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SUMMARY: The aim of this paper is the computation of the failure loads of a 

rough rigid circular footing subjected to a vertical or inclined loading using 

the finite difference code FLAC
3D

. For the case of vertical load, controlled 
downward vertical velocities are applied to the footing nodes until a steady 

state of plastic flow is obtained in the soil. For the construction of the H ,V( )
failure envelope of an inclined load, a uniform normal stress distribution is 

first applied to the base of the footing and the system is solved until it reaches 

an equilibrium state. Then, controlled horizontal velocities are applied to the 

nodes of the footing bottom until a steady state of plastic flow is obtained in 

the soil. Results of failure loads are presented and compared with those of 

other authors. Finally, the normal and shear contact stresses acting at the soil-

footing interface are presented and discussed. 

Keywords: bearing capacity, circular footing, limit loads, numerical 

simulations. 

INTRODUCTION 

The ultimate bearing capacity of a strip footing subjected to a central vertical load has 

long been a topic for research. However, when the footing is circular and subjected to 

an inclined and/or an eccentric load, the scientific research concerning this issue has 

essentially occurred during the last few decades. Traditionally, geotechnical engineers 

make use of empirical reduction coefficients provided by the different codes. In this 

paper, numerical simulations of the failure loads of a rough rigid circular footing 

subjected to a vertical or inclined loading are performed using the Lagrangian explicit 
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NUMERICAL SIMULATIONS 

This section focuses on the numerical modeling of the failure loads of a rough rigid 

circular footing, of diameter mD 2= , resting on a ( )ϕ,c  soil and subjected to a vertical

or an inclined load using  FLAC
3D

.  

FLAC
3D

 (Fast Lagrangian Analysis of Continua) is a commercially available 

three-dimensional finite difference code in which an explicit Lagrangian calculation 

scheme and a mixed discretization zoning technique are used. It includes an internal 

programming option (FISH) which enables the user to add his own subroutines. Although 

a static (i.e. non-dynamic) mechanical analysis is required, the equations of motion are 

used in this code. The solution to a static problem is obtained through the damping of the 

dynamic process by including terms that gradually remove kinetic energy from the 

system. In FLAC
3D

, the application of velocities or stresses on a system creates 

unbalanced forces. Damping is introduced in order to remove these forces or to reduce 

them to very small values compared to the initial ones. Stresses and deformations are 

calculated at several small timesteps (called hereafter cycles) until a steady state of static 

equilibrium or plastic flow is achieved. The convergence to this state can be controlled by 

a maximal prescribed value of the unbalanced forces for all elements of the model.  

 For the computation of the limit loads of a rough rigid circular footing, the 

following procedure is adopted (when applicable) before any simulation: geostatic 

stresses are first applied to the soil, then several cycles are run in order to attain a steady 

state of static equilibrium and finally, the obtained displacements are set to zero in order 

to obtain the footing displacement due only to the footing loads. 

Vertical load 

Because of symmetry, only one quarter of the entire soil domain of diameter D7  and 

depth D5.2  is considered. The bottom and the outer vertical boundary of the soil 

domain are far enough from the footing and thus do not disturb the soil mass in motion 

(i.e. velocity field) for all the soil configurations studied in this paper. A non uniform 

mesh composed of 2420 zones is used (Figure 1). The soil region under the footing was 

divided horizontally into four equal angular sectors of 22.5° each and 10 rings whose 

size gradually decreases from the center to the periphery of the footing where very high 

stress gradients are developed. Beyond the footing, the soil domain was divided 

horizontally into four equal angular sectors of 22.5° each and into 20 rings whose size 

increases gradually from the foundation periphery to the outer vertical cylindrical 

boundary. Vertically, the soil domain was divided into 20 zones whose size decreases 

gradually from the bottom of the domain to the ground surface. Concerning the footing, 

it is subdivided horizontally into four equal angular sectors and five equal rings and 

vertically into one single zone. The nodes of the interface are those of the soil. Each 

quadrilateral element of the interface is automatically divided by FLAC
3D

 into two 

triangular elements.  

For the displacement boundary conditions of the vertical load case (Figure 1), the 

bottom boundary was assumed to be fixed and the outer vertical cylindrical boundary was 

constrained in motion in the horizontal X and Y directions. Concerning the two symmetrical 

vertical planes, they were constrained in motion in the direction perpendicular to these 

planes. 
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Fig 1: Soil domain and mesh used in FLAC
3D 

A conventional elastic-perfectly plastic model based on the Mohr-Coulomb failure 

criterion is used to represent the soil. The soil elastic properties used are the shear 

modulus MPa100=G  and the bulk modulus MPa200=K  (for which the equivalent 

Young’s modulus and Poisson’s ratio are respectively MPa257=E  and 3.0=ν ). The 

values of the soil shear strength parameters used will be given later. The circular footing 

of diameter m2  and depth m5.0  is modeled by a weightless material that follows an 

elastic model. The footing elastic properties used are the Young’s modulus GPa25=E  

and the Poisson’s ratio 4.0=ν . Compared to the soil elastic properties, these values are 

well in excess of those of the soil and ensure a rigid behavior of the footing. Notice that 

the soil and footing elastic properties have a negligible effect on the failure load.  

The footing is connected to the soil via interface elements that follow Coulomb law. 

The interface is assumed to have a friction angle equal to the soil angle of internal friction and 

the same dilation angle and cohesion as the soil in order to simulate a perfectly rough 

soil-footing interface. Normal stiffness Pa/m1GK n =  and shear stiffness Pa/m1GK s =  are 

assigned to this interface. These parameters do not have a major influence on the failure load. 

For the simulation of the ultimate vertical load, a displacement-controlled method is 

used. In this method, an optimal downward vertical velocity (i.e. displacement per timestep) 

is applied to the nodes of the footing. Damping of the system is performed by running 

several cycles until a steady state of plastic flow develops in the soil beneath the footing. 

This state is achieved when both conditions (i) a constant footing load and (ii) small values 

of the unbalanced forces, are satisfied as the number of cycles increases. The number of 

cycles required to reach this state depends on the value of the applied velocity. At each 

cycle, the vertical footing load is obtained by using a FISH function that calculates the 

integral of the normal stress components for all elements in contact with the footing. The 

value of the vertical footing load at the plastic steady state is the ultimate footing load. The 

ultimate bearing capacity is then obtained by dividing this load by the footing area. An 

optimal velocity must be chosen in order to reach a value of the ultimate bearing capacity 

close to the smallest most critical one (corresponding to a very small velocity) with a 

reasonable computation time. Several tests were done. It was found that when cohesion is 

present in the soil, a velocity of 710−  m/timestep is adequate since it gives a solution close 

to the one obtained with a smaller velocity of 810− . However, for a cohesionless soil, a 

velocity of 810−  m/timestep was necessary especially for values of the angle of internal 

friction of the soil smaller than 30°. For °30fϕ , a velocity of 710−  m/timestep led to 

acceptable results in comparison to the 810−  m/timestep velocity.  

X

Y

Z
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Inclined load 

Because of the absence of loading symmetry, only one half of the entire soil domain of 

diameter D7  and depth D5.2  is considered in this section. The computation of a given 

point of the ( )VH ,   failure envelope (where H  and V  are respectively the horizontal

and vertical ultimate footing loads) can be summarized as follows: firstly, a central 

vertical load (smaller than the vertical ultimate one) is applied to the footing via uniform 

nodal stresses Szz acting at the nodes situated at the base of the footing. Then, damping of 

the system is introduced by running several cycles until a steady state of static 

equilibrium develops in the soil underneath the footing. This state is achieved when very 

small values of the unbalanced forces are obtained as the number of cycles increases. 

Secondly, a controlled horizontal velocity (i.e. displacement per timestep) is applied, in 

the X direction, to the nodes situated at the bottom of the footing. Again, damping of the 

system is performed by running several cycles until a steady state of plastic flow develops 

in the soil beneath the footing. This state is achieved when both conditions (i) a constant 

horizontal footing load along the interface and (ii) small values of unbalanced forces in 

the soil mass, are obtained as the number of cycles increases. The horizontal footing load 

is obtained at each cycle by using a FISH function that calculates the integral of the shear 

stress components for all elements in contact with the footing. The value of the horizontal 

load at the plastic steady state is the ultimate horizontal load that led to soil failure. The 

corresponding horizontal footing stress is obtained by dividing this load by the footing 

area. The ultimate bearing capacity is obtained by dividing the vertical applied load by 

the footing area. 

NUMERICAL RESULTS 

For each type of soil, several runs are done in the aim to perform numerical calculations 

with the optimal velocity. Computations are carried out for an associative flow rule, as it 

is often (implicitly) assumed in most methods in bearing capacity, in order to enable a fair 

comparison with other authors' results. Thus, a dilation angle equal to the angle of 

internal friction was used. 

Vertical load 

Figure 2 presents the bearing capacity factors obtained from FLAC3D and those given by 

other authors. For γN , there is a good agreement between the present values and those 

given by Kumar and Ghosh 1 using the slip line method. The solutions presented by 

Bolton and Lau 2 are greater than the present solutions. The difference is greater than 

40%. However, the results given by Salençon and Matar 3, Erickson and Drescher 4, 

Cassidy and Houlsby 5 and Martin 6 are smaller than the present solutions. The 

difference is about 35%. For cN , there is a good agreement between the present values 

and those given by Manoharan and Dasgupta 7, Erickson and Drescher 4 and Martin 6. 

However, Bolton and Lau2 largely underestimate the bearing capacity factor cN . Finally, 

it should be mentioned that the Eurocode 7 highly underestimate both bearing capacity 

factors γN  and cN . Thus, it gives conservative results. 
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Fig. 2: Comparison of present Nγ and Nc factors with those of other authors. 

Inclined load 

Figures 3, 4 and 5 show the failure envelopes obtained from the numerical FLAC
3D

 simulations 

for the three cases considered, i.e. (i) a purely cohesive soil with  kPa50=uc , (ii) a weightless 

frictional cohesive soil with  kPa20=c  and °== 30ψϕ  and, (iii) a cohesionless ponderable 

soil with °== 30ψϕ  and 3kN/m 18=γ . Notice that in these diagrams, the simulation method 

presented for the vertical load case was used for the point corresponding to 0=H kN. For the 

remaining points of these diagrams, the method presented for the inclined load was used.  

In the case of a purely cohesive soil (Figure 3), one can easily see that a sliding along 

the soil-footing interface may occur for small values of the vertical load. The corresponding 

horizontal stress at the soil-footing interface was found equal to uc . For a weightless 

frictional and cohesive soil, the codes of practice largely underestimate the bearing capacity 

for small load inclinations (Figure 4). However, for great load inclinations, the French code 

of practice DTU overestimates the bearing capacity. For a cohesionless soil (Figure 5), the 

codes of practice always underestimate the limit loads of the foundation. 
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Fig. 3: Failure envelope of a purely cohesive soil ( °= 0uϕ  and kPacu 50= ). 
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Fig. 5: Failure envelope of a cohesionless soil ( °= 30ϕ and 
3/18 mkN=γ ). 

Contrary to the vertical load case where the normal and shear stress distributions 

along the different diameters of the foundation are identical, there is a progressive 

evolution of these stresses from a diameter to the next one in the present case. Figures 

6–11 present the distributions of the normal ( )σ  and shear ( )τ  stresses for the three

configurations studied in this paper. For each configuration, one can observe the 

distribution of these stresses for different values of Szz, (i.e. for different load inclinations) 

and along two different positions of the diameter (in the direction of loading ‘Section 

X-X’ and in the orthogonal direction to the loading ‘Section Y-Y’).
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For the clay, as well as the weightless frictional and cohesive soil, except at the 

footing edges which are singular points, a quasi-uniform normal stress distribution was 

observed (Figures 6 and 8). For the shear stress distribution, both positive and negative 

shear stresses were observed in the direction of loading (‘sections X-X’) for large vertical 

loads (Figures 7 and 9). However, for small vertical loads, shear stresses become all 

negative in order to counter weight the horizontal external load. At the limit, for smaller 

values of the vertical load, shear stresses tend to be constant. This state corresponds to a 

sliding along the soil-footing interface. 

For the sand, a quasi-uniform normal stress distribution was observed near the 

footing center (Figure 10). It tends to zero at the edges of the footing. Concerning the 

shear stress distribution, both positive and negative shear stresses were observed for large 

vertical loads (Figure 11). However, for small vertical loads corresponding to large 

horizontal loads, shear stresses become essentially negative in order to counter weight the 

horizontal external load. As for the normal stress distribution, the shear stress tends to 

zero at the footing edges.  
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Fig. 6: Normal ( )σ  stress distribution along X-X and Y-Y.

Purely cohesive soil. 
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Fig. 7: Shear ( )τ  stress distribution along X-X (upper) and Y-Y (lower) – Purely cohesive soil.
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Weightless frictional and cohesive soil. 
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Fig. 9: Shear ( )τ  stress distribution along X-X (upper) and Y-Y (lower) –

Weightless frictional and cohesive soil. 
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Fig. 10: Normal ( )σ  stress distribution along X-X (upper) and Y-Y (lower) –

Cohesionless soil. 
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Fig. 11: Shear ( )τ  stress distribution along X-X (upper) and Y-Y (lower) –

Cohesionless soil.  

The distribution of the mobilized friction angle δ  at the soil footing interface is 

presented in Figure 12 for the X-X section in the case of sand. The value of  δ  is given by:  

( )στδ arctan=  (1) 

Section X-X

-10

0

10

20

30

40

-1 -0.5 0 0.5 1
x/R

D
e
lt

a
 (

°)

Szz 50 kPa

Szz 100 kPa

Szz150 kPa

Szz 200 kPa

Szz 250 kPa

Szz 300 kPa

Fig. 12: Mobilized friction angle δ  at the soil footing interface –  

Cohesionless soil.  

A mobilized angle equal to the angle of internal friction (i.e.
o30== ϕδ ) is 

observed along some distances of the interface near the edges of the footing. These 

distances are the ones for which sliding occurs.  
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CONCLUSIONS 

Numerical FLAC
3D

 simulations were performed for the calculation of the ultimate 

bearing capacity of a circular footing subjected to a vertical or an inclined load. A 

displacement-controlled approach was used. It was shown that: 

• For a vertical load, the γN  values are in good agreement with those given by the 

slip line method by Kumar and Ghosh 
1
. However, for cN , a good agreement was 

obtained with Manoharan and Dasgupta 
7
. On the other hand, the codes of practice 

underestimate highly these factors and lead to conservative results; 

• For an inclined load, the codes of practice largely underestimate the bearing

capacity for small load inclinations. However, for great load inclinations, the

French code of practice DTU overestimates the bearing capacity of a weightless

frictional and cohesive soil. Finally, in the case of a purely cohesive soil, a sliding

along the soil-footing interface may occur for small values of the vertical load. The

corresponding horizontal stress at the soil-footing interface was found equal to uc ; 

• Contrary to the vertical load case where normal and shear stress distributions along

the different diameters of the foundation are identical, there is a progressive

evolution of these stresses from a diameter to the next one in the inclined load case.

Along a given diameter, the normal stress distribution at the soil footing interface is

quasi-uniform for the clay and the weightless frictional and cohesive soils and it

decreases to zero at the edges for the sand. Concerning the shear stress distribution,

both positive and negative shear stresses are observed for large vertical loads.

However, for small vertical loads, shear stresses become essentially negative in

order to counter weight the horizontal external load.
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