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ABSTRACT 

A theoretical method is proposed in order to analyse the behaviour during forming of 
short fibre reinforced composites. The method applies to high concentrations of fibres 
where the behaviour is assumed to be dominated by fibre-fibre interactions. Fibres are 
looked as an assembly of rigid bars linked by viscous joints. The equivalent continuum 
constitutive relationship is obtained by assuming a periodic spatial repartition of the 
fibres and applying the method of discrete homogenisation. Theoretical developments 
lead to two models, a Cosserat continuous medium, or a usual Cauchy one. Lastly a 
numerical application to planar composites is presented. 

INTRODUCTION 

In the processing of composites made of a fluid polymeric matrix reinforced by short 
fibres, fibres noticeably influence the flow of the matrix, and conversely, the flow of the 
matrix determines the spatial orientation and distribution of fibres. Many theoretical 
works have been published for low concentrations of fibres. These works intend to 
deduce the flow of the suspensions from the analysis of the fibre-matrix interaction. The 
microscopic mechanisms are less known for highly concentrated composites [1]-[3], 
and simulations of the flow based on their modelling are few and require large 
computing time [4] even for Newtonian matrices. 
A novel approach towards the modelling of such complex problems is presented in this 
paper. We consider a net of rigid fibres, called bars, linked by linear viscous joints 
modelling the short-range fibre-fibre interactions. Long range ones are neglected as 
proposed in [5]. To determine the equivalent continuum behaviour of the assembly, the 
net is assumed to be periodic. We then use an upscaling method previously developed 
for quasi-periodic lattice structures in the scope of elasticity [6], [7], [8]. 
The structure is supposed to be made of a large number Ne of identical cells, each filled 
with n fibres. The size of the structure Lis supposed to be large compared to the length 
of bars l, and the ratio c:=l!L is the small parameter of the problem. 
In this paper, two-dimensional assemblies are considered, but the extension to the three 
dimensional case is straightforward. Geometry, kinematics and local behaviour are first 
detailed. Then the homogenisation method is developed and we show that different 
types of constitutive equations are possible. Lastly, an application to planar fibre 
assemblies is discussed. 

DESCRIPTION OF THE GEOMETRY 

The net of fibres is made of bars, linked with the others by several punctual joints. The 
geometry of the assembly is therefore defined by the spatial and angular position of 
each fibre, and by the connectivity of each fibre with the remaining of the assembly. 
The assumption of periodicity suggests a system of numbering of bars and links 
reflecting the regularity of the microstructure. Cells are located by a vector of integers 

1



~ whose components are (a1,a2). Bars are numbered by a couple b = (b,g_), pointing 

out the barb of the cell g_. Similarly, the action of the bar c on the bar b is denoted 

either by k = (c,b) or by k = (k,g_). In the last case, c and b are respectively denoted 

[k and k]. In b = (b,g_) and k = (k,Q), integers b and k number the bars and 
connections of a reference cell whose corresponding sets are denoted B and C, 

respectively. k] is considered as belonging to the cell ~,thereafter denoted ~kl or ~'6. 
1 k denotes the reciprocal action (t;, c). The size of cells is assumed to be greater than 

the length of fibres, l. This implies that g_[f, the belonging cell of [k is actually a 

neighbouring cell g_k]. Therefore we introduce §_k = g_[k- g_k], vector of integers, whose 

components take values in {-1,0,+1}. Because of the geometrical periodicity, 8k ts 
independent of the considered cell. 

discrete variables 

/ 

a2+ 1 ····· ·_.::·-;-/···············:.i····~ ........ _ .. : .. ::f· ... ~ ........ _ .. : .. :./ ....... ~:+e 
/ 

a2 ......... ~:./·p;; ...... ::/,: ..... ~ .......... _:··:" ..... ~ .......... :.::..-: ............. A-2 

·· ~~:: l~~1 ::l·--A,-E 
./ / ,i £ D 1 / parametric variables 

A.,+e A.1 A.,+e 

Figure 1 : description of the assembly 
and numbering system. 

Figure 2 : locating of fibres. 

Figure 1 sums up the numbering and parameterisation of the cells of the assembly. The 

position of a bar b , see Figure 2, is defined by the position of its centre ph located by 

the vector 'P(b), and by its unitary vector eh. The structure is assumed to be periodic 

with vectors of periodicity denoted £Di , whose norms are small compared to L. Bars 
centre position are then given by : 

'P(b)= p(b,g_)= pg + cpf = £ aJji +£pt (1) 

where 'P6 represents the physical position of the cell inside the structure and pf is the 

relative position of the bar inside its cell. It is worth noting that pf is independent of 
the considered cell since the structure is exactly periodic. Introducing the pseudo
continuous variable A= £a one can write: 

p(b)= A)5i +cpf = Po~)+cpf (Z) 

So macroscopic positions are parameterised by .1 EA c [o, ~x p, 1]. A is a reference 

space, where the structure is made of square cells of sides £. As £ is assumed to tend to 
zero, A = £ g_ tends to be continuous, what allows to use it as a continuous variable. 
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DESCRIPTION OF MOTION AND INTERACTIONS RELATIONS 

All the fields relative to a bar b = k] are supposed to have asymptotic expansions of the 
form [6]: 

(3) 

u!1 are continuous functions of A generally depending on the bar b = k]. The 

expansion of ii(c) = ii([k) = ii£k (A+ EOk) is obtained by using a Taylor expansion [6]

[8], taking advantage from £0k <<I : 

ii(c)= ii£k (A+ £Dk) = ii£k (A.)+ cVii(k(A). 8k +... (4) 

where V is the gradient operator in the parametric space A. 

Expansion of kinematics 

As fibres are considered as rigid bars, their motion can be described by the linear 
velocity of their centre vkl ~) and by their angular velocity wkl ~). To simplify the 

exposition, we introduce the field ~ kl ~) = Lmkl ~). The velocity of a point Q 
-belonging to the bar b is then given by: 

vkl(Q)= vkl~)+mkl(a)l\ pkJQ = vk]~)+e~Q~kJ (a)l\ekJ (5) 

-
considering that pfJQ = ;Qz = E~QL. ;Q represents the local position of Q on the bar. 

Interaction relations 
- - -The action k of [k on k] is supposed to be punctual and Newtonian : it is parted into a 

force ]'k, proportional to the difference of linear velocities ~f = v[k. (pk. )-Jl (pk.) at 
- -

the contacting point pk , and a moment relative to pk proportional to the difference of 
-k. 

angular velocities Lll/J . Hence, one can write : 
- k - k - -

jk =Jlk.Liv ;;l =fikLll/J +E~kekJ 1\fk 
(6) 

where ;;/ is the moment relative to pfl the centre of the bar k]. J..lk and f3k are 

respectively called translational and rotational viscosities. They are dependent on k but 
independent of the cell. -The expansion of local constitutive equations of the link k is obtained by first 

expanding the difference of velocities at the contacting point pf, using (3) and (4) : 

~k. =vlk(Pk,A-+e8)-vkl(pk,A-) (?) 

Identifying each order of e leads to (for the sake of simplicity, only the two first orders 
are presented here) : 

{Liv~ = v&k ~)- v~l ~) 
Av~ = vlk (!)- vlkl(!)+ Vv6k (!)· 8k + ~'k iPJk 1\ e[k- ~klPokJ 1\ ekl 

(8) 

Similarly, the expansion of the difference of angular velocities is : 
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{L14J~ == (fJk (J_)- ;p0kl(J_) 

Lll/J~ = 4ilk @)- ;p1kl@)+ VijJk @)· §_k 

(9) 

Forces and moments are supposed to have asymptotic expansions of the form (3) : 

{
Jf = lo k (A_)+ e]/ ().,) + £2 J/ ('A,)+... (I 0) 

ii/ = m0 k (lt) + D1i1k(lt) + e2m/ CaJ + ... 
The identification of the terms of their expansions is achieved by introducing (8) and (9) 

in (1 0), and assuming that f3k = £q {3~, q being a positive integer. 

For the forces, the relations are written as : 
-k k-k -k k-k -k k-k (11) 
fo = f.Lo ..1vo • ft = f.Lo L1v1 • fz = f.Lo L1v2 · · · 

For the moments, three cases have to be distinguished, depending on the value of q. 
This will be discussed in§ "constitutive equations of the equivalent continuum". 

EQUILIBRIUM OF THE ASSEMBLY 

Let us now write the equilibrium of each bar b = k] of the structure, assuming that both 

inertia and external moments relative to the centres of the bars are negligible : 

V b, L Jf + jext I b = 0 , L ,nk = O . (12) 

keC(b) keC(b) 

c(b') is the set of links acting on b, and Jextt'b are the external force applied at the 

centre of b . They are taken such as 
J ext I b == £ 2 J b . (13) 

The expansion of the equilibrium equations for all the bars of the assembly is simplified 
by introducing a virtual power formulation, using two sets of virtual velocity couples 

v~(E) and w*(E). This reads : 

vv*(E),m*(E), L :L(clf + jextrE)·v*(E)+ni ·m(E) )=o, 0 4) 
b keC(b) 

which can be transformed in: 

'\fv* (b'),m~ (E). L ( Jf. (v*([f)- v*(fJ) )+ ,r/. (w*([i~)- w*(fl)) )= L jext!E . v*(b') (15) 

fee~) r; 

using jk + {k = O,and mk + m.'k + cfk 1\ Jk = 0, where fk is the vector iW- iit1. 

Sums like LE and it can be shown that e 2
""' 
..::..al,a2 

is 

approximated by integrals fA when e tends to zero [8J. 

Self equilibrium at the order l 
The following virtual functions are then taken into (15): 

"ib, v*(h')=c2a(J)v*b(J) and w*(E)=£2y(J)m*b(J). 06) 

The self equilibrium at order £0 is obtained when £ tends to zero. It can be shown using 

the method of [8], that '\fk, ]0k = 0 , m~ = 0, and v; = v0 • This result is independent of 

the value of q. 
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Equilibrium of the equivalent continuum 
Taking advantage of the former analysis, the formulation of the equilibrium of the 
equivalent continuum is then obtained by taking into ( 15) smooth virtual macroscopic 
fields: 

"db E B v(E)=v;<..:t), (17) 

and making e tend to zero. This leads to : 

'\/ v; ,m~ 
f:Llok. vv;. ok +m~. Vro~. ok + (Lk A lok). ro~ = f lexz ·W~ 
AkeC A 

(18) 

with: 

jexz = Lfb. This explains why external forces were written as assumed in (13). 
beB 

The change of variables A. H p0~) enables to rewrite (18) in terms of the physical 

velocities gradient. Using av; = v v
0
*. jj . , the formulation can be rewritten as : 

()A, . =X I 
I 

J (j 0 . V X v; + 1( 0 . V X w~ + '0 . m~ = J pexl . v; ( 19) 
Q Q 

( 19) is the virtual power formulation of a Cosserat medium, whose local equilibrium 
equation is written as follows : 

di ~ + pexz = 0 . divlC - r = 0 with pexz = 1.. !-ext (20) 
v~o ' =O '=' o ' s . 

The stress state is determinate by the following three tensors as : 

cro =t l.Di ®Cfo ·ei), 7C 0 = 1 ~Di ®(M 0 ·ei), 'o =tZo, <21) 
I l 

where S is the surface of the reference cell. These tensors are called the stress, the 
couple-stress, and the first micro-stress tensors, respectively. Their corresponding 
tensors in the parametric space are : 

~ - k s;:k ~ - k s;:k 
I 0 = £..Jfo ®~ , M 0 == £..Jmo ®~ , and (22) 

keC keC 

CONSTITUTIVE EQUATIONS OF THE EQUIVALENT CONTINUUM 

The last step is new to determine ]/ and mt, in order to obtain the equivalent 
continuum constitutive relations. This resolution depends of the interactions relations, 
so three cases have to be distio.guished. 

Case 1: q=O 
Interaction laws for forces and moments at the two first orders are 

-k k-k -k k~k 
ft = llo L1v1 ' ml = f3o L1<j> 1 · 

(23) 

Carrying into ( l'S) virtual fields of the form : 
'\lb,v*(h')=ea{&)v*b(&) and ro*(h')=er{&)ro*b(&), (24) 

and then making e tend to zero, on obtains the self-equilibrium of cell at order d : 
'\lv*b, Lf: ·(v[k -V'k])=O , vm*b, :Lmt ·cw•[k - m•k])=O (25) 

k e C keC 
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In this case, m~ = 0 leads to \:lk (pt = ~0 . Both equations are equivalent to linear 

systems and can be computed using (23) and considering Vv0 and V{$0 as data. M is 
- - =0 

non null so that the equivalent continuum is a Cosserat medium. The solution gives ] 1k 

and mt as linear functions of those gradients, what provides the constitutive equations. 

Case 2: q=l 

Interaction laws for forces and moments read : 
-k k-k -k k-k 
/1 = Jlo L1v 1 • and ml = f3o ..141 o 

(26) 

Using exactly the same process as for Case 2, one obtains the same virtual power 
formulation of the self-equilibrium (25). Taking into account (26), it can be proved that, 

once again, \:lk ~ok = ~0 , what shows that \:lk m~ = 0. The equivalent continuum is 

therefore a usual Cauchy medium. The solution is computed considering Vv0 and ~0 as 

data in (25), and also gives the constitutive relations as linear functions in terms of that 
macroscopic fields. 

Case 3: q>l 
Interaction laws for forces and moments read : 

-k k-k -k -k k-k k k-k] -k (27) f 1 =J10 L1v1, and m 1 =0, m 2 ={30 ..14J 0 +J.L0 g e AL1Vt 

(27) immediately proves that \:lk mf :::: 0' so the equivalent continuum is obviously a 
usual Cauchy one. However, a special formulation has to be employed to solve the 
problem. Carrying into (15) virtual fields of the form : 

Vb,v*(b)=ea~)v*b~) and m*(b')=er~)m*b~), (28) 

and then making £tend to zero, on obtains : Vv b and m b 

It~ ·(v[k -vk])=O and 'Lm~ ·(m*[k -m*k])+i" 1\ltk ·clj*[k =0. (29) 
ke C ke C 

which is a special form of self-equilibrium that enables to solve the problem because 

Jt" and m~ involve the same variables vt and ~t . The solving of (29) is achieved by 

setting Vv0 as data and gives ] 1k and m~ in terms of it. This formulation leads t.o a 

linear constitutive relation linking a 
0 

to Vv0 . 

In cases 2 and 3, the equivalent continuum stress tensor was proved to be symmetrical. 

EXAMPLE OF APPLICATION: PLANAR NET 

We shall now present an application of the method to a two-dimensional problem which 
aims to describe the behaviour of reinforced polymers like GMT or SMC during 
forming. Those composites are filled with fibre bundles each containing approximately 
100 fibres. Bundles are cylinders of length l, with an elliptical cross section of minor 
axis a and major axis b. In this work, b is supposed to be oriented in the fibres plane. A 
dimensional analysis of the interaction relations was led. Approximating the sheared 
zone between two fibres to a plane of height a, f3 was shown to be of the order £ 4 J.l. 
This corresponds to case 3, where local moments are not to be taken into account. For 

the sake of simplicity, the linear viscosity was taken here such as Vk )1" = )1. 

The generation of the structure was obtained by a random generation process. This can 
be achieved quite easily for such planar problems. Positions of bars were defined by two 
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spatial and one angular variables that can be simultaneously generated. Intersections of 
the bars in the 2D plane were then computed. However, some of those intersections do 
not really exist because the 2D model neglects the position of bars in the thickness of 
the material. This method overvalues the number of links. To correct such a default, a 
statistical analysis was required. This was done by adopting the approach of [10], 
assuming a square reference cell of sides l and thickness h. 
In this work, a perfect regularity of the positions of the bars centres was imposed, see 
Figure 3. Isotropic assemblies were first obtained by randomly choosing the angle of the 
bar in a set of homogeneously distributed bars. Oriented nets were also generated, 
assuming a Gaussian repartition of angles with mean 0, and variance e. This signifies 
most fibres are oriented between -e and e. Two examples are presented : oriented 1 is 
for (}=1f14, oriented 2 for 6=7tl6. To characterise the orientation, orientation tensors [ 11] 
were used. Theoretically, these orientation tensors should be: 

A = [o.s o ] A = [0.682 o J A = [0.880 o J 
=iso 0 0.5 ' =mil 0 0.318 ' =ori2 0 0. 120 • 

In the presented examples, performed with l=25mm, h=2mm, f/1=20%, these tensors are: 
A = [0.503 o J A = [ 0.679 - 0.007] A = [ 0.789 - 0.012] 
=iS(I 0 0.497 ' =ori! -0.007 0.321 ' =ori2 - 0.012 0.211 · 

Several preliminary simulations were performed to check that the computed behaviour 
was actually linear, and that the computed stress tensor was actually symmetrical. The 
second important test proved that for an isotropic net, the computed response was 
isotropic. This was proved by submitting the reference cell to the strain rate field : 

D = t(Vv0 + rv~0 ) such as D11 = D22 = 1 and D12 = D21 = 0 

The resulting stresses, shown in Figure 4, Ci11 and cr22 are checked to be almost identical. 
A first result which shows the interest of our work concerns the analysis of the influence 
of fibres volume fraction cjJ • Our simulations, see Figure 4, show that the viscosity of 
the net is proportional to cj>2, thus proving that it is proportional to the number of 
connections. The observed scattering of about ±5% is due to the non perfect generation 
of isotropic nets. Results perfectly agree with the statistical approach of [I 0]. 

·20 - 10 0 
x(mm) 

10 20 

5 , ___________ , _________ .... __________ , _______ _ 

~ 

~ 
'- o all 4 
~ 
l'> Oo22 ~ 

3 

2 

fiber fraction (% 11ol.) 
0'----___..,:__ __ ......_ __ -..J'-------' 

0 0,05 0,1 0,15 0,2 

Figure 3 : isotropic generated cell. Figure 4: influence of fibre fraction, 
equibiaxial traction test, isotropic net. 

!so-dissipation curves were plotted in the (crn,0"22) and (Du,D22) planes, for imposed 
strain rates such as D 12=D21=0. And for the three generated assemblies previously 
presented, results show that fibres orientation strongly modifies the behaviour of the 
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net. Identifications of constitutive relations were not carried further. However, results 
prove that any constitutive relation should use anisotropic functions, and link them to 
the orientation using a distribution function, or orientation tensors. 

3 
-isotropic 

2 -oriented 1 
-oriented 2 

2 

~ 
~ 0 

"' b' 
-2 

.:::--
-!1 

"' 0 "' Cl 
-1 

-2 
-4 

-6 -4 
-3 

-2 0 2 4 6 -1 0 
a11 (MPa) Dn (s"1) 

Figure 5: influence of the fibre orientation on the behaviour. 

CONCLUSION 

The objective of this work was to present the development of a powerful theoretical 
tool, whose improvements should bring some interesting answers about the behaviour 
of fibre suspensions. The method is interesting for it can support any local interaction 
law, it enables to link the microstructural properties to macroscopic ones, and it is 
computing time efficient. For the study of fibres suspensions, some extensions are 
possible such as considering non linear viscous joints and deformable elastic fibres, and 
taking into account large deformations of the net. This last point would enable to predict 
the orientation of fibres during forming. 
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