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INTRODUCTION

The meshfree methods based on Moving Least Squares (MLS) approximation have been confronted to an active research during the last decade. These include Smooth Particle Hydrodynamics, Element Free Galerkin, Diffuse Elements, Reproducing Kernel Particle and other Methods [START_REF] Lucy | A numerical approach to the testing of fusion process[END_REF] [5] [START_REF] Nayroles | Generalizing the finite element method: Diffuse approximation and diffuse elements[END_REF] [15] [START_REF] Belytschko | Meshless methods: An overview and recent developments[END_REF]. However, one of the issues is the satisfaction of essential boundary conditions. This is due to the nature of the approximation itself. In fact, the MLS nodal domains of influence are the same as those of the corresponding weighting functions, who generally do not fit the boundary. The choice of neighboring nodes is also an issue. The approach based in considering the k closest nodes from any evaluation point results only in a C 0 continuity. Moreover, the geometrical complexity of the shape functions supports induces integration difficulties. Simpler integration and an arbitrary degree of continuity are obtained when nodes are associated with fixed, spherical or hexahedral domains of influence, whose optimal size constitutes the main difficulty of that approach. On the other hand, the Natural Neighbor (NN) approximation and associated family of computational methods [START_REF] Sukumar | The natural elements method in solid mechanics[END_REF] do not present these drawbacks. The boundary approximation is obtained naturally due to the fact that NN shape functions of internal nodes vanish at the boundary where only the boundary nodes contribute. The list of connected points -the natural neighbors -is also known in advance. However, the NN do not present all the advantages of the MLS. In particular, the shape function support is geometrically complex. Moreover, the NN shape functions have only C 0 continuity at the nodes and only linear consistency is guaranteed. In this paper we summarize the main ideas related to meshless approximations, addressing numerous papers that concern the application of meshless techniques to the simulation of forming processes.

Meshless Techniques Based on the MLS Approximation: DFE and EFG Methods

Let the following approximation scheme:

u h (x) = p T (x)a(x) (1) 
with p T (x) a polynomial basis, i.e. p T (x) = [1, x, y, xy] and p T (x) = [1, x, y, xy, x 2 , y 2 ] for a bilinear and quadratic basis, respectively, in 2D, and a(x) a vector of unknown coefficients. In order to determine a(x), we define the functional J that must be minimized with respect to a(x) [START_REF] Nayroles | Generalizing the finite element method: Diffuse approximation and diffuse elements[END_REF]:

J = 1 2 n i=1 w i (x) p T (x i )a(x) -u i 2 (2) 
where u i are the nodal unknowns associated with the neighbors nodes x i of point x and w i (x) is a weighting function whose value decreases as the distance between x i and x increases (see [START_REF] Belytschko | Meshless methods: An overview and recent developments[END_REF] for more details about properties of this function and the ones the most used). The minimization of J with respect to the unknown coefficient a j (x) leads to:

∂J ∂a j (x) = n k=1 a k n i=1 w i (x)p j (x i )p k (x i ) - n i=1 w i (x)p j (x i )u i = 0 (3) 
which leads to the linear system:

A(x)a(x) = B(x)u (4) 
where the matrix A(x) and B(x) are defined by:

A jk (x) = n i=1 w i (x)p j (x i )p k (x i ) (5) 
B ij (x) = w i (x)p j (x i ) (6) 
Substituting a(x) in Eq. ( 1), results in:

u h (x) = p T (x)A -1 (x)B(x)u (7) 
By identification, the new shape functions are given by:

ψ T (x) = p T (x)A -1 (x)B(x) (8) 
The difference between the diffuse finite element and the element free Galerkin schemes comes from the evaluation of the shape function derivatives. In the first scheme only the term p T (x) in Eq. ( 8) is derived, whereas all terms depending on x are derived in the element free Galerkin approach.

1.2 Meshless Techniques Based on the Smooth Particles Approximation: the RKPM and the Enriched RKPM Methods. Let Ω be a 1D domain where the problem is defined (all the results have a direct 2D or 3D counterpart). The points within this domain will be noted by x or s.

Reproduction conditions. The approximation u

h (x) of u(x) is built from the convolution integral u h (x) = Ω w(x -s, h)u(s)dΩ ( 9 
)
where w(x -s, h) is the kernel function and h a parameter defining the size of the approximation support.

The main idea in the enriched RKPM method is to enforce the reproduction of a general function that we can write in the form of a polynomial plus another function noted by u e (x):

u h (x) = a 0 + a 1 x + . . . + a n x n + a n+1 u e (x) (10) 
In the following paragraphs we analyze the required properties of the kernel function w(x -s, h) for reproducing a function expressed by [START_REF] Galavis | A natural element ppdated Lagrangian approach for modelling fluid structure interaction[END_REF]. From Eq. ( 9), the reproduction of a constant function a 0 is given by

Ω w(x -s, h)a 0 dΩ = a 0 (11) 
which implies

Ω w(x -s, h)dΩ = 1 (12) 
which constitutes the partition of unity. Now, the required condition to reproduce a linear function

u a (x) = a 0 + a 1 x is Ω w(x -s, h)(a 0 + a 1 s)dΩ = a 0 + a 1 x (13)
By using the partition of unity [START_REF] Gonzalez | Volumetric locking in Natural Neighbour Galerkin methods[END_REF], Eq. ( 13) can be rewritten as

Ω w(x -s, h)dΩ = 1 Ω w(x -s, h)sdΩ = x ( 14 
)
which implies the linear consistency of the approximation. Repeating this reasoning, we can write the n-order consistency as

         Ω w(x -s, h)dΩ = 1 Ω w(x -s, h)sdΩ = x . . . Ω w(x -s, h)s n dΩ = x n (15)
and consequently, the reproduction of the function given by [START_REF] Galavis | A natural element ppdated Lagrangian approach for modelling fluid structure interaction[END_REF] implies

Ω w(x -s, h)(a 0 + a 1 s + . . . + a n s n + a n+1 u e (s))dΩ = = a 0 + a 1 x + . . . + a n x n + a n+1 u e (x) (16) 
from which it results

             Ω w(x -s, h)dΩ = 1 Ω w(x -s, h)sdΩ = x . . . Ω w(x -s, h)s n dΩ = x n Ω w(x -s, h)u e (s)dΩ = u e (x) (17) 
In the original procedure proposed by Liu et al. [START_REF] Liu | Reproducing kernel particle methods[END_REF] only n-order consistency was imposed, but it can not be directly used to enforce the reproduction condition associated with u e (x). Note that this procedure allows to enforce any reproduction condition, without employing additional degrees of freedom, as deeply described in [START_REF] Trunzler | Enriched reproducing kernel particle approximation for simulating problems involving moving interfaces[END_REF]. When the reproduction of functions others than polynomials are enforced, the resulting technique was called enriched or extended reproducing kernel particle approximation (see [START_REF] Trunzler | Enriched reproducing kernel particle approximation for simulating problems involving moving interfaces[END_REF] and the references therein).

1.2.2

The moment matrix. We will note by u r (x) the approximation function verifying the conditions [START_REF] Martinez | Natural element meshless simulation of injection processes involving short fiber suspensions[END_REF]. Usually a cubic spline is considered as kernel function, and consequently the conditions given by Eq. ( 17) are not satisfied. Liu et al. [START_REF] Liu | Reproducing kernel particle methods[END_REF] proposed the introduction of a correction function C(x, x -s) for satisfying the reproduction conditions. In our case we consider the more general form C(x, s, x -s) whose pertinence will be discussed later. Thus u r (x) will be expressed by

u r (x) = Ω C(x, s, x -s)w(x -s, h)u(s)dΩ ( 18 
)
where C(x, s, x -s) is assumed to have the following form

C(x, s, x -s) = H T (x, s, x -s)b(x) ( 19 
)
where H T (x, s, x -s) represents the vector containing the functions considered in the approximation basis, and b(x) is a vector containing unknown functions that will be determined for satisfying the reproduction conditions. Thus, Eq. ( 17) can be rewritten as

               Ω H T (x, s, x -s)b(x)w(x -s, h)dΩ = 1 Ω H T (x, s, x -s)b(x)w(x -s, h)sdΩ = x . . . Ω H T (x, s, x -s)b(x)w(x -s, h)s n dΩ = x n Ω H T (x, s, x -s)b(x)w(x -s, h)f e (s)dΩ = u e (x) (20) 
In fact, the reproduction conditions must be enforced in a discrete form. For this purpose we consider N points (also refereed as nodes) which allow to compute the discrete form of Eq. ( 20), i.e.

               N i=1 H T (x, x i , x -x i )b(x)w(x -x i , h)∆x i = 1 N i=1 H T (x, x i , x -x i )b(x)w(x -x i , h)x i ∆x i = x . . . N i=1 H T (x, x i , x -x i )b(x)w(x -x i , h)x n i ∆x i = x n N i=1 H T (x, x i , x -x i )b(x)w(x -x i , h)u e (x i )∆x i = u e (x) (21) 
that in a matrix form results

N i=1 R(x i )H T (x, x i , x -x i )w(x -x i , h)∆x i b(x) = R(x) (22) 
where R(x) is the reproduction vector

R T (x) = [1, x, . . . , x n , u e (x)] (23) 
Eq. ( 22) allows the computation of vector b

(x), b(x) = M(x) -1 R(x) (24) 
where the moment matrix M(x) is defined by

M(x) = N i=1 R(x i )H T (x, x i , x -x i )w(x -x i , h)∆x i ( 25 
)
This moment matrix differs from the usual moment matrix proposed in [START_REF] Liu | Reproducing kernel particle methods[END_REF], and in fact it becomes non symmetric.

1.2.3 Discrete form of the approximation function. The discrete form u r (x) of u h (x) derives from Eqs. ( 18), ( 19) and ( 24)

u r (x) ∼ = N i=1 H T (x, x i , x -x i )M(x) -1 R(x)w(x -x i , h)u(x i )∆x i = = N i=1 ψ i (x)u i ( 26 
)
where ψ i is the enriched RKP approximation shape function

ψ i (x) = H T (x, x i , x -x i )M(x) -1 R(x)w(x -x i , h)∆x i (27)
As in the classical RKPM we take ∆x i = 1. Different quadrature rules exist and they have been tested without a significant incidence on the reproducing condition accuracy.

1.3 Meshless Techniques Based on the Natural Neighbor Approximation: the NEM Method. We briefly touch upon the foundation of Sibson's natural neighbor (NN) coordinates (shape functions) that are used in the natural element method. For a more in-depth discussion on the Sibson interpolant and its application for solving second-order partial differential equations, the interested reader can refer to Sukumar et al. [START_REF] Sukumar | The natural elements method in solid mechanics[END_REF] and the references therein. The NEM interpolant is constructed on the basis of the Voronoi diagram (see fig. 1). The Delaunay tessellation is the topological dual of the Voronoi diagram. 

T i = {x ∈ dim : d(x, x i ) < d(x, x j ), ∀j = i}, ∀ i (28)
The Sibson coordinates of x with respect to a natural neighbor n i is defined as the ratio of the overlap area (volume in 3D) of their Voronoi cells to the total area (volume in 3D) of the Voronoi cell related to point x. If we consider the 2D example of figure 1 (a), we have:

φ 1 (x) =
Area(af ghe) Area(abcde) (29)

Remark. From now on, we denote by φ i (x) the shape functions related to the NEM, whereas ψ i (x) is used to denote the ones associated with the MLS or RKPM techniques.

If the point x coincides with the node n i , i.e. (x = x i ), φ i (x i ) = 1, and all other shape functions are zero, i.e. φ j (x i ) = δ ij (δ ij being the Kronecker delta). The properties of positivity, interpolation, and partition of unity are then verified [START_REF] Sukumar | The natural elements method in solid mechanics[END_REF]:

   0 ≤ φ i (x) ≤ 1 φ i (x j ) = δ ij n i=1 φ i (x) = 1 ( 30 
)
where n is the number of neighbor nodes related to point x. The partition of unity allows for functional enrichments like in the X-FEM. The natural neighbor shape functions also satisfy the local coordinate property, namely:

x = n i=1 φ i (x)x i (31)
which combined with Eq. ( 30), implies that the natural neighbor interpolant spans the space of linear polynomials (linear completeness). Sibson natural neighbor shape functions are C 1 at any point except at the nodes, where they are only C 0 . The C 1 continuity away from the nodes can be improved by using special classes of natural neighbor shape functions. The support (domain of influence) of a shape function φ i is the union of the Delaunay spheres (circumscribing the Delaunay tetrahedrons) containing the node n i . This support is thus not radial and automatically adapts to the relative position of n i and its neighbors, whether is the density or the regularity of the local nodal distribution.

Another important property of this interpolant is its strict linearity over the boundary of convex domains. The proof can be found in Sukumar et al. [START_REF] Sukumar | The natural elements method in solid mechanics[END_REF]. An illustration is depicted in Fig. 1 (b): as the areas associated to points on the boundary become infinite, the contribution of internal points vanish in the limit when the point approaches the convex boundary, and the shape functions associated with nodes n 1 and n 2 become linear on the segment (n 1 -n 2 ). This is not true in the case of non convex boundaries, and an appropriate treatment must be introduced to maintain this property over non-convex boundaries [9] [22]. In tandem with the delta Kronecker property, essential boundary conditions can thus be enforced directly, as in the finite element method. This property also guarantees strict continuity of the approximation across material interfaces [START_REF] Yvonnet | The meshless constrained Natural Element Method (C-NEM) for treating thermal models involving moving tnterfaces[END_REF], which is an issue in most meshfree methods. Consider an interpolation scheme for a vector-valued function u(x) : Ω ⊂ 2 → , in the form:

u h (x) = n i=1 φ i (x) u i ( 32 
)
where u i are the nodal values of the field at the n natural neighbor nodes of point x, and φ i (x) are the shape functions associated with each neighbor node. It is noted that Eq. (32) defines a local interpolation scheme. Thus, the trial and test functions used in the discretization of the variational formulation describing the problems treated in this paper take the form of Eq. (32).

NEM SIMULATION PROCEDURE

In that follows we are focusing in the NEM (natural element method) that is a kind of Galerkin method but that instead of the usual piecewise polynomial shape functions characteristics of FEM, uses the natural neighbor interpolation just described. This strategy allows to proceed with the same cloud of nodes from the beginning of the simulation to its end, because even is some Delaunay triangles become very distorted during the simulation, the solution accuracy does not depend significantly on the diagrams quality. In this way remeshing are no more required, and consequently field projection between the old and new meshes avoided. It is well known that this remeshing procedure involves a non negligible amount of numerical diffusion. The solution strategy is very simple. Let

L(u(x, t)) = F(x, t), x ∈ Ω(t) ≡ Ω t ( 33 
)
be the model (system of partial differential equations involving a scalar, vector or tensorial unknown field) to be solved. One can proceed, as in the finite element framework, to consider the associated variational formulation

Ω u * (x, t) • {L(u(x, t)) -F (x, t)} dΩ = 0 (34) 
The initial domain is denoted by Ω 0 in which we consider the Delaunay triangulation related to a cloud of N nodes with known initial positions. The unknown field can be approximated in a standard way:

u(x, t) = u(x 1 (t))φ 1 (x, t) + • • • + u(x N (t))φ N (x, t) (35)
where as the nodal positions can evolve the approximation shape functions will also depend on the considered time.

Using the Sibson's shape functions in (35), and then introducing the resulting interpolation (35) in the variational formulation (34) we obtain a discrete system whose solution results in the nodal values (non-linear models needs for an iteration strategy). Then, using again (35) the solution can be computed everywhere. Now, the domain is updated, by advancing all the nodes from their velocities:

x i (t + ∆t) = x i (t) + v i ∆t, ∀i (36) 
and the Delaunay and Voronoi diagrams rare recomputed, allowing to compute the model solution at time t + ∆t. This procedure continues until the end of the process simulation. All the internal variables, describing the thermo-mechanical history, are associated with the nodes and then their evolutions are computed at the nodal positions by performing a local calculation. From the last analysis it seems natural that this strategy could be applied either in the solid or in the fluid mechanics frameworks. Moreover, its use simplifies significantly the solid-fluid coupling because both are defined in an updated Lagrangian framework.

In some cases, the accuracy of the solution needs for higher nodal densities in some regions, as is the case of models involving localization. A simple error indicator was proposed in [START_REF] Yvonnet | A simple error indicator for meshfree methods sased on natural neighbors[END_REF]. Figure 2 depicts the appearance of an adiabatic shear band after impact, by assuming an elastoviscoplastic constitutive equation in the context of an explicit dynamics, and by using an appropriate automatic procedure to adapt the nodal density [START_REF] Yvonnet | A simple error indicator for meshfree methods sased on natural neighbors[END_REF]. Other specificity of the proposed numerical technique is its ability to label the nodes, that is, if we have two materials that are mixing we could label the nodes belonging at the initial time to the first one by assigning a color (red for example) being the others labelled with the blue color. As we can proceed with the same cloud of nodes in the entire time interval, each node keeps its color allowing to quantify the mixing at the end of the simulation. Figure 3 shows the initial and final snapshots related to the numerical simulation of the friction stir welding process of two plates, whose initial nodes are labelled with the red and blue colors. We can observe that a nice material mixing is obtained in the interface neighborhood as the welding process (pin rotation) progress. • Other appealing property of this technique is its ability to capture free interfaces (in particular the alpha-NEM version widely described in [START_REF] Cueto | On the imposition of essential boundary conditions in Natural neighbor Galerkin Methods[END_REF]). Thus, the combination of an alpha shape constructor and the natural neighbor interpolation allows to define a robust technique for simulating free surface problems as usually encountered in fluid mechanics. Some welding processes need supply an amount of material that usually consists in a drop that impacts a solid or a liquid phase. The impact of a drop on a rigid surface was addressed in [START_REF] Gonzalez | An ppdated Lagrangian strategy for freesurface fluid dynamics[END_REF].

• Alpha-NEM was successfully applied in the simulation of laser coating processes, arising, for instance, in superconductor texturing processes or ceramic tiles processing [START_REF] Gonzalez | Natural neighbour strategies for the simulation of laser surface coating process[END_REF]. A deep analysis in thermal models involving moving interfaces, usually encountered in casting models, was performed in the context of the C-NEM in [START_REF] Yvonnet | The meshless constrained Natural Element Method (C-NEM) for treating thermal models involving moving tnterfaces[END_REF].

• The locking analysis and in general the problematic related to the choice of the functional approximations in mixed formulations was addressed in [START_REF] Gonzalez | Volumetric locking in Natural Neighbour Galerkin methods[END_REF] by combining alpha-NEM and the partition of unity paradigm, in [START_REF] Yvonnet | Natural element approximations involving bubbles for treating mechanical models in incompressible media[END_REF] by enriching the velocity approximation with bubbles, and in [START_REF] Yvonnet | New advances in meshless methods: Coupling natural element and moving least squares techniques[END_REF] by coupling NEM and Hermite approximations.

• The key references on the Lagrangian description of fluid flows with free and moving boundaries are [START_REF] Martinez | Updated Lagrangian free surface flow simulations with the natural neighbour Galerkin methods[END_REF] [14] and the references therein. The fluid-structure interaction was also addressed in [START_REF] Galavis | A natural element ppdated Lagrangian approach for modelling fluid structure interaction[END_REF] and Non-Newtonian fluid flows in [START_REF] Chinesta | Induced anisotropy in foams forming processes: Modelling and simulation[END_REF] and [START_REF] Martinez | Natural element meshless simulation of injection processes involving short fiber suspensions[END_REF].

• Some papers addressing the simulation of forming processes using the NEM are [START_REF] Alfaro | Meshless methods with application to metal forming[END_REF] [2] and [START_REF] Alfaro | Recent advances in the meshless simulation of extrusion and other related forming processes[END_REF].

• The coupling between the NEM and the other meshless methods was addressed in [START_REF] Yvonnet | New advances in meshless methods: Coupling natural element and moving least squares techniques[END_REF].

• The adaptivity and error estimation was deeply analyzed in [START_REF] Yvonnet | A simple error indicator for meshfree methods sased on natural neighbors[END_REF] and also in [START_REF] Bruyere | Comparison between NEM and FEM in 2D magnetostatics using an error estimator[END_REF] in the context of electromagnetic models.

• The problematic related to numerical integration was analyzed in [START_REF] Gonzalez | Numerical integration in Natural Neighbour Galerkin methods[END_REF].

• Fast alternative natural interpolations were proposed in [START_REF] Alfaro | A study on the performance of naural neighbor-based Galerkin methods[END_REF].
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 1 Figure 1: (left) Voronoi diagram, Delaunay triangle and Delaunay circle; (right) Construction of the Sibson shape functions. Consider a set of nodes S = {n 1 , n 2 , . . . , n N } in dim . The Voronoi diagram is the subdivision of dim into regions T i (Voronoi cells) defined by:
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 2 Figure 2: Adiabatic shear band
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 3 Figure 3: (left) Simulation of FSW: initial time; (right) Simulation of FSW.