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ABSTRACT
The Boundary Element Method (BEM) allows efficient so-

lution of partial differential equations whose kernel functions

are known. The heat equation is one of these candidates when

the thermal parameters are assumed constant (linear model).

When the model involves large physical domains and time sim-

ulation intervals the amount of information that must be stored

increases significantly. This drawback can be circumvented by

using advanced strategies, as for example the multi-poles tech-

nique. We propose radically different approach that leads to a

separated solution of the space and time problems within a non-

incremental integration strategy. The technique is based on the

use of a space-time separated representation of the unknown field

that, introduced in the residual weighting formulation, allows to

define a separated solution of the resulting weak form. The spa-

tial step can be then treated by invoking the standard BEM for

solving the resulting steady state problem defined in the physical

space. Then, the time problem that results in an ordinary first

order differential equation is solved using any standard appro-

∗Address all correspondence to this author.

priate integration technique (e.g. backward finite differences).

When considering the nonlinear heat equation, the BEM can-

not be easily applied because its Green’s kernel is generally not

known but the use of the PGD presents the advantage of rewriting

the problem in such a way that the kernel is now clearly known.

Indeed, the system obtained by the PGD is composed of a Pois-

son equation in space coupled with an ODE in time so that the

use of the BEM for solving the spatial part of the problem is

efficient. During the solving, we must however separate the non-

linear term into a space-time representation that can limit the

method in terms of CPU time and storage, that is why we intro-

duce in the second part of the paper a new approach combining

the PGD and the Asymptotic Numerical Method (ANM) in order

to efficiently treat the nonlinearity.

INTRODUCTION

Solving the nonlinear heat equation with the Boundary Ele-

ment Method is not straightforward because it is generally not

possible to determine its Green’s kernel. A direct resolution

method based on the kernel of linear heat equation has been
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proposed in [1] and some other approaches have been used, we

could just mention here the homotopy method used quite recently

in [2]. The approach we use in this paper is radically different

because it involves Reduced Order Modelling techniques, from

which we can obtain a separated representation of the solution.

One of the pioneer ROM methods, the Proper Orthogonal De-

composition, allows to obtain a space-time decomposition of the

solution from a set of samples of the solution called snapshots.

But this sampling step limits the performances of the method

that is why the Proper Generalized Decomposition is nowadays

preferred. Based on a a priori separated representations of the

unknown, the PGD allows to treat high dimensional problems

arising from multidimensional physics and its range of applica-

tion is very large, see [3] for a recent review. For the application

in the nonlinear heat equation, it will consist in determining a

space-time separated representation with an iterative procedure:

the algorithm computes at each iteration a couple of modes from

the modes that have already been calculated. More details about

the PGD can be found in [4–6]. The advantage of coupling the

PGD and the BEM lies on the fact that is no more necessary

to know the space-time kernel of the heat equation but only the

Green’s kernel of the Poisson equation. The method, called in

the later PGD-BEM, has been first introduced in [7] for the lin-

ear heat equation and we show in this paper that its algorithm is

easily adapted to the nonlinear case. Even if the developed algo-

rithm shows impressive results, it remains some limitations due

to the cost of the space-time separation of the nonlinear term,

that is why we focus our work in the second part of the paper on

the Asymptotic Numerical Method, see for instance [8]. Origi-

nally designed for tracking bifurcation points, it has been lately

considered as a good alternative to circumvent the problems due

to high nonlinearity. Combined with the POD, Yvonnet et al. [9]

and more recently Niroomandi et al. [10] applied with success a

POD-ANM strategy for respectively post-buckling analysis and

large deformations of hyperelastic materials. In this paper, we

will present an approach coupling PGD and ANM that takes ad-

vantage of both methods. The performances of the different ap-

proaches will be outlined with a numerical example.

THE PGD-BEM METHOD

In this section, we present the PGD-BEM method for solv-

ing the nonlinear heat equation. Here, the nonlinearity comes

from the thermal conductivity function which depends on the

temperature. Hence, the problem that will be treated through-

out this paper is recalled here:











u
,t − (k(u)u

,i)
,i
= b in Ω× τ

u = 0 in ∂Ω× τ

u(t = 0) = 0 in Ω

(1)

where Ω is the spatial domain, ∂Ω its boundary, τ the time

interval, u the temperature field, b the source term and k the ther-

mal conductivity function.

The main idea of the PGD is to decompose the solution of the

problem (1) as a sum of products of spatial functions Xα(x) and

temporal functions T α(t), namely we seek u as follows:

u(x, t)≈
N

∑
α=1

Xα(x)T α(t) (2)

In order to explain what we will call in the following the

direct PGD, let us assume the p−1 first couples of Xα T α known.

The solution u(p) at iteration p is then expressed u(p) = u(p−1)+
XT and the functions X and T are obtained as solutions of the

following nonlinear system:

∫

τ

(

u
(p)
,t T

)

dτ −
∫

τ

(

(

k(u(p))u
(p)
,i

)

,i
T

)

dτ =
∫

τ

b T dτ (3)

∫

Ω

(

u
(p)
,t X

)

dx−
∫

Ω

(

(

k(u(p))u
(p)
,i

)

,i
X

)

dx =
∫

Ω
b X dx (4)

Equation (3) is a PDE in space that will be solved using the

BEM whereas equation (4) is an ODE in time. This system of

coupled equations is solved using a fixed-point method that will

be discussed later.

Spatial resolution with the BEM

As the spatial equation of the system is solved using the

BEM, we need to rewrite (3) in a way that allows to compute

Green’s functions. Hence, the system (3)-(4) is rewritten as fol-

lows:

−

[

∫

τ

(

k(u(p)) T T
)

dτ

]

X
,ii =

∫

τ

B T dτ −

[

∫

τ

T
,t T dτ

]

X

−
p−1

∑
α=1

[

∫

τ

T α
,t T dτ

]

Xα

−

[

∫

Ω

(

k(u(p)) X
,ii X

)

dx

]

T =
∫

Ω
B X dx−

[

∫

Ω
X X dx

]

T
,t

−
p−1

∑
α=1

[

∫

Ω
Xα X dx

]

T α
,t

(5)

where B = b+ k′(u(p))u
(p)
,i u

(p)
,i + k(u(p))u

(p−1)
,ii . For the case

of homogeneous boundary conditions, we can write
∫

τ
T
,t T dτ =

1
2
T 2

f where Tf = T (τ f ). The functions k(u(p)) and B depend on x

and t that is why they must be decomposed into separated forms
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for computing the integrals in system (5). This is practically

achieved by using a SVD, so that if we note:

k(u(p))≈
p

∑
α=1

Kα
x Kα

t and B ≈
p

∑
α=1

Bα
x Bα

t (6)

the system can finally be written as:

−

[

p−1

∑
α=1

Kα
x

∫

τ

Kα
t T T dτ

]

X
,ii −

[

p−1

∑
α=1

Bα
x

∫

τ

Bα
t T dτ

]

+

[

1

2
T 2

f

]

X +
p−1

∑
α=1

[

∫

τ

T α
,t T dτ

]

Xα = 0

(7)

−

[

p−1

∑
α=1

Kα
t

∫

Ω
Kα

x X
,ii X dx

]

T −

[

p−1

∑
α=1

Bα
t

∫

Ω
Bα

x X dx

]

+

[

∫

Ω
X X dx

]

T
,t +

p−1

∑
α=1

[

∫

Ω
Xα X dx

]

T α
,t = 0

(8)

The fixed-point algorithm

The system of equations (7)-(8) is then solved using a fixed-

point method. Assuming that all fields are known at iteration q,

the way of computing them at iteration q+ 1 is described here-

after.

We first determine Xq+1 by solving equation (7), note that it is

a Poisson-like equation and hence is efficiently solved by the

BEM. So, we have to solve:

−X
q+1
,ii =

1

p−1

∑
α=1

Kα
x

∫

τ

Kα
t T q T q dτ

[

p−1

∑
α=1

Bα
x

∫

τ

Bα
t T q dτ

−

(

1

2
(T q

f )
2

)

X −
p−1

∑
α=1

[

∫

τ

T α
,t T q dτ

]

Xα

]

(9)

The terms Bα
x and Bα

t are then evaluated by achieving a SVD

over the following form of B:

B = b+ k′
(

u(p−1),q,q
)

u
(p−1),q,q
,i u

(p−1),q,q
,i + k

(

u(p−1),q,q
)

u
(p−1)
,ii

(10)

where u(p−1),q,q = u(p−1) +XqT q. In a similar maner, Kα
x

and Kα
t are obtained from k

(

u(p−1),q,q
)

. In a second step, T q+1

is obtained by solving (8), which gives at iteration q+1:

−

[

p−1

∑
α=1

Kα
t

∫

Ω
Kα

x X
q+1
,ii Xq+1 dx

]

T q+1 −

[

p−1

∑
α=1

Bα
t

∫

Ω
Bα

x Xq+1 dx

]

+

[

∫

Ω
Xq+1 Xq+1 dx

]

T
q+1
,t +

p−1

∑
α=1

[

∫

Ω
Xα Xq+1 dx

]

T α
,t = 0

(11)

Once again, Bα
x and Bα

t are evaluated from the following form:

B = b +k′
(

u(p−1),q+1,q
)

u
(p−1),q+1,q
,i u

(p−1),q+1,q
,i

+k
(

u(p−1),q+1,q
)

u
(p−1)
,ii

(12)

whereas Kα
x and Kα

t are obtained from k
(

u(p−1),q+1,q
)

,

where u(p−1),q+1,q = u(p−1)+Xq+1T q.

Contrary to the linear PGD-BEM presented in [7], it is here nec-

essary to compute the separated forms of B and k(u) during the

fixed-point loop. The way of evaluating the nonlinear term is

very important for the efficiency of the algorithm but also affects

the computational effort needed for the whole method. This as-

pect has been widely discussed in [11] where they test different

linearization using the solution at previous iteration. Here, we

linearize in a more implicit way because we separate the non-

linear term inside the fixed-point loop with a SVD. It involves

then a number of SVD which is equal to the number of iterations

until convergence of the fixed-point algorithm times the number

of PGD modes we keep in the solution. The CPU time and stor-

age can hence become non negligeable so that we propose in the

following another approach that avoids dealing with these sepa-

rations.

AN ALTERNATIVE: THE PGD-ANM APPROACH
In this section we present the methodology we have em-

ployed in order to circumvent the need of separating the con-

ductivity function into a product of space and time functions.

The Asymptotic Numerical Approach
The Asymptotic Numerical Method (ANM) has been intro-

duced in the 90’s to deal with strong nonlinear problems. It con-

sists in transforming the nonlinear problem into a recursive se-

quence of well posed linear problems having the same tangent

operator. In comparison with classical methods that are used for

solving nonlinear problems, e.g. Newton-Raphson methods, the

ANM has proved to be much more efficient in terms of compu-

tational costs. More details about the wide range of applications

can be found in [8].

For generality’s sake, let us briefly explain the principle of the
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method by considering the following nonlinear problem written

in quadratic form:

{

L (u)+Q(u,u) = λb in Ω

u = 0 in ∂Ω
(13)

where L (u) represents a linear operator and Q(u,u) a

quadratic one, b is the second member and λ a load parameter.

The main idea of the ANM is the asymptotic expansion around

an known solution (un
,λ0) – in our case λ0 is always zero – at

step n into power series with respect to a path parameter a:

{

un+1(a) = un +au1 +a2u2 + · · ·

λ (a) = aλ1 +a2λ2 + · · ·
(14)

When truncating the series at order N, the problem (13)

gives:

L

(

un +
N

∑
p=1

apup

)

+ Q

(

un +
N

∑
p=1

apup,u
n +

N

∑
p=1

apup

)

=

(

N

∑
p=1

ap
λp

)

b

(15)

and by identifying the terms of same power p, we obtain a

recursive sequence of linear problems:

Lp(up) = λpb+Fp (16)

where Fp is a nonlinear second member term that depends

on terms until order p− 1. An additional condition is obtained

when defining a as a pseudo arc-length:

a = (un+1(a)−un) ·u1 +λ (a)λ1 (17)

Relations (16) and (17) after a given discretization procedure

allow to write a sequence of linear problems in the form:

order 1

{

Ktu1 = λ1f

u
T
1 ,u1 +λ 2

1 = 1
(18)

order p

{

Ktup = λpf+ fp

u
T
p u1 +λpλ1 = 0

(19)

where Kt is the tangent stiffness matrix, f is the loading

vector and fp is the second term vector obtained from the dis-

cretisation of Fp. These problems are solved using a prediction-

correction approach, their solutions are obtained as follows:

order 1



















û1 = K
−1
t f

λ1 =
1

√

(û1, û1)+1

u1 = λ1û1

(20)

order p















ûp = K
−1
t fp

λp =−λ1(ûp,u1)

up =
λp

λ1
u1 + ûp

(21)

Coupling between PGD and ANM
There are obviously several ways of coupling the PGD and

the ANM. A first strategy consists in applying the PGD on the

suite of linear systems that would be obtained by the ANM on

the nonlinear heat equation. The other approach takes advan-

tage of the ANM as a nonlinear solver, so that the order of the

steps is different: the ANM is applied inside the PGD algorithm.

The first approach is a work currently in progress and we will

here briefly present the most important features of the second

approach we have implemented.

The first steps of the algorithm remain unchanged, so that we

deal with the system of coupled equations (3)-(4) that are ob-

tained thanks to the PGD procedure. Here, instead of separating

the nonlinear term k(u) into a couple of space-time functions, we

propose to consider it as a new unknown that will be expressed as

an asymptotic expansion. If we note v = k(u), the expansion will

be now written around the known solution (un
,vn

,λ n) at step n:





u
n+1

v
n+1

λ



=





u
n

v
n

0



+
N

∑
p=1

ap





up

vp

λp



 (22)

so that the PGD method will determine at the same time the sep-

arated representation of u and k(u). Typically, knowing u and v

at iteration p−1, we seek their expression at iteration p as:

u(p) = u(p−1)+XT (23)

v(p) = v(p−1)+RS (24)
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and the ANM will be applied inside the PGD step over X and R

so that u(p) and v(p) will be then expressed as:

u(p) = u(p−1)+

(

N

∑
α=1

aα Xα

)

T (25)

v(p) = v(p−1)+

(

N

∑
α=1

aα Rα

)

S (26)

Rewriting these expressions into the direct PGD algorithm leads

finally to the PGD-ANM method.

RESULTS
In the later, the nonlinear heat equation will be solved in the

spatial domain Ω = [0,1]× [0,1] and over the time domain τ =
[0,1]. For comparison reasons, the analytic solution is imposed

to be uex = x(x−1)y(y−1)t and the second member is computed

from this solution, depending on the value of the nonlinear term

k(u). For the PGD-BEM, we consider the nonlinear term of the

following form k(u) = (u2 + 1) . Each side of the domain Ω is

discretized using 8 nodes and the time interval is decomposed

into 129 time steps.

The figure 1 shows the results obtained with the PGD-

BEM approach compared to the analytic solution at times t =
{0s,7.8 × 10−3s,0.25s,0.5s,0.75s,1s} and figure 2 represents

the corresponding absolute error computed from the analytic so-

lution:

e(x, t) =

∣

∣

∣

∣

u(x, t)−uex(x, t)

uex(x, t)

∣

∣

∣

∣

∀(x, t) ∈ Ω× τ (27)

At last, figure 3 shows the first three couples of modes that are

obtained at the end of the algorithm, note here that the first mode

is able to represent the structure of the solution whereas the ad-

ditional modes are useful for catching accurately the details.

Now, we present the results obtained by applying the PGD-

ANM method compared to the direct PGD, recalling here that

this method avoids achieving a large number of SVD which is

the case when using the direct PGD. We keep the same value

of the analytic solution but now we consider the nonlinear term

defined as k(u) = (u+ ε)n where n takes the values n = 1 or 2.

Figure 4 presents the evolution of the error in a L2
Ω×τ

sense with

the number of PGD modes for the direct PGD compared to the

PGD-ANM method at respectively order 1 and 2. We observe

in this figure that the PGD-ANM at first order slightly improves

the results in comparison with the direct PGD whereas they are

significantly better at second order, even for the most nonlinear

case. For this case, with 5 PGD modes, the error is divided by

two when using the PGD-ANM instead of the direct PGD, which

is already a quite interesting results.
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FIGURE 4. COMPARISON BETWEEN PGD DIRECT AND PGD-

ANM FOR DIFFERENT VALUES OF k(u).

CONCLUSIONS

The work presented in this paper addresses some issues or

at least interesting perspectives in the field of efficient solving

of nonlinear equations. Indeed, the PGD-BEM algorithm has

been successfully adapted for solving the nonlinear heat equa-

tion, without increasing the level of complexity in the method-

ology for the linear case. The main advantage of this approach

lies on the fact that only the Green’s kernel of Poisson equations

is required to solve the nonlinear heat equation with the Bound-

ary Element Method. Furthermore, coupling the PGD with the

ANM allows to take advantage of both techniques, and the gains

we can expect are really encouraging. Optimizations in the al-

gorithm are currently in progress in order to make it even more

accurate and CPU time efficient.
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