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ABSTRACT 

A probabilistic analysis using Polynomial Chaos Expansion method is 
presented to compute the probability density function (PDF) of the ultimate bearing 
capacity of a strip footing resting on a rock mass and subjected to a vertical/inclined 
load. The rock is assumed to follow Hoek-Brown failure criterion. The kinematic 
approach of the limit analysis theory is used. The results of the vertical load case have 
shown that: (i) the Geological Strength Index GSI and the uniaxial compressive 
strength of the intact rock σc have the most significant weight in the variability of the 
ultimate bearing capacity, (ii) the non-normality of the input variables has a 
significant effect on the shape of the PDF of the ultimate bearing capacity and, (iii) a 
negative correlation between GSI and σc leads to less spread out PDF. Finally, it was 
shown in the inclined load case that the variability of the ultimate bearing capacity 
decreases with the increase of the footing load inclination. 

INTRODUCTION 

Traditionally, the stability analysis of shallow foundations resting on rocks is 
based on deterministic approaches. The present paper aims at determining the 
ultimate bearing capacity of a centrally loaded shallow strip footing (i.e. a footing 
subjected to a vertical or an inclined load) using a probabilistic analysis. The footing 
rests on a rock mass that follows the modified Hoek-Brown failure criterion. The 
deterministic models are based on the kinematic approach of limit analysis theory 
using translational multiblock failure mechanisms. The Polynomial Chaos Expansion 
(PCE) method (Huang et al. 2009) is used for the probabilistic analysis. Four 
uncertain parameters related to the modified Hoek-Brown failure criterion are 
modeled as random variables. These are the Geological Strength Index (GSI), the 
uniaxial compressive strength of the intact rock (σc), the intact rock material constant 
(mi) and the disturbance coefficient (D). The paper is organized as follows: The first 
section aims at presenting the basic idea of the PCE methodology. It is followed by a 
presentation of the deterministic model used for the computation of the ultimate 
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bearing capacity. Finally, the probabilistic results are presented and discussed. The 
paper ends with a conclusion.  

POLYNOMIAL CHAOS EXPANSION (PCE) METHODOLOGY  

In the PCE methodology, the response of the mechanical model Γ with M 
input random variables is expressed by a PCE of order p pre-defined by the user as 
follows: 
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where ξ are independent standard normal random variables representing the input 
random variables, aβ are unknown coefficients to be determined, βΨ  are chosen as 
multidimensional Hermite polynomials and ( ) ( )!p!M/!pMP +=  is the number of
terms retained in the truncation scheme (which is equal to the number of unknown 
coefficients). To compute the coefficients βa  in Equation 1, two non intrusive 
methods have been proposed in literature: the projection and the regression approach. 
In this paper, the regression approach (Huang et al. 2009) is used. In this approach, 
each input random variable is assumed to take the roots of the one-dimensional 
Hermite polynomial (of one degree higher than the PCE order p). For M input 
random variables and a PCE of order p, the available collocation points (sample 
points) are the result of all possible combinations of these roots. Their number 

( )[ ]MpN 1+=  dramatically increases as p and M increase and it is always higher than
the number P of the unknown coefficients (for 2≥M ). This leads to a linear system 
of equations whose number of equations is greater than the number of unknowns. 
Several attempts have been made in literature to select the most efficient collocation 
points among the N available ones in order to reduce the number of calls to the 
deterministic model. The approach proposed by Sudret (2008) is used herein. In order 
to check the goodness of fit of the PCE, the coefficient of determination R2 is 
computed. The value 12 =R  indicates a perfect fit of the true model response Γ, 
whereas 02 =R  indicates a nonlinear relationship between the true model Γ and the 
PCE model PCEΓ . Once the output approximation via a PCE is obtained, this PCE 
will be called meta-model and will be employed for the probabilistic analyses. The 
PDF and the statistical moments of the system response can be estimated. This can be 
done by simulating a large number of realizations of the standard normal variables on 
the meta-model using Monte Carlo technique. Another important advantage of the 
meta-model is that a global sensitivity analysis (GSA) based on Sobol indices can be 
performed analytically using the coefficients of the PCE (Sudret 2008). These indices 
indicate the contribution of each random variable or combination of random variables 
to the variability of the system response. This is important because it helps engineers 
in detecting the input uncertain parameters which have a significant influence in the 
variability of the system response. 

2



DETERMINISTIC BEARING CAPACITY OF A CENTRALLY LOADED 
STRIP FOOTING 

The modified Hoek-Brown failure criterion is used in this paper. This failure 
criterion only deals with intact rocks or heavily jointed rock masses. A heavily 
jointed rock mass involves sufficiently dense and randomly distributed joints so that 
in the scale of the problem, it can be regarded as an isotropic assembly of interlocking 
particles. Consequently, rocks with few discontinuities cannot be considered in this 
framework. This failure criterion can be described by the following equation (Hoek et 
al. 2002): 

( )[ ]n
cc s/m +=− σσσσσ 331   (2) 

where σ1 and σ3 are respectively the major and minor principal stresses at failure and 
σc is the uniaxial compressive stress of the rock at failure. The parameters m, s and n 
are given by the following equations: 
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In these equations, the geological strength index (GSI) characterizes the 
quality of rock masses, and it depends on the rock mass structure as well as the 
surface condition of joints (Hoek et al. 2002). On the other hand, the parameter mi is 
the value of parameter m for intact rock and can be obtained from experimental tests. 
It varies from 4 for very fine weak rock like claystone to 33 for coarse igneous light-
colored rock like granite. Finally, D is the disturbance coefficient. It varies from 0.0 
for undisturbed in situ rock masses to 1.0 for very disturbed rock masses.  

Two kinematically admissible failure mechanisms M1 and M2 based on the 
upper-bound theorem of limit analysis are used herein. They are described in Soubra 
(1999) in the case of a Mohr-Coulomb material whose failure criterion is linear. M1 
is a translational symmetrical multiblock failure mechanism (Figure 1a) and is used 
for the computation of the ultimate bearing capacity of a vertically loaded strip 
footing. It is composed of 2k+1 triangular rigid blocks (a central symmetrical block 
under the footing and 2k symmetrical rigid blocks at both sides of the footing). This 
mechanism can be completely described by 2k angular parameters which are αi (i=1, 
…, k-1), βi (i=1, …, k) and θ. On the other hand, M2 is a translational non-
symmetrical multiblock failure mechanism (Figure 1b) and is suitable for the 
calculation of the ultimate bearing capacity of obliquely loaded strip foundations. 
This mechanism is composed of k triangular rigid blocks. It can be completely 
described by 2k-1 angular parameters which are αi (i=1, …, k-1) and βi (i=1, …, k). 
For the case of rock masses obeying the modified Hoek-Brown non linear failure 
criterion, Yang and Yin (2005) have replaced this criterion by an equivalent linear 
Mohr-Coulomb failure criterion (Figure 2). Recently, a more rigorous and efficient 
approach which preserves the original non linear form of the modified Hoek-Brown 
failure criterion, was proposed by Saada et al. (2008). A similar approach is used 
herein for both M1 and M2 mechanisms. Notice that the energy dissipation takes 
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place at the discontinuity surfaces di between the material at rest and the material in 
motion, and at the discontinuity surfaces li within the radial shear zone (Figure 1). In 
this paper, the inter-block velocities vi,i+1 will be assumed as being inclined at angles 
φi,i+1 to lines li+1 (Figure 3) where φi,i+1 will be different along the different lines li+1. 
Also, the block velocities vi+1 will be assumed as being inclined at angles φi+1 to lines 
di+1 (Figure 3) where φi+1 will be also different along the different lines di+1.  

a)

b)
Figure 1. Failure mechanisms for the computation of the bearing capacity in the 

case of a) vertical load and b) inclined load. 

Figure 2. Failure envelope the Hoek-Brown and the equivalent mechanism 
Morh-Coulomb failure criteria. 

Figure 3. Velocity field of M1 mechanism. 
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For both M1 and M2 mechanisms, it was found that an upper-bound of the 
ultimate bearing capacity can be defined as: 

ccqu NBNqBNBq σγ σγ 00
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where 
c

NandN,N q σγ  are non-dimensional functions which can be expressed in 
terms of the mechanism geometrical parameters and in terms of the tangential 
frictional angle φi+1 and φi,i+1 where i=0, …, k-1. For each failure mechanism, the 
ultimate bearing capacity is obtained by minimization with respect to the angular 
parameters of the failure mechanism and with respect to φi+1 and φi,i+1.  

PROBABILISTIC NUMERICAL RESULTS 

The aim of this section is to present the probabilistic results of the ultimate 
bearing capacity. The footing of width B0=1m is placed on a weightless (γ=0) rock 
mass, with no surcharge loading on the ground surface (q=0). The illustrative values 
of the statistical moments of the random variables as well as the correlation 
coefficient are presented in Table 1 [Hoek 1998 and Hoek et al. 2002]. 

Table 1. Input random variables and their statistical characteristics. 
Variables Mean  COV Probability distribution Coefficient of correlation ρ 
GSI [-] 25 10% Log-normal 

-0.75 ≤  ρ(GSI, σc) ≤ +0.75 mi [-] 8 12.5% Log-normal 
σc [MPa] 10 25% Log-normal 

D [-] 0.3 10% Log-normal 

CASE OF A VERTICAL LOAD 

Optimal PCE order and Sobol indices 

The coefficient of determination R2 of the PCEs of orders 2, 3, 4 and 5 were 
computed. It was found that R2 of order 4 and order 5 are close to 1 (i.e. higher than 
0.999999). Consequently a PCE of order p=4 provides a good fit between the meta-
model and the true model, and will be adopted in the rest of the probabilistic studies 
performed in this paper. For the prescribed values of the statistical moments of the 
input random variables presented in Table 1, the Sobol indices have been computed. 
The Sobol indices of parameter σc (0.5378) and GSI (0.3141) are much higher than 
those of parameters mi (0.0866) and D (0.0308). A thorough experimental 
investigation will thus be required by the engineer for only the influential parameters 
(i.e. GSI and σc) to obtain reliable results of the system response. 

Effect of the coefficient of variation (COV) of the random variables  

The effect of COV of the random variables is presented in Table 2. This table 
shows that the COV has practically no effect on the mean value of the ultimate 
bearing capacity and that the increase in the COV of parameters GSI or σc has a 
significant effect on the variability of the ultimate bearing capacity. Table 2 also 
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shows the effect of COV on Sobol indices. One can note that the increase in COV of 
a certain variable increases its Sobol index and decreases the Sobol indices of the 
other variables. 

Table 2. Effect of the coefficients of variation of the input random variables on 
the statistical moments (μ, σ) of the bearing capacity and on Sobol indices. 
Coefficient of variation μ σ SU(GSI) SU(mi) SU(σc) SU(D) 

COV(GSI) 
5% 1.4937 0.4396 0.1031 0.1165 0.7207 0.0417 
10% 1.5056 0.5129 0.3141 0.0866 0.5378 0.0308 
15% 1.5254 0.6258 0.5063 0.0594 0.3712 0.0209 

COV(mi) 
6.25% 1.5059 0.4948 0.3384 0.0233 0.5789 0.0332 
12.5% 1.5056 0.5129 0.3141 0.0866 0.5378 0.0308 
18.75% 1.5050 0.5426 0.2805 0.1743 0.4807 0.0275 

COV(σc) 
12.5% 1.5052 0.3895 0.5451 0.1502 0.2333 0.0534 
25% 1.5056 0.5129 0.3141 0.0866 0.5378 0.0308 

37.5% 1.5051 0.6700 0.1840 0.0507 0.7093 0.0181 

COV(D) 
5% 1.4937 0.5062 0.3225 0.0888 0.5515 0.0080 
10% 1.5056 0.5129 0.3141 0.0866 0.5378 0.0308 
15% 1.5254 0.5239 0.3013 0.0832 0.5168 0.0657 

Effect of the correlation coefficient and the distribution type of the random variables 

The PDFs presented in Figure 3 show that the increase in the coefficient of 
correlation between GSI and σc significantly increases the variability of the ultimate 
bearing capacity. The smallest response variability is thus obtained for negatively 
correlated variables.  

Concerning the distribution type of the input random variables, two cases of 
normal and nonnormal (i.e. log-normal) random variables combined with two 
configurations of COVs were considered (Figure 4). 
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The “standard COVs” corresponds to the reference case presented in Table 1 
while the “high COVs” corresponds to these values increased by 50%. For these two 
sets of COVs, the non-normality of the distribution type of the input random variables 
has significant influence on the shape of the PDF of the ultimate bearing capacity as 
can be seen from Figure 4; the influence being more important for the case of “high 
COVs” than the case of “standard COVs”. Notice however that the probability 
distribution of the random variables has practically no influence on the mean and the 
standard deviation of the system response and consequently, no effect on the 
coefficient of variation of this response (results not shown here). 

CASE OF AN INCLINED LOAD 

Figure 5 shows the PDFs of the ultimate bearing capacity for different values 
of the load inclination α. One can see that the variability of the ultimate bearing 
capacity is significant in the case of small load inclination α and it decreases when α 
increases. This may be explained by the fact that the response involved in the analysis 
is the ultimate bearing capacity. Thus, it would be logical to have the most significant 
variability when the punching is most predominant (i.e. for small load inclination). 
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Figure 5. PDF of the bearing capacity for different cases of load inclination. 

Table 3. Statistical moments of the ultimate bearing capacity for different cases 
of load inclination α. 
α (°) 5 10 15 23 30 35 40 

μ 1.3032 1.1004 0.9090 0.6367 0.4405 0.3260 0.2325 
σ 0.4443 0.3758 0.3104 0.2178 0.1509 0.1119 0.0800 

COV 0.3410 0.3415 0.3415 0.3421 0.3426 0.3432 0.3439 
δ 1.0627 1.0672 1.0693 1.0698 1.0709 1.0712 1.0742 
κ 2.0710 2.0928 2.1113 2.0969 2.1051 2.095 2.1153 

Table 3 shows that the mean and standard deviation of the ultimate bearing 
capacity vary with the load inclination. However, the coefficient of variation, the 
skewness δ and the kurtosis κ do not vary with this inclination; this observation may 
be explained by the fact that the variability of the input random variables is similar 
for the different load inclinations. 
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CONCLUSION 

A probabilistic analysis of a centrally loaded strip foundation resting on a rock 
mass obeying Hoek-Brown failure criterion has been performed. The deterministic 
model was based on the kinematical approach of the limit analysis theory. The 
polynomial chaos expansion methodology was used for the probabilistic analysis. 
The uncertain parameters involved in the analysis were the Geological Strength Index 
(GSI), the uniaxial compressive strength of the intact rock (σc), the intact rock 
material constant (mi) and the disturbance coefficient (D). For the vertically loaded 
footing, it was shown that (i) a fourth order PCE is sufficient to accurately represent 
the system response; (ii) the parameters mi and D have smaller effect on the 
variability of the ultimate bearing capacity compared to the other two parameters GSI 
and σc; (iii) the assumption of negatively correlated variables leads to less spread out 
PDF of the ultimate bearing capacity; (iv) the non-normality of the input random 
variables has a significant impact on the shape of the PDF of the ultimate bearing 
capacity, there is an almost no effect on its mean and standard deviation; (v) the COV 
of the random variables has practically no effect on the mean value of the ultimate 
bearing capacity, the increase in the COV of the parameters GSI or σc has a 
significant effect on the variability of the ultimate bearing capacity; (vi) the increase 
in the COV of a certain variable increases its Sobol index (i.e. it increases its weight 
in the variability of the system response) and decreases the Sobol indices of the other 
variables. For the inclined load case, it was found that the variability of the ultimate 
bearing capacity decreases with the increase of the footing load inclination; however 
the coefficient of variation of this bearing capacity is constant regardless of the load 
inclination. 
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