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ABSTRACT: Simulation of RTM processes is usually performed in 2D. Thus, only a mesh of the middle plane is 
needed with the associated degrees of freedom savings with respect to fully 3D modeling. However such modeling 
needs the definition of an equivalent in-plane permeability representing the ignored dimension (the thickness). The 
definition of such permeability is not a trivial task because each ply in the thickness direction can be anisotropic, being 
the principal anisotropy direction different from one ply to the neighbor plies. In this work we propose a novel fully 3D 
modeling whose computational cost is equivalent to a 2D solution. It allows addressing properly the equivalent in-plane 
permeability issue. 
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1 INTRODUCTION  

In general the simulation of RTM processes assumes a 
2D flow model. The most usual model results of 
combining the Darcy’s law and the flow 
incompressibility: 

0

p  
   

v K

v
that results in the second order BVP: 

  0p  K
The main issue in defining this model concerns the 
definition of the permeability tensor K . Different 
techniques exist, but in that follows we are assuming that 
an averaged permeability has been determined for each 
type of reinforcement architecture.  
First we are considering a laminate composed of many 
layers with the same principal directions, whose 
permeability tensor writes   
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Now, we consider the flow in a plate mould, being the 
permeability principal directions parallel to the mould 
walls. In this case the permeability tensor becomes 
diagonal. The simplest scenario concerns   and 

0  . In this case the flow is unidirectional. When the 

ply is placed after performing a certain in-plane rotation 
to the principal permeability directions, the   

component of the permeability tensor is no more zero. In 
that case when we impose a constant injection pressure, 
being the pressure in the opposite mould boundary zero, 
the resulting pressure field is depicted in Fig. 1. 

Figure 1: Pressure distribution 

By computing the velocity fields associated with the 
pressure fields depicted in Fig. 1 we can notice 
significant deviation with respect to the unidirectional 
flow. 
Now, we are analyzing another 2D situation, in which a 
laminate composed of different layers is considered. The 
principal directions of all the plies correspond to the 
coordinate axes, but the permeability is changing from 

one layer to other. Figure 2 depicts  z , being
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0  ,   and  constants. Figure 2 depicts the 

evolution of  z .

Figure 2: Evolution of the permeability in the thickness 

Figure 3 depicts the pressure distribution related to the 
choice of the permeability. The velocity fields associated 
to this pressure distribution is depicted in Fig. 4 

Figure 3: Pressure distribution 

Figure 4: Velocity field 

We can conclude that if the principal directions of the 
permeability of each layer are aligned along the 
coordinate axes, even if the permeability evolves in the 
thickness direction, the flow remains unidirectional. The 
situation is radically different if the permeability also 
evolves in the x-direction. When we assumes an 

evolution of   ,x z  as depicted in figure 5, the

pressure field that results, illustrated in figure 6, implies 
the velocity field depicted in figure 7, which exhibit 
noticeable deviations with respect to an unidirectional 
flow. 

Figure 5: Evolution of the permeability  

Figure 6: Pressure field  

Figure 7: Velocity field  

These simple examples have proven that in general 
laminates, involving many layers with different 
reinforcement orientations the situation could be quite 
complex and the assumption of a simple average of the 
permeability of the different layers could be a crude 
approximation that deserves a deeper analysis. For this 
purpose a fully 3D simulation could be the best 
alternative, but an accurate representation of the 
thickness direction could become too expensive from the 
computational view point.  
An appealing alternative consists in applying a separated 
representation of the pressure field involved in the 
porous media flow modelling. This kind of 
approximation allows computing 3D solutions with a 
computational cost characteristic of 2D simulations, that 
is, of standard RTM simulations. In the next section we 
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summarized the main elements of such technique, deeply 
described in many of our former works [1-2], and that is 
here particularized to the treatment of the Darcy’s model 
defined in plate moulds. Its extension to shell geometries 
is quite direct. 

2 PGD IN PLATE DOMAINS 

In what follows we are illustrating the construction of 
the Proper Generalized Decomposition of a model 

defined in a plate domain I    with 2 and 

 0,I H :

  0p  K   (1) 

We consider that the laminate is composed of P different 
anisotropic plies each one characterized by a well 

defined permeability tensor  ,i x yK -it is assumed 

constant in the ply thickness-. Moreover, without a loss 
of generality, we assume the same thickness for the 
different layers of the laminate, that we denotes by h. 
Thus, we can define a characteristic function 
representing the position of each layer: 
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where  1iz i h   . Now, the laminated 

permeability can be given in the following separated 
form:  

     
1
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 K K x   (3) 

where  ( , )x y x . 

The weak form of Eq. (1) writes: 

 * 0p p d


     K   (4) 

with the test function *p  in an appropriate functional 

space. The solution  , ,p x y z  is searched under the

separated form: 
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In what follows we are illustrating the construction of 
one such decomposition. For this purpose we assume 
that at iteration n N  the solution is already known: 

     
1

,
i n

n
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i

p z X Z z

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and that at the present iteration we look for the solution 
enrichment:  

   1 , , ( ) ( )n np z p z R S z   x x x   (7) 

The test function involved in the weak form is searched 
under the form: 

 * * *, ( ) ( ) ( ) ( )p z R S z R S z   x x x   (8) 

By introducing Eqs. (7) and (8) into (4) it results: 
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where °  denotes the plane component of the gradient

operator °  ,
T

x y       and nQ  denotes the flux 

at iteration n: 
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Now, as the enrichment process is non-linear we propose 

to search the couple of functions  R x  and  S z  by

applying an alternating direction fixed point algorithm. 

Thus, assuming  R x  known, we compute  S z , and

then we update  R x . The process continues until

reaching convergence. The converged solutions allow 
defining the next term in the finite sums decomposition: 

   1nR X x x  and    1nS z Z z .

We are illustrating each one of the just referred steps: 

1. Computing   R x  from  S z :

When  S z  is known the test function reduces to:

 * *, ( ) ( )p z R S z x x (11) 

and the weak form (9) reduces to:  
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Now, as all the functions involving the coordinate z  are 

known, they could be integrated in  0,I H . Thus, if

we consider:  
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with 
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and 
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 (15) 
that allows writing equation (12) into the form 
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that defines an elliptic 2D problem defined in the middle 
plane of the plate.   

2. Computing   S z  from  R x :

When  R x  is known the test function writes:

 * *, ( ) ( )p z R S z x x (17) 

and the weak form (9) reduces to:  
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Now, as all the functions involving the in-plane 

coordinates   ,x yx  are known, they could be

integrated in  . Thus, using the previous notation, we 
can define:  
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(19) 
and 
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that allows writing equation (18) into the form 
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that defines a one-dimensional BVP.  

3 CONCLUSIONS 

This paper comes back to a recurrent issue in the 
numerical modelling of RTM flows, the one related to 
the pertinence of using 2D flow models making use of an 
averaged permeability of the different layers involved in 
the laminate. In complex situations significant deviations 
could be found, these deviations are being studied at 
present, and could justify the use of a fully 3D 
modelling. However, 3D simulations are reputed 
expensive from the point of view of the computational 
resources required for addressing complex scenarios. 
The use of separated representations as the ones involved 
in the proper generalized decompositions –PGD- could 
be an appealing alternative for addressing 3D models 
with a cost characteristic of 2D simulations. The 
application of the PGD on the fully 3D simulation of 
flows encountered in RTM processes constitutes a work 
in progress. 
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