

PGD in Computational Mechanics: State of the Art and Prospective

F Chinesta¹, P. Ladevèze²

¹ GeM (EC-Nantes / CNRS)

² LMT-Cachan (ENS Cachan / CNRS / UPMC / PRES UniverSud Paris)

1,2 EADS Foundation Chairs

Proper Generalized Decomposition: extension of POD

Part 1 (PL): Nonlinear time dependent problems (possibly with parameters) Part 2 (FC): High-dimensional problems, inverse problems, ...

The PGD (for PDE)

Variable separation (or?)

 $\Psi_i(t, M) = \lambda_i(t) \Lambda_i(M)$

Interverse Few shape functions: *m* small (computational time > > >)

How?

Ideas

Question

The PGD

How? Residue?

$R(s) = \int_0^T \int_\Omega dt d\Omega r(s)$

 $R \ge 0$ $R = 0 \Longrightarrow s = s_{ex}$

$$\min_{\lambda_i,\Lambda_i,i=1...m} R\left(\sum_{i=1}^m \lambda_i(t)\Lambda_i(M)\right)$$

greedy algorithms

Theses (Cachan): Boisse, Cognard, Royer, Allix, Bussy, Liu, Champaney, Ryckelynk, Boucard, Michel, Dureisseix, Loiseau, Nouy, Néron, Guidault, Passieux

The LATIN method

Classical step-by-step methods

LATIN method

Idea: performance ****** = mechanics-based

LATIN :LArge Time INcrement method

- **1. The reference problem to be solved over the time-space domain** → remarkable properties?
- 2. The LATIN method and the last PGD version-Small displacements
 - → basic features?

3. Why are PGD-approximations efficient?

4. Conclusion

Reference problem to be solved over $[0, T] \times \Omega$

Classical formulation

Framework

- small perturbations
- quasi-static evolution
- isothermal

State of the structure

 \bigcirc defined by $\mathbf{s} = (\dot{\mathbf{E}}_p, \dot{\mathbf{X}}, \mathbf{\sigma}, \mathbf{Y})$

 \mathbf{E}_{D}

0

0

σ

- inelastic part of strain field
- elastic part of strain field Ee
 - strain field corresponding to displacement <u>U</u>: $\mathbf{\mathcal{E}} = \mathbf{\mathcal{E}}_p + \mathbf{\mathcal{E}}_e$ 3 X
 - remaining internal variables
 - stress field
 - variables conjugate of **X**

Reference problem to be solved over $[0, T] \times \Omega$

Remarkable properties?

Example of **local** relation : Hooke law $\sigma(\underline{M}) = K(\underline{M})\varepsilon(\underline{M})$

Reference problem to be solved over $[0, T] \times \Omega$

Remarkable properties?

Find $\mathbf{s} = (\dot{\boldsymbol{\varepsilon}}^p, \dot{\mathbf{X}}, \boldsymbol{\sigma}, \mathbf{Y}) \in \boldsymbol{S}^{[0,T]}$ such that

Kinematic admissibility

Static admissibility

- 1. The reference problem to be solved over the time-space domain → remarkable properties?
- 2. The LATIN method and the last PGD version-Small displacements
 - → basic features?

3. Why are PGD-approximations efficient?-Error control

4. Conclusion

Principle P1: splitting of difficulties

Principle P2: iterative and alternative scheme

A word about convergence

Dissipation bilinear form:

$$egin{aligned} &(\mathbf{s},\mathbf{s}') &\mapsto [\mathbf{s},\mathbf{s}']_t \ &\mathbf{S}^{[0,T]} imes \mathbf{S}^{[0,T]} \ &[\mathbf{s},\mathbf{s}]_t \equiv \int_0^t \int_\Omega [\mathrm{Tr}[oldsymbol{\sigma}\dot{oldsymbol{arepsilon}}_p] - \mathbf{Y}\circ\dot{\mathbf{X}}]d\Omega dt \end{aligned}$$

$$(\mathbf{\sigma}, \mathbf{Y})$$
 $\hat{\mathbf{S}}_{n+1/2}$ $\mathbf{\Gamma}$
 \mathbf{A}_{d}
 \mathbf{S}_{n+1} $\hat{\mathbf{S}}_{n}$ \mathbf{A}_{d}

Convergence of the LATIN method if:

Theorem

- **B** monotone material operator
- Λ positive definite
- Conjugate search directions H⁺ = H⁻ positive definite

Error indicator

$$\frac{\|\hat{\mathbf{s}}_{n+1/2} - \mathbf{s}_n\|}{\frac{1}{2}\|\hat{\mathbf{s}}_{n+1/2} + \mathbf{s}_n\|}$$

Comeback: Linear stage at Iteration *n*: find S_{n+1}

Idea: PGD approximation for quasi-static loadings

[Ladevèze 1985], **book** [Springer NY 1999], [Nouy, Ladevèze, cmame 2004], [Ladevèze, Néron, Passieux 2008]

Time-space approximation over $[0,T] \times \Omega$ of the unknowns of $\mathbf{A}_{\mathbf{d}}$ $\forall (t,\underline{M}) \in [0,T] \times \Omega$ $f(t,\underline{M}) = \sum_{i=1}^{m} \frac{\lambda_i(t) \Lambda_i(\underline{M})}{\lambda_i(t) \Lambda_i(\underline{M})}$

 m = 1, well-known approximation in (visco)plasticity
hot issue : F. Chinesta (high-dimensional problems and inverse problems) A. Nouy (stochastic problems) D. Néron (functional framework)

The best PGD approximation of order *m*:

 $\tilde{f}_m(t,M)$

Ladevèze1996

 $f \in \mathbf{F}^{[0,T]}$ defined over $[0,T] \times \Omega$, the norm being $\| \|_{\mathbf{F}^{[0,T]}}$

$$\forall (t, M) \in [0, T] \times \Omega, \quad \tilde{f}_m(t, M) = \sum_{i=1}^m \lambda_i(t) \Lambda_i(M)$$

 $\lambda_i \in \lambda, \ \Lambda_i \in \Lambda$

• result of an **eigenvalue problem** whose eigenfunctions are time functions λ_i

• and the corresponding space functions $\Lambda_i = \frac{\langle f, \lambda_i \rangle_{\lambda}}{\|\lambda_i\|_{\lambda}^2}$

Convergence result

$$\lim_{m\to\infty} \|f - \tilde{f}_m\|_{\mathbf{F}^{[0,T]}} = \mathbf{0}$$

The best PGD time-space approximation of order *m*: example

Comeback to the linear stage at Iteration *n*: S_{n+1} ?

Comeback to the linear stage at Iteration *n*: Δ **s ?**

practical technique (1or 2 subiterations)

- **minimization alternatively** on time functions (differential system of equations) and on space functions ("spatial" problem)
- 1 "product " per iteration at the most
- at each iteration : **PGD space functions are kept** and reused and then **PGD time functions are updated**
- drawback

computation of integrals over $[0,T] \times \Omega$: cost very high

The LATIN method - PGD framework

• "PGD" algebra: operations done on \hat{f} quantities [Néron 11]

ANR APPRoFi Snecma Groupe SAFRAN [Relun et al 2011]

ANR APPRoFi Snecma Groupe SAFRAN [Relun et al 2011]

Illustrations

Technique and results

Incremental description of the parameters

 \rightarrow parameter set Pi+1 = parameter set Pi + Δ Pi

Solution (t, M, Pi+1)

final gain (one proc.): 40

- **1. The reference problem to be solved over the time-space domain** → remarkable properties?
- 2. The LATIN method and the last PGD version-Small displacements
 - → basic features?

3. Why are PGD-approximations efficient?

4. Conclusion

Why PGD-approximations are efficient ? Heuristic arguments

m

Model problem over $[0,T] \times \Omega$ in quasi-statics

usual engineering description

Case 1

 \underline{A} linear and constant

Gase 2

A linear and A = A₀ +
$$\sum_{i=1}^{n} a_i(t) \underline{A}_i$$

 $\underline{S} = \sum_{i=1}^{k} s_i(t) \underline{S}_i(X)$

Why PGD-approximations are efficient ? Heuristic arguments

Case 3 (plasticity, viscoplasticity)

 \underline{A}

nonlinea	r $\underline{F} = f(t)\underline{F}(X)$	radial loading	
neorem	under the hypotheses - elasticity neglected - isotropic hardening - R = p ⁿ		
	the solution verifies:	$\sigma = f(t)C(X)$ $\varepsilon_p = g(t)\Sigma(X)$	
	with $\Sigma(X) = C_D(X)$	and $ g ^n \Sigma ^n =$	$\sup_{\tau \le t} f_{\tau} C $

(Hencky-Mises): accurate first approximation

Why PGD-approximations are efficient? A posteriori PGD verification

guaranteed error bound (PGD,Reduced Model,...)

[Ladevèze, Chamoin CMAME 2010]

Why PGD-approximations are efficient? A priori PGD verification

Conclusion

A tool for robust design: used to solve engineering problems not affordable by commercial codes

- o cyclic (visco-)plasticity
- damping virtual testing of the joints of Ariane 5
- If fracture of laminated composites at the micro scale
- multi-parameter engineering problems
- 0 ...

Challenging questions in progress

- very large scale time-dependent nonlinear problems (numerous parameters, complex loading, large displacement,..)
- output dynamics problems and acoustics over the LF + MF range (frequency-space domain)
- verification of PGD (goal oriented quantities)

Not the end thank you

