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Abstract. Hydroelastic effects associated with ship slamming are investigated by mean
of a decoupled approach. A finite element computation of the ship structural response
is performed using the pressure field obtained from a rigid body strip theory. Results
show the importance of both, hydoelastic and three dimensional effects for realistic impact
situations. A numerical approach is then described and implemented to solve the three-
dimensional fluid problem. The approach relies on the method of matched asymptotic
expansion, associated with a numerical resolution of the simplified problem using finite
elements method. Within this approach, the so called “wetted correction” is computed
numerically by imposing volume conservation. Preliminary results are given for simple
geometries such as wegdes and cones for which analytical solutions are available. Good
agreement is reported between numerical and theoretical results.
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1 INTRODUCTION

In rough seas where large relative amplitude ship motions occur, the bow may emerge
out of the water. The impact phenomenon that follows, as the bow re-enters the incoming
wave, is commonly refereed as slamming. Despite the pressure field due to the impact re-
mains localized in space and time, slamming loads can locally create plastic deformations
of the hull external structure. They are also at the origin of the high-frequency whipping
type response of the global ship structure and lead to an increase of the vertical bending
moments. In extreme cases, they have been recognized for being responsible for the loss
of ships. In a comprehensive survey of the literature on impact wave loads due to slam-
ming, [17] draw among others the following conclusions: (i) the effects of hydro-elasticity
should be accounted in view of the short duration of impact loads, and (ii) if much is
known about the two-dimensional water entry problem, few results are available for the
three-dimensional case. The purpose of this paper is to give some insight into these two
issues.

Severe impact loads arise in “flat geometry” configurations, i.e. when the free-surface
and the hull are almost parallel near the contact point. In the two-dimensional case, an
analytical solution for the flow can be obtained, based on the method of matched asymp-
totic expansions and using the deadrise angle as the perturbation parameter [1]. When
the ship hull is slender, these classical two dimensional results can be used within the
framework of a strip theory to represent the three-dimensional pressure field [9]. Within
this approach, the vertical velocity of the hull is assumed to be constant in each cross-
section. This assumption is also often used in connection with a beam like behavior of the
ship structure so that the coupled fluid-structure mathematical problems can be solved si-
multaneously (see e.g. [4], [12]). Although these analytical studies lead to very interesting
results, the validity of such an assumption remains questionable, especially for describing
local structural deformations in the impact region.

In the present study, the simplified pressure field resulting from the strip theory is
used to compute numerically the structural response of the ship hull (section 2). Since
deformation velocities do not influence the pressure field, the approach is decoupled.
Nevertheless, it allows to quantify the relative importance of hydroelastic effects, and
exhibit the three-dimensional character of the structural deformation field. In section 3, a
new approach is developed in order to compute the three-dimensional pressure field (still
within the rigid body assumption). Preliminary results for simple geometries, a wedge
in the two-dimensional case and a cone in the three-dimensional one, are presented and
succesfully compared with analytical solutions.
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2 HYDROELASTIC EFFECTS

2.1 Previous work

State of the art seakeeping simulations, including the modeling of slamming events
and the associated retardation effects, have been described by [15]. The relative motions
of the ship with respect to the waves is accurately computed using the large amplitude
seakeeping simulation code RATANA1 [14]. The fluid is assumed to be incompressible
and perfect, and the body is rigid. Froude-Krylov and hydrostatic forces are computed on
the instantaneous hull position, while the time-domain radiation and diffraction forces are
computed using the linearised mean body position. This method offers a good compromise
between computational time, robustness and accuracy. However, in the case of a slamming
event, the local flow associated with the impact is highly nonlinear and occurs on a
time scale much shorter than the wave period, thus the need for a local solution in the
bow region. In the bow region, the flow is modeled within the framework of a flat ship
strip theory summurised below and leading to a quasi-analytic evaluation of the pressure
field. The CPU time needed for estimating the vertical force is insignificant and the
resulting impact loads can be taken into account directly as external forces in RATANA.
An iterative coupling procedure has also been implemented in order to account for the
influence of impact loads on the global ship motions. During the global simulations,
slamming loads lead to retardation effect which may be important when slamming events
occur on consecutive large amplitude waves.

Y

Z

X

Bow region of the impact study

Figure 1: Hull form used in the numerical simulation. Emphasis is is given to the bow region where a
local approximation of the flow is performed.

In the bow region, the flow acting on the bottom of the ship as it re-enters the free-

1French Navy, Bassin d’Essais des Carènes, Val de Reuil.
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surface is modeled within the framework of the strip theory described by [9] and sum-
marised here. The modeling assumes the body is slender and flat (see fig. 2), and the
vertical impact velocity is sufficiently high, so that the effect of gravity is negligible. Under
these assumptions, the method of matched asymptotic expansions justifies the develop-
ment of a strip theory which can be viewed as the limiting case of the 2D+ t or 2D+1/2
theory (e.g. [16], [7]) as the draft goes to zero. Since gravity effects are neglected, there
is no interaction between the strips. The flow around each cross section is similar to that
around a flat plate of equivalent length (see fig. 2) and a jet solution is introduced at the
edges of the plate to remove the singularity. A proper treatment of the jet is essential
since, during the impact, half of the energy transfered from the body to the fluid is kinetic
energy within the spray [18]. The previous two-dimensional asymptotic results [1] have
been extented so that shapes of arbitrary cross section and time-varying velocity can be
accounted for. Relative velocity is used to derive the impact pressure distribution and
the cross section slamming loads.

H
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z

V
U

O(B)

O(L)
z

y

λ(t)

Figure 2: Geometrical definitions for the impact of a slender and flat rigid body (left), and the associated
simplified fluid problem in each cross section (right). Figures are from [9].

2.2 Structural computation

For the impact event already simulated, the relative importance of hydro-elastic effects
is roughly estimated through a decoupled approach. The pressure field (see fig. 3) previ-
ously computed assuming the structure to be rigid is used to provide unsteady loads as
input to a structural computation. Hydro-elastic effects that may occur during slamming
events will result in a decrease of the pressure acting on the hull. Using the pressure field
obtained within the rigid body assumption yields therefore to a conservative estimate of
the structural deformations and stresses so that the present decoupled approach can be
used as a simple first level design tool.
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Figure 3: Example of pressure field acting on the hull in the bow region. The pressure peak corresponds
to the spay root of the jet which develops along both sides of the hull.

The structural computation is performed in the time domain using the finite elements
computational software Samcef (Samtech). During the simulation, it is important to accu-
rately model the high frequency contents of the structural response because of the Dirac
like character of impact loads. For this purpose, Newmark’s implicit time integration
scheme is used with β = 1/2 and γ = 1/4. The hull structure in the bow region is mod-
eled using shell and beam elements. These two types of elements represent respectively,
sheets of steel with variable thickness which are placed side by side, and the framework
of the ship.

As far as the boundary conditions are concerned, it is assumed that both the external
deck of the ship and the mid-ship cross-section do not deform during the laps of time of
the slamming event. The corresponding nodes move therefore with the rigid body velocity.
Translation is also prohibited for the nodes corresponding to the main and lower decks.
Rotation motion is however allowed at this nodes in order to give some more degres of
freedom for the structure to deform. Finally, translations and rotations are allowed for
the nodes located in the region of interest. Unsteady impact loads are computed at each
time step by integration of the pressure distribution, and are then applied as external
forces at the corresponding nodes.

Relative comparisons between the structural deformation velocities and the impact
rigid body velocity give an estimate of hydroelastic effects. In the exemple presented fig.
3 and fig. 4, the impact rigid body vertical velocity has been estimated to 6m/s from
previous seakeeping simulations, leading to maximum deformation velocity around 1.5
m/s. Within this decoupled approach, a 25% decrease in the impact velocity is predicted.
As expected, fluid-structure interaction should therefore be accounted within the pressure
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Figure 4: Structural deformations (left) and deformation velocity modulous (right). Note the three-
dimensional aspect of the velocity field in a given cross-section.

field computation. Other computations with different impact velocities leads to similar
conclusions. The spatial variations of both structural deformations and velocities can
be observed in fig. 4. In a given cross section, the deformation velocity can not be
considered to be constant but seems rather to oscillate. Clearly, this simulation exhibit
the three-dimensional character of the fluid-structure interaction which arises during a
slamming event. Both, transverse and longitudinal variations of the deformation velocity
field should be accounted within the pressure field computation.

3 THREE-DIMENSIONAL EFFECTS

In this section, attention is focused on the resolution of the three-dimensional fluid
problem. Compare to the previous approach, the new method still assumes the shape of
the body to be flat and rigid but the slender body assumption is dropped so that three-
dimensional effects are accounted. The numerical tools developped here allow in principle
the resolution of the coupled problems for arbitrary shapes, i.e. not necessarilly flat. In
the present study, attention is focused on the feasibility, capability and accuracy of the
approach. In particular, analytical solutions are available for flat bodies, giving a solution
of reference to compare with.
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3.1 Exact formulation

The problem is formulated within the framework of potential flow theory. The velocity
field in the fluid is such that �v = �gradφ. The potential φ is harmonic in the fluid domain
:

∆φ = 0 (1)

and must satisfy the following boundary conditions :

∂φ

∂n
= −�V · �n on the body z = f(x, y)− V t (2)

∂h

∂t
+ �gradφ · �gradh = 0 on the free surface z = h(x, y, t) (3)

∂φ

∂t
+

1

2
�gradφ · �gradφ + g h = 0 (4)

‖ �gradφ‖ → 0, at infinity, i.e. (x2 + y2 + z2) → ∞ (5)

Here, V is the vertical velocity of the body, z = f(x, y) is the formal equation describing
the shape of the hull in a frame of reference moving with the body, and finally z = h(x, y, t)
is the equation describing the free surface deformation. Initial condition should also be
added to close the problem. The mathematical problem (1) to (5) has been largely
simplified. The fluid is assumed to be perfect and incompressible, the flow is irrotational
and the body is rigid. The free surface is treated as a material surface along which the
pressure is constant. Despite all these assumptions, the mathematical problem remains
difficult to solve mainly due to the free surface conditions, which are imposed on a surface
which is itself part of the unknown. It is possible to solve directly the fully nonlinear
problem using boundary element method within a Mixted Lagrangian Eulerian approach
(MEL) [13]. However, this method can not be used directly for the impact problem
because of the violent motions of the free surface, experienced by the formation of jets
near the intersection between the free surface and the hull. Direct non-linear numerical
simulation have been achieved in two-dimension using a cut-off algorithm [21], [8]. The
tip of the jet is cut and the numerical solution is matched to an analytical one describing
the flow within the jet. If such an approach has been possible in two-dimension, its
extension to the three-dimensional case is far from being obvious. At this stage, three-
dimensional non-linear simulation including a surface piercing body (see e.g. [5]) remain
limited to simple geometric configuration and moderate nonlinearties associated with the
free surface 2.

2i.e. the acceleration within the fluid are comparable to the gravity one, but not much higher.
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3.2 Three-dimensional asymptotic problem

In the present study, we have chosen to develop a three-dimensional asymptotic ap-
proach based on the assumption that the shape of the body is flat in the impact region.
The perturbation parameter is the ratio between the draft and the beam or the length
of the body, these last two quantities being of the same order of magnitude. The formal
asymptotic leading to the simplified problem can be found in [10] and will not be pre-
sented here. Instead, physical interpretations of the simplifications are given.

Since the shape of the body is flat, its normal vector is essentially directed along the
vertical axis, the other components being one order of magnitude smaller. The free surface
conditions can be linearised on z = 0 based on the fact that the free surface elevation
is of the same order of magnitude of the immersion depth and neglecting higher order
nonlinear terms. Gravity effects are neglected for short time, i.e. gT/V ≪ 1, where T
is the characteristic time. To first order with respect to the perturbation parameter, the
following simplified problem is found :

∆φ0 = 0 in Ωf (6)

∂φ0

∂z
= −V for z = 0, (x, y) ∈ s(t) (7)

φ0 = 0 for z = 0, (x, y) �∈ s(t) (8)

∂h0

∂t
=

∂φ0

∂z
for z = 0, (x, y) �∈ s(t) (9)

where s(t) is the projection on z = 0 of the contact line between the free surface h(x, y, t)
and the shape of the body z = f(x, y, t). Since the free surface is deformed in the vicinity

Ωf

Γ

Γ

Γ

b

0

r

(x,y)=s(t)x

z

y

Figure 5: Geometrical aspect of three-dimensional asymptotic problem : s(t) is the projection of the
contact line (left) and, far-field point of view with surface notations (right).

of the body, s(t) does not correspond with the intersection curve between the shape of the
body and the undisturbed free surace (plane z = 0). Clearly, the linearised problem (6)
to (9), can not be used to describe the flow in the immediate vicinity of the body where
the free surface overturns to create a jet. The solution of the problem must be interpreted
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as a first order approximation in the outer domain. Eventually, the solution is singular
at the intersection between the fluid and the structure and a local solution is introduced
like in the two-dimensional case.

The main difficulty associated with the impact problem is the determination of s(t),
in particular another equation is needed at this stage to close the problem. As in the
two-dimensional case, at first and second orders [10], [6], s(t) is obtained by imposing
volume conservation. To first order, volume conservation equation leads to :

h0(x, y, t) = f(x, y, t), (x, y) ∈ s(t) (10)

i.e., there must exist an intersection point between the first order outer asymptotic ex-
pansion of the free surface elevation and the shape of the body. In order to ease the
numerical resolution of the simplified problem (6) to (10), we follow [11] and introduce
the displacement potential :

Ψ0 =
∫ t

0

φ0(x, y, z, τ) dτ (11)

The new boundary value problem for Ψ is :

∆Ψ0 = 0 in Ωf (12)

∂Ψ0

∂z
= f(x, y)− V t for z = 0, (x, y) ∈ s(t) (13)

Ψ0 = 0 for z = 0, (x, y) �∈ s(t) (14)

h0 =
∂Ψ0

∂z
for z = 0, (x, y) �∈ s(t) (15)

There are several advantages of using Ψ0 instead of φ0. The analytical time integration of
the equations allows to take into account directly the memory effects associated with the
free surface displacement along the body. As a result, Ψ can be computed independantly
through an iterative procedure at any desired time.

3.3 Variational formulation and discretised problem

In some special cases, it is possible to derive an analytical solution of the simplified
problem (12) to (15). Exact solutions for spheres, cones and ellipsoids are available in
the litterature. It is also possible to extend the existing analytical solutions like [19] who
assume s(t) to be known and then compute semi-analytically the corresponding body
shape. However, this can not be applied for bodies of arbitrary geometry where the solu-
tion includes s(t) and has to be found numerically.

In the present study, the boundary value problem is solved using an integral formulation
of the weighted residual method. The method consists in searching for function Ψ which
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cancel the integral quantity :

W (Ψ) =
∫ ∫ ∫

Ωf

Π · R(Ψ) dD (16)

for all weighting function Π. In our problem, the residue R(Ψ) is equal to ∆Ψ. Integrating
(16) by part leads to the integral form :

∫ ∫ ∫
Ωf

�gradΠ · �gradΨ dD =
∫ ∫

Γb∪Γ0∪Γr

Π ·
∂Ψ

∂n
dS (17)

where Γb, Γ0 and Γr are defined in fig. 5. This weak formulation allows to choose Ψ in C1

which satisfies only the boundary condition on the free surface and imposes to Π to be in
C1 and to vanish on the free surface too. Under these conditions and imposing vanishing
velocities on the outer surface, it remains :

∫ ∫ ∫
Ωf

�gradΠ · �gradΨ dD =
∫ ∫

Γb

Π ·
∂Ψ

∂n
dS (18)

The discretization of the integral formulation (18) is performed using Galerkin’s method.
The potential and weight functions are approximated over each element using the same
interpolation functions :

Π = {Nf}
T{Π}e, Ψ = {Nf}

T{Ψ}e (19)

where {Π}e and {Φ}e are the nodal variables and {Nf} are the interpolation (or shape)
functions [3]. The latters depend on the chosen type of elements. Using this approximation
in (18) and introducing the body boundary condition (13) leads to the linear system :

[H ]{Ψ} = {Gf2
} (20)

where :
(Hij)e =

∫ ∫ ∫
Ωe

�gradNi · �gradNj dD (21)

and :
{Gf2

}e =
∫ ∫

Γe

{Nf} (f(x, y)− V t) dS (22)

At each time step, the simplified problem (12) to (15) is solved using an iterative proce-
dure illustrated in fig. 6. Starting with an initial guess of the wetted length, typically the
intersection between the body shape and the flat free surface, the finite element method
described above is used to solve for the displacement potential. It is then possible to eval-
uate the normal derivative of the displacement potential on the undisturbed free-surface
elevation and to compute the position of the new intersection line between the free sur-
face and the body. Equation (15) is used as a compatibility condition between s(t) and Ψ
and the procedure is repeated until convergence. The iterative procedure is illustrated in

10



B. Donguy, B. Peseux and E. Fontaine

0

0

0.5

0.5

1

1

y (m)

0 0

z
(m

)
analytical fluid surface elevation

numerical fluid surface elevation

Figure 6: Illustration of the iterative procedure use to compute the wetted length at a given time.
Two-dimensional numerical result corresponds to the wedge entry problem with small deadrise angle.

fig. 6. Typically, the position of the intersection point converges in less than 10 iterations.

The displacement potential has been introduced instead of the potential in order to
ease the determination of s(t). However, in order to compute the pressure on the body,
the second derivative with respect to time of the displacement potential has to be evalu-
ated. Solving for the potential itself allows to gain accuracy in the evaluation of pressure
since only the first derivative with respect to time are required. The variational formula-
tion previously developped to evaluate the displacement potential can be also applied to
evaluate the potential, leading to a linear system similar to (20). Since the two functions
satisfy Laplace’s equation, the matrix [H ] remains unchanged. {Ψ} has to be replaced by
{φ} and the right hand side of the equation reads in view of (7):

{Gf1
}e = −

∫ ∫
Γe

{Nf} V dS (23)

3.4 Numerical results

The numerical method described above has been implemented in two and three dimen-
sions using respectively quadrilateral and hexahedron elements. Numerical simulations
of the impact of a wedge and a cone with smal dearise angles, typically 10◦, have been
performed. Fig. 7 (left) show the finite element mesh used for the resolution of the flow
around a wedge. Numerical results are sucessfully compared (right) with the analytical
ones. In particular, the wetted width is correctly predicted as a function of time. Fig.
8 and fig. 9 show the finite element mesh used in three-dimension and the free surface
elevation around the cone. Again, numerical and analytical results are in good agree-
ment. In these simple test cases, the evaluation of the wetted area is simplified due to
the geometry configuration. Although results are globally good, the resolution procedure
remains sensitive to the mesh. One has also to keep in mind that the analytical solution
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is singular at the contact point since the slope of the free surface tends to infinity. A high
density of points is necessary near the contact line.
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Figure 7: Two-dimensional numerical result for the wedge entry problem with small deadrise angle. The
finite element mesh is presented (left), and the numerical solution is compared to the analytical one
(right). Note that the vertical and horizontal scales are not the same.
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Figure 8: Three-dimensional mesh used in the finite element method to solve for the displacement po-
tential around a cone.

4 CONCLUSION

The present study focus attention on hydro-elastic and three-dimensional effects asso-
ciated with ship slamming. A decoupled approach has been presented, wherein impact
loads are estimated assuming the body to be rigid and are then used as external forces in
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Figure 9: Free surface elevation in the vicinity of the cone. The numerical solution is compared to the
analytical one.

a structural computation. This simplified approach gives a conservative estimate of the
structural deformations and stresses, and allows to exhibits the importance and the three-
dimensional character of the fluid-structure interaction. A new approach is developped
wherein three-dimensional character of the flow can be taken into account. The approach
relies on the method of matched asymptotic expansion, associated with a numerical res-
olution of the simplified problem using finite elements method. The numerical scheme
is then validated by considering simple problems such as the water entry problem of a
wedge with small dead-rise angle in two dimension, or a cone for the three-dimensional
case. For these test cases, good agreement is obtained between numerical and analytical
solution giving confidence into the resolution procedure.

The authors aknowledge for the support of the French Navy, Direction Generale de
l’Armement, especialy Dr. S. Cordier, Scientific Director Bassin d’Essais des Carènes.
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