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ABSTRACT. The localization of weak properties or bad behavior of a structure is still a 
challenge for Non Destructive Testing (NDT) tools development and Structural Health 
Monitoring (SHM) design. In case of random loading or material properties, this challenge is 
arduous because of the limited number of measures and the quasi-infinite potential positions 
of local failures. Deterministic algorithms and specific multi-sensors systems are developed 
to this aim. In that case, generally, the precision of the positioning of a defect goes with a lack 
of sizing. However, the stochastic field is rarely a pure white noise and has a stochastic 
structure and probabilistic properties. These properties should be used to provide rational 
aid tools for optimizing the number of sensor. The paper shows that the stationary property is 
sufficient to find the minimum quantity of sensors and their position. A measure of the quality 
of information is suggested and the illustration is performed on a one-dimensional Gaussian 
stochastic field. 
KEYWORDS: NDT, stochastic field, reliability, random porperties. 
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1. Introduction 

Structural health monitoring is well recognized since at least two decades to 
provide valuable information for: 

- structural model updating; 
- material property updating; 
- monitoring of degradation and maintenance optimization; 
- loading analysis and modelling; 
- survey of critical quantities in the structure. 
The scope of the paper takes place in this last family where a decision should be 

made from a set of measure of a material property (yield strength, elasticity 
modulus) or a mechanical quantity of interest (strain, stress) Z. In a lot of cases, the 
material properties are random and two questions must be addressed: where is the 
defect and what is the probability of this event. Then the decision lies on a risk 
analysis that combines this measure of probability with the subsequent potential 
consequences, directly or after a structural reliability computation. In this last case, 
the question of random variable updating has been widely addressed during the two 
last decades. Random variable updating is very useful when data from inspections or 
monitoring are collected for condition assessment and reliability updating (Straub 
and Faber, 2003; Schoefs et al, 2012). Basically, the Bayes theorem and its 
derivative tools (Bayesian Networks) offer the theoretical context to deal with this 
issue. The so-called Risk Based Inspection (RBI) generalizes these approaches in 
the case of non-perfect inspections by linking inspection and decisions Faber, 2002; 
Sorensen and Faber, 2002; Schoefs et al, 2011). RBI methods are powerful once (i) 
there is no stochastic field involved into the problem, or (ii) the location of the most 
critical defect, from a reliability point of view, is known. In circumstance (i), if the 
field of Z is a white noise, the number of measures should tend to infinity. In 
practical cases, the building of large structures (soil, concrete, composite) generates 
a stochastic field for Z and its probabilistic properties should be used. Recently 
authors have combined structural reliability computation and stochastic field 
description in view to carry out a complete reliability analysis Stewart and Al-
Harthy, 2008; Tran et al, 2012). The input of these works is the complete description 
of the stochastic field. 

No work combines actually the two challenges: description of the stochastic field 
with a limited number of data and the structural reliability. This paper aims to 
suggest a methodology for the first one. The stochastic field could take several 
forms more or less complicated. The most simple is the stationary stochastic field 
that can be used, for instance, to model chloride distribution or other concrete 
properties (Bazant and Novak, 2000a; 2000b; Bazant and Xi, 1991). Other models 
suggest piecewise stochastic fields (Schoefs et al, 2009a, 2009b). The complexity 
comes from hazards B during building itself and from the spatial distribution of 
external factors E -e.g. environmental conditions. Within this context, the main 
objective of this work is to find the optimal geo-position of sensors and their number 
to satisfy a given level of quality when a stationary field can describe the stochastic 
field and the noise of measurement can be neglected. 
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2. Probabilistic modeling of measurements in case of spatial variability 

2.1. Scope of the paper: stakes and limits 

The interest of SHM checked out by this paper is to get a direct (so called non-
model based) decision from the measurement and to detect: 

- even the worst case; 
- or the distribution of the worst cases (probabilistic distribution tails). 
The quantity of interest Z(B(x, θ),E(x, θ)) is supposed to be dependent of the 

hazard during building represented by the stochastic field B(x, θ) and external 
factors E(x, θ) where x denotes the vector of position and q is the hazard: θ ∈ Ω  
where Ω  is the probabilistic space supposed to generates all the event that influence 
even B(x, θ) or E(x, θ). For simplicity, it is written Z(x, θ) in the following. We note 
ẑ(x,θi ) one realization after measurement. When the quantity of interest is spatially 
dependent and no additional information is available for characterizing the potential 
position of a weak region, the question is to select at which position the 
measurement should be done. When Non Destructing Testing tools are carried out 
during service life, adjustments of the protocol (position, setting of the device…) 
can be suggested progressively with time. 

When we have to design an embedded network of sensors (scope of the present 
paper) the device should be the solution of an optimization problem where the 
quality of the data encourages increasing the number of sensors when the cost 
reduction tends to limit their quantity. 

In this paper we consider that a solution can be obtained only if the structure of 
spatial variability is known. He we assume that the stochastic field is stationary 
(probability density function is the same whatever the location) with a known 
fluctuation parameter (correlation parameter) but an unknown probability density 
function. So we assume: 

- the measured quantity can be modeled with a stationary stochastic field: as 
a consequence, µz and σz are constant whatever x and parameter x will be 
used when necessary only. 

- the stochastic field is assumed to be Gaussian i.e. the considered property is 
normally distributed whatever the position; 

- the measure is perfect in the sense that statistics moments computed from 
the set of ẑ(θi ) , [ ]Ni ,...,1∈  tend to the probabilistic moments of Z(θ) 
when N� ∞; 

- a quality of the measurement can be expressed even on the form [1], [2] or 
[3]: 

Confidence interval, when the distribution of values around the mean value is 
focussed on: 
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where zSP ˆ,  is the probability computed from the sensor measurements, Pth  the 
theoretical probability (implicitly non null), and pa denotes the minimum acceptable 
probability to get a measurement ẑ inside a given range governed by the exact value 
of the expectation µz and an error around this mean value computed by the 
percentage ε. Note that ẑ can be replaced by its statistics like the mean value or 
standard deviation when statistical error (i.e. samples of small size) is investigated 
(Schoefs et al, 2011a; Tran et al, 2011). 

Distribution of extreme values, left side, when extreme low values (strength) is 
analysed, 
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Distribution of extreme values, right side, when extreme high values (stress) is 
studied, 
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Equations [1], [2] and [3] are compatible with a lot of numerical post-treatment 
algorithms for detection assessment. 

Note that, at this stage no mechanical model is s-used (model free or non model 
based approach) and we consider a one-dimension (1D) field for illustration. Of 
course the methodology can be expanded to any stationary stochastic fields: 2Dor 
3D. 

Let us assume that we get a set of independent realizations –i.e. structural 
components- ẑ(θi ) of Z(θ). From a huge number of data (N≈1000), PS, ẑ can be 
estimated directly from the frequency of measurements only if it is not too small. 
When only a limited number of data is available (N<100), we have to assess the 
empirical distribution from a numerical sampling knowing the empirical 
distribution: it can be reached by using Monte Carlo Markov Chain. The number of 
components being limited the stake will be to get independent realization Ns on a 
given component and to consider a set of components Nt. 

Here we compute PS, ẑ by considering the probability density function with 
parameters µ Ẑ  and  σ Ẑ computed from the empirical distribution of measurements: 
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This variable is denoted Ẑ . In the following, the challenge will be to consider a 
model of spatial variability and to assess a set of independent realizations of Z(θ) 

2.2. Spatial variability 

Risk Based Inspection analysis or reliability methods applied to real structures 
generally assume: 

- either there is no spatial variability involved in the problem: random 
variables allow us to describe the hazard involved; 

- or the location of the most critical defect from reliability point of view is 
known and the distribution of defects in its neighboring doesn’t affect the 
reliability. 

It is well known that the reality is more complex and that we should account for 
stochastic fields too. Then the stochastic field could take several forms more or less 
complicated: 

- (i) the most simple is the stationary stochastic field that is able to model the 
chloride distribution or other properties in the concrete for instance (Bazant 
and Novak, 2000a; 2000b; Bazant and Xi, 1991); 

- (ii) more sophisticated is the piecewise stationary process that can integrate 
the variability of the con-creating by steps or the corrosion of structures in 
contiguous but different environments; 

- (iii) finally, fully non stationary fields are certainly the most acceptable for 
a fine representation of properties. 

However, except for natural soils, materials used for construction (airplanes, 
bridges …) are produced following a quality process and control. We can consider 
that some variation are fair, for instance the spatial change of the mean value. This 
paper focuses on the first model (i) only. 

In this paper, we used a Karhunen–Loève expansion to represent the spatial 
variability with this assumption of stationary (Schoefs et al, 2011c): 
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n

i
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where, n is the number of terms in the expansion, ξ i is set of centered reduced 
Gaussian random variable (standard normal variables), λI and fi are respectively the 
eigenvalues and eigenfunctions of the covariance function: ρ(Δx) . The major 
interest of this representation is that λi and fi have analytical expressions for specific 
forms of the correlation function.  

For instance, let us consider a one-dimensional (in space) stochastic field 
(x=x)withan exponential form of correlation function as follows: 
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Then, it is shown that eigenvalues and eigenfunctions λ i and fi have analytical 
expressions (see Tran et al. 2012b): 

2.3. Assessment of the autocorrelation function from measurements 

We assume that the stationary stochastic field can be characterized by an 
autocorrelation function (ACF).  Table1 presents the most usual ACF considered for 
spatial variability of structures with their parameter, called scale of fluctuation δ. A 
complete overview of the auto-correlation functions and their application is 
available in Kenshel (2009). Let us focus on the assessment of this function from 
experimental data (sensors or NDT tests). 

Two major procedures have been reported in the literature for the estimation of δ 
for a spatially variable property from a digitized record of data. In the first 
procedure, reported by Li (2004), the Maximum Likelihood Estimate method (MLE) 
is used in which different values for the model parameter of the proposed ACF 
model is assumed and the value that maximizes the corresponding MLE is taken as 
the model parameter. In the second procedure, proposed by Vanmarcke (1983), a 
proposed ACF model (Tran et al. 2012b) can be adjusted to provide the best fit to 
the actual sample correlation coefficients ρ(Δx) thereby providing estimates of the 
corresponding model parameter (i.e. b in [6]). 

In this paper, we select an exponential ACF [6]. 

and we use the likelihood estimate for the estimation of b.  
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where νi is the ith component of the vector of independent standard values obtained 
from equation: 
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where z is the vector of realizations of the random variable Z and C a lower 
triangular matrix such that CCT= ρ  and ρ  the autocorrelation matrix. Beside, 
maximize L is equivalent to minimize L1: 
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3. Optimization of geo-position of sensors  

3.1. Optimization problem description 

In this paper, we consider a one-dimensional mechanical problem with a set of 
sensors to be equally distributed with distance δI on Nt structures of length L(beams 
of a bridge, cables, wing of an airplane, …). The optimization problem is written as 
a minimization problem of the number of sensors for a structure with a finite length 
L. In fact the question is to find the minimum number of sensors Ns in each 
component knowing the number of components Nt under one of the constraints [1] 
to [3]. 

    ( ))3()2()1(min ororNN sS =  [10] 

 
In a complete risk analysis it can be written: 

    
))((argmin*

,
CENNN

NtNs
tS ==  

[11] 

where E(C) denotes the expectation of the cost (Schoefs, 2009). 

3.2. Study case  

In this part, we consider the optimization of position and number of inspection 
for assessing the volume water content W (%)  in a reinforced concrete beam by 
capacitive method (CAPA). Its main characteristics are 16 meters length, 1 meter 
height and 0.4 meter width. A grid has been drawn on each lateral surface and 2 
lines of measurement have been selected: distance from the top line and the first line 
of measurements is 7 cm and distance between two lines is 20 cm. Distance between 
each measurement on one line is 20 cm. 

3.3 Data analysis 

With CAPA method, we get a value of the frequency F. The difference ΔF 
between the frequency in air and on concrete can be related to the permittivity of 
concrete from a calibration function given by IFSTTAR (Schoefs et al. 2012): it 
depends mainly on the size of the electrode. He we used a “great electrode” without 
Eccostock and calibration function is given in [12].  
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9711.267937.22 +−=Δ EpsF  [12] 

where ΔF = Fc - Fair, with Fc and Fair values of frequencies in RC beam and in the 
air on site. And, volume water content W can be deduce from permittivity by a 
second calibration function [13] (see Schoefs et al. 2012).  

61.464.0 += WEps  [13] 

Figure 1 presents the distribution of W after post-treatments for records along a 
line (left) and the spatial distribution of theses data (right). These data correspond to 
the mean value of 30 repetitive tests at each position. The scatter is low in 
comparison to the inherent scatter of the measurement: Schoefs et al. (2012) have 
recorded a standard deviation up to 2.5 for repetitivity tests.  

   

Figure 1: Spatial variability of measure W and its distribution at line B 

3.4 Results of optimization  

For the structure considered in this paper, very close values of L1  [9] are 
obtained for the two lines: 1.63 and 1.61m respectively for the B and the A line. 

For this paper, we focus to optimization positioning and number of captor on the 
RC beam when considering a stochastic stationary Gaussian field of volume water 
content W with its parameter µW = 10 and σW = 1.62. 

 - length of beam: L = 16 m.  
 - parameter of autocorrelation function: b = 1.62 m. 

And the distance between two captors varied from 0.1 to 5m. 

First, let us consider the case with repetitive tests (i.e. without noise of 
measurement), and constrain [1] were ε=1(%). For a normally distributed random 
variable Pth=0.463  and PS, ẑ ≥ 0.42 . Figure 2 presents the variations of PS,hc with the 
number of components (beams) Nt and distance between inspections δ I; δ I varying 
from 0.16 (Ns=100) to 4 (Ns =4). This figure shows that the probability increases 
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according to the number of component Nt and decreases according to distance of δ I. 
Based on this result, for a given accepted value PS, ẑ , we obtain a curve that links the 
acceptable couples (δI; Nt) (see red line in Figure 1 for zSP ˆ, =0.42). Note that if Nt is 
too small there could be no solution (for instance for zSP ˆ, =0.42).   

 
 
 
 
 

 

Figure 2: Influence of Nt and δI in probability interval zSP ˆ, of W 

Figure 3 presents this curve for PI=42% and its fitting with a power function (red 
line). Based on this result, given Nt, we obtain the distance between two captors δI 
following [14]: 

        ( ) 4327.0921.0 tI N=δ  [14] 

and the position and minimum number of sensors are deduced. For example, for 
Nt=10,δI=2.2m and Ns=16/2.2 = 7.27 measure on each component, and the total 
number of sensor is: N=10*7=70 captors. 
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Figure 3: The curve of Nt and δI satisfying PI =42% 

Let us considered now the absence of repetitive tests: noise of measurement 
exists (see Rouhan et al. 2003 for definition). Based on preliminary results (Schoefs 
et al. 2012) we focus study on two value of the standard deviation of a centered 
normally distributed withe noise: 0.5 and 2.5. The later figure presents this result  
for the case ε=3σW = 4.68 and for PI=90% where we show the predominant role of 
the noise especially when it is higher than the standard deviation of the signal itself.. 

 

Figure 4: The curve of Nt and δI considering the noise measurement satisfying PI 
=90% 
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4. Conclusions. 

This papers aim to focus on the first step of a work dealing with uncertainty in 
measure assessment and intrinsic spatial variability. Only the case of stationary 
Gaussian fields of properties is investigated herein. It is shown how to model a 
stationary stochastic field and to follow up this property to get a good representation 
of a random variable from a limited number of NDT measurements. We developed 
an illustration based on capacitive measurements with and without error of 
measurements. This result can be exploited in further reliability updating once the 
first measurements are available. 
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