic responses obtained using 100,000 
stochastic synthetic  acceleration time  histories,  and (ii)  the fragility curves corresponding to three 
different damage levels.
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Figure 3. (a) Target and five simulated acceleration time-histories, and (b) their corresponding Fourier 
amplitude spectrum
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4.2. Statistical moments of the dynamic responses

Table 3 presents the two first statistical moments (i.e. the probabilistic mean and the standard 
deviation) together with the deterministic mean values for the following dynamic responses: (i) the 
maximum horizontal displacement at the top of the building, (ii) the three maximum displacements of 
the footing centre, and finally (iii) the force resultants (Vmax, Nmax, Mmax) at the contact of the soil and 
the footing. This table shows that the probabilistic mean value of the maximum horizontal 
displacement at the top of the building is almost 10 times larger that the one obtained at the footing 
centre. On the other hand, large values of the coefficient of variation COV are obtained for the 
different output parameters (19.75<COV<41.5). From a probabilistic point of view, large values of the 
coefficient of variation indicate that the responses are spread out over a large range of values. This is 
critical since in this case the mean values of these responses are not representative and can not be 
considered as reliable data for design procedure. For some output parameters (such as the maximum 
displacement at the top of the building and the maximum moment at the bottom), this phenomenon is 
amplified by the fact that the probabilistic mean value is significantly larger than the deterministic one.

Table 3. Effect of stochastic Ground-Motion on the statistical moments (μ, σ) of the seven dynamic 
responses

Stochastic dynamic response
Deterministic 

mean
Probabilistic 
mean μx10-3

Standard 
deviation 

σx10-3

Coefficient 
of variation 
COV (%)

The maximum horizontal displacement at 
the top of the building [m]

22.7 31.5 9.7 30.80

The maximum horizontal displacement of 
the footing centre [m]

2.4 2.8 0.6 21.43

The maximum vertical displacement of 
the footing centre [m]

4.2 5.3 2.2 41.50

The maximum rotation of the footing 
centre [rad]

4.1 5.8 1.9 32.76

The maximum normal force at the contact 
of the soil and the footing [MN]

3.8 5.6 2.3 41.07

The maximum shear force at the contact 
of the soil and the footing [MN]

27.9 31.4 6.2 19.75

The maximum moment at the contact of 
the soil and the footing [MN]

34.3 37.3 7.7 20.64

Figure 4 presents the PDF of the maximum horizontal displacement at the footing centre and that of 
the maximum horizontal displacement at the top of the building. This figure shows that the PDF of the 
maximum horizontal displacement at the top is more spread out and thus more critical. 
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Figure 4. PDF of the maximum horizontal displacement (a) at the centre of the footing, and (b) at the 
top of the building

4.3. Fragility curves

The probability that a certain level of damage (tolerable maximum horizontal displacement) will be 
exceeded  at a specified ground motion level can be expressed in the form of fragility curves.  The 
fragility curves can be performed since the stochastic ground motions create variability in the PGA 
(0.2g<PGA<0.7g). In this section, fragility curves for the maximum horizontal displacement at the top 
of the building and for the maximum moment at the contact of the soil and the footing are computed. 
Figure 6(a) presents three fragility curves corresponding to the maximum horizontal displacement at 
the  top of  the  building for  three  levels  of  damage  [(i)  minor  damage  for  which  umax=0.06m,  (ii) 
medium damage for which umax=0.04m and (iii) major damage for which umax=0.01m]. On the other 
hand, Figure 6(b) presents three fragility curves corresponding the maximum moment at the contact of 
the soil and the footing for three levels of damage [(i) minor damage for which Mmax=0.06MNm, (ii) 
medium damage for which Mmax=0.04MNm and (iii) major damage for which Mmax=0.01MNm]. For 
the probabilistic analysis, these figures allow one to determine the probability of exceeding a tolerable 
value of the dynamic response corresponding to a given value of the peak ground acceleration (PGA) 
for a prescribed damage level. 
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Figure 6. Fragility curves for different level of damage (a) maximum moment at the contact of the soil 

and footing, and (b) maximum horizontal displacement at the top of the building

5. CONCLUSION

In this paper, a probabilistic dynamic analysis of a five-storey building founded on two rigid 
rectangular footings and subjected to a stochastic earthquake Ground-Motion (GM) is presented. The 
entire soil-structure system is considered in the analysis in which the soil and soil-footing interface are 
modelled by a macro-element. The stochastic GM time-histories are based on a real recorded time 
history. The probabilistic dynamic analyses are performed using the classical Monte Carlo Simulation 
(MCS) methodology. The probabilistic results have shown that (i) the probabilistic mean value of the 
maximum horizontal displacement at the top of the building is almost 10 times larger that the one 
obtained at the footing centre; (ii) large values of the coefficient of variation are obtained for the 
maximum horizontal displacement at the top of the building and for the maximum moment at the 
contact of the soil and the footing; and finally (iii) stochastic ground motion time histories create 
variability in the PGA which allows one to perform fragility curves for the different dynamic 
responses. 
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