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NUMERICAL SIMULATION OF A NON LINEAR COUPLED FLUID-STRUCTURE PROBLEM BY EXPLICIT FINITE ELEMENT-FINITE VOLUME COUPLING

The present paper deals with the numerical s imulation of a coupled non linear flu id-structure problem by explicit coupling between a finite element structure code and a fi nite volume fluid code. This numerical study is carried out in order to develop robust and general coupling with FE and CFD commercial code for industrial applications.

A geometrically simple non linear coupled problem is presented in order to validate the numerical approach. The structure non linear problem is solved with a finite element technique, using a iterative implicit algorithm for time integration. The fluid problem is solved using standard numerical techniques (finite volume approach, implicit splitting operator scheme). The whole coupled problem is solved with a commercial CFD code: a dedicated FE structure code is developed in the CFD code together with coupling (in time, in space) procedures.

The proposed method is validated in the case of a incompressible inviscid fluid. for which the coupled problem is solved with an analytical solution. The present study gives a reference test case for a full scale fluid-structure model. Industrial applications can now be considered by coupling commercial 1-'E and FV codes with general cou pling code.

INTRODUCTION

The present paper deals with the numerical simulation of coupled Ouid-structure problem, in which the coupling process is Ovt:r tht: past yt:ars many numt:r i l:al mt:thuds havt: bt:t:n developed in order to solve linear and non linear coupled fluid-structure problems, using finite element and boundary element techniques [START_REF] Berot | Vibro-Acoustic Behavior of Submersed Cylindrical Shells: Analytical Formulation and Numer i cal model[END_REF] [15) [START_REF] Morand | Fluid Structure lmeraction[END_REF]. Nowadays, the numerical approach tends to propose general coupling algorithms with specific solvers for each sub-problems, with various coupling strategies [START_REF] Casadei | Transiant Fluid Structure Interaction Algorithm for Large Industrial Applications[END_REF] [8] [ 17) [START_REF] Schafer | Coupled Fluid-Solid Problems Survey on Numerical Approaches and Applications[END_REF], depending on the phys ical coup ling phenomenon.

As the numerical design naval propulsion structures needs t ak i ng Ouidl:;tru�;tun:: irrtcm�;tiorr irrto a�;cuurrt, DCN Propul:;iurr launched, with Ecole Centrale Nantes GeM, a R&D study in order to apply numerical methods on industrial projects. From the academic point of view, the coupling process seems not to pose any particular difficulties. From the industrial point of view, an investigation of the vari ous aspecrs of the numerical fluid-strucrure coupling on a simple case is necessary before considering a full-scale coupling with existing commercial codes for industria l structure design. 

STRUCTURE PROBLEM

The structure problem is described by the following beam non linear equation of motion. taking into account geometrical non linearity [12] [26]. The coupled traction/bending equation of motion are formulated in the relative frame as:

{1)

The boundary conditions are:
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for the beam clamped end. and:
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for the beam free end.

'' = 0 = 0 iJ\ • =0 o = = o 1.1. Space discrerisatlon: ftnlte element method (3) 
{4)

The numerical resolution of the structure problem is performed using the finite element method [START_REF] Bathe | Finite Element Procedures in Engineering Analysis[END_REF]. Using a GALERKIN method (i.e. writing an idc:.ntical approximation for unknown displacement 11 • v and virtual displacement with the: same shape functions). the: variationna l principle gi\•c:n by Eqs. (5) and ( 6) is written in the following discrete form:
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In Eq. [START_REF] Fritz | The Effect of Liquids on the Dynamic Motion of Lmmersed Solids[END_REF]. the: mass matrices arc: given by [M.]= Jp5S{N.XN.). 8) and (9). these: matrices can be:

analytically calculated. The: non linear tc:mlS arc::

{R.(V)}= f ES {ON_• } ( v J oN.l /o N. ) { v } (l1) o 2 a_ ' 1 0= f\ 0= {R, (U.V)}= J E s{aN.lr ( 0 �• ){ u }+ o 0= f a_ + ( v J a�, } ( a �, ) {v}J ( a N , ) {v} (12) 
_ 'l a_ a_ 0= 1.2. Time integration: non linear implicit scheme

The: dynamic non linear system given by Eq. [START_REF] Fritz | The Effect of Liquids on the Dynamic Motion of Lmmersed Solids[END_REF] can be:

formulated as follows:

MX + K(X)=<b-M T" [START_REF] Issa | Solution of The Implicitly Discretised Fluid Flow Equation by Operator Splitting[END_REF] wi th K(X) denoting the: non linear s tilfuc:ss. The: nUDlerical time: integration of Eq. {12) can be: performed with classical techniques. using explicit or intplicit techniques. dynamic loading {(J)"} appearing in Eq. [START_REF] Fritz | The Effect of Liquids on the Dynamic Motion of Lmmersed Solids[END_REF].

In explicit techniques [START_REF] Dokatnish | A Survey of Direct Time-Integration Methods in Comp utational Dynamics-!: Explicit Methods[END_REF]. a three: points numerical scheme: is used to evaluate: the: acceleration at time: f 11• For instance:. the: centc:red finite: differc:nce scheme gives the: approximation:

X = x . . , -2X. +X., • litl {14)
Using the: expression ofEq. [START_REF] Langre | Fluides et So/ides. Les editions de I[END_REF] in the general equa ti on of motion leads to:

(15) ID Eq. ( 15). all tc:nm in the right l>idc: arc: known. allowi ng a straightforward calculation of X n + 1 . The explicit technique can be: coupled '-Yith the finite volume approach of the fluid problc:nt in a staggered resolution of the coupled problem. Titough the implementation of the: coupling is rather c:asygoing in the: explicit approach. it suffers from stability limitations. This leads to the: use: of an implicit technique.

In implicit technique: [START_REF] Subbaraj | A Survey of Direct Time-Integration Methods in Computational Dynamies-11: Implicit Methods[END_REF]. a two points numerical scheme is used: the �EWMARK scheme gives for c:xantple: (16) The: substitution of Eq. ( 16) in the: e quati on of motion leads to an implicit equation in terms of the: unknown di splacement X n + 1 . An iterat i ve: procedure: based on fixed point algorithm is performed to obtain X n+l. The algorithm starts with a linear calculation (with the linear part of K(X) ). which gives an estimation of the slmcture displacement X .. 1 ° . Iterations arc: performed with the following approximation:

•• X -X X 1 •• x .. ,= /J&l • -/3 ;-< 2 /3 -l)X.
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which gives:

X 1•1 = K ' x [<J> +K(X' )+(o K )•X' + ... . ... .., . .. J ... � ax .... ... ... . M M• 1 •• -X +-X +M(--)X ( 18 
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. where

��� = --, + -. The Iteration process IS stopped fl8r ax .. 1J
when a convergence criterion is satisfied: a simple criterion can be: written as:

1 1 i+l i 1 1 x _1 -X .. 1 <e JJx�,JI (19) 
where c << 1 . This approach is equivalent to a NE\\ 'TO� procedure. and converges. under known assump tions. . The non linear scheme requires the calculation of the tangent stiffness matrix cK . In the ax present case. the matrix is expressed as: with:

and:
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The non-linear terms of these matrices are computed using a GAUSS-LEGENDRE procedure [START_REF] Bathe | Finite Element Procedures in Engineering Analysis[END_REF]. that is using a numerical integration scheme based on the follow i ng approximation:

(24)
wi th (T Gauss integrati on point and Wf the associated integration weight. The numerical scheme (24) using L points is exact for the polynomial functions of degree 2L -1 : the numerical integration procedure used in the present case will be based on a 5 points scheme. Furthermore. the iterative scheme given by Eq. ( 18) needs inverting matrix M 1 + ( oK ) at each time step. which is done

p& ax .. 1,
with a LU fa�:torization.

The above finite c:lement procedure is implemented as FORTRA.!'\ subroutines. which will be integrated as a simple structural code in the commercial CFD code used for the numerical resolution of the fluid problem. Coupling procedures presented in §.3 w i ll also be implemented as FORTRAN subroutine of the CFD code.

FLUID PROBLEM

The fluid problem is described by the general XA\'lER-STOKES equation. The conservation equation are integrated over a moving control volume O(r) of boundary Bn(r). using the LIEBNITZ rule and the GAUSS theorem. This leads to the global conservation equation over an arbitrary control volume [START_REF] Warsi | Conservation form of the Navier Stokes Equations in General on Steady Coordinates[END_REF].in ALE formulation [START_REF] Sarrate | Arbitrmy Lagrangi an Eulerian Formulation for Fluid Multi-Rigid Bodies lmeraction Problems[END_REF]:

• Mass conservation • �omenrum conservation �( JPI• 1 d n) + JPI• ,(v1 _,• ;)dn1 = ll(t) ill(l) m• m• -fpdn1 + J p(-: +�)dn1 + J s ., dn 'Q(t) '0(1)
ax j ax I O(r) (25) (26) 
In Eqs. 

Space disc1• etisation: finite ''o1ume method

The general form of an integrated conservation equation for a fluid unknown ; is the follow i ng one: Equation (28) is discretised using a finite volume method. The fluid domain is divided in elementary fluid cells (Fig. 5 gives a typical representation of a computational grid for a 2D cartesian problem). for which a i ntegrated conservation equation is wrirten. A moving mesh teclu:tique is used. tl1e elementary grid velocity is deduced from known node displacement in order to satisfy Eq. •r+'
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2D fluid computational grid

The time dependant in Eq. [START_REF]STAR-CD Methodology-User Guide[END_REF] are approximated by an EULER scheme, i.e. writing:

(29)

The convective and diffusive terms are calculated using finite differen ce approximation. leading to the global expression [9):

(30

)
where M stands for the neighboring points of cell n p .

Taking into account Eqs. 

(33)

Equati ons (32) and (33) couple the pressure and velocity unknowns. An implicit iterative scheme is used to calculate the new values of the velocity and pressure field [START_REF] Issa | Solution of The Implicitly Discretised Fluid Flow Equation by Operator Splitting[END_REF]. The algorithm starts with an estimation of the velocity field. by solving the following non L i near system_ obtained fr om Eq. (33) by using the pressure field computed at the prev-ious time step:

A , ... I,(O) = H(,, .. I,(O)) + D(p") + s ...

, •� ' � (34) 
Equations (32) and ( 33) are then used to produce success 1 ve correction. by using the iterative relations:

The iterative scheme is stopped \'.'hen a convergence criterion is satisfied or when a maximum number of inner iterations is reached.

The fluid problem is solved with the numerical principles expose before. using the commerc ial CFD code Star-CD [START_REF]STAR-CD Methodology-User Guide[END_REF]. An elementary validation of the moving mesh technique and fluid force calculation is performed in the elementary case of an oscillating cylinder in a confined annular space . The fRITZ model [START_REF] Fritz | The Effect of Liquids on the Dynamic Motion of Lmmersed Solids[END_REF] gives the added mass coefficient for small amplitude motions in the case of a perfec t fluid. Figure 6 gives a comparison of the analytical and computed added mass coefficient for several confinement ratios a 5. which "-ill be used for the present study: the structural code w i ll be implemented in the STAR-CD code as FOTRA."J subroutines, together with coupling procedures.

The numerical solving strategy of the STAR-CD code does not allow numerical exchanges within a tinte iteration with PISO algorithm: coupling with a structure code will thus be possible only with an explicit technique as detailed bellow.

Coupling in time

As mentioned before. the time coupl i ng strategy will be based on a staggered. explicit coupling procedure. which is represented by (step [START_REF] Bathe | Finite Element Procedures in Engineering Analysis[END_REF] in the coupling procedure). The cakLllations proceed with the numerical resolution of the fluid problem on fluid domain O n . requiring inner iterations for the PISO algorithm (step [START_REF] Beckert | Coupling Fluid (CFD) and Structural (FE) models Using Finite Interpolation Elements[END_REF]). Fluid forces on the flui<Lstru.cture 'Pn interface are then deduced and transferred on the structure problem (step [START_REF] Bendjedou | Steam Generator Tube Vibrations £-rperimental determination versus ALE Computation of Fluidelastic Forces[END_REF]). The advance in time for the structural problem is then carried out. ,,;th inn er iterations for the implicit scheme (step [START_REF] Berot | Vibro-Acoustic Behavior of Submersed Cylindrical Shells: Analytical Formulation and Numer i cal model[END_REF]).

[21 This can induce numerical instabilities for the structure part. This problem is addressed by introducing a filtering process within the coupled procedure6. A first order filter is used. It is described by its transfer function:

--�•�------• •-= == ==� �• •------•------� �� Cooe
6 From a numerical point ofl1ew, the «ristence of numerical oscillations in the computed fluid forces can also induce numerical struc/J/Te instabilities, enm in implicit coupling t(lChniques. Many authors use in this case a blending factor approach. The computed fluid forces are correcred u1th prlll 1ous

H(p) = l T• p+l ( 36 
)
where p is the L.u>L-\CE operator. and w. = 21T I r is the filtering pulsation. Using a bilinear transform of the LAPL�CE variable p . that 2 .:-1 .

is p = -• --. and usmg the z-transfonn [START_REF] Thoma S | Signaux et systemes lineaires[END_REF]. one deduces the lil .:+1 follow i ng discrete relation:

(

) 37 
where rp and rp are the non-filtered and filtered discrete values. ol is the time step size-. with local refinement to describe boundary layer). the space coupling procedure uses interpolation techniques in the displacement/force e�change� bem•een the nvo sub-problem� [START_REF] Beckert | Coupling Fluid (CFD) and Structural (FE) models Using Finite Interpolation Elements[END_REF].

Since the fluid problem is re-meshed at each time step to take into account structure deformation. the fluid finite volume can undergo great shape deformation. Many re-meshing coupling techniques can be develop to preserve the fluid mesh quality [START_REF] So | Mesh Shape Preservation for Flow Induced Vibrations Problems[END_REF]. As 

(39)

The fluid problem has an analytical solution that can be written in terms of pressure. from which fluid force on the elastic beam is deduced an \Yritten as:

8 For \'€1)' larg« duplaum#:tlt, 1.e. whm the inner C)lmd«r almost comf!S mto coma er with thll outer one, thll proposed re•meshing t«hnique nil/ foil (other ones too .' .. .) to presene mesh quality. I n this cost�, a mrmericol technique hosed on binh death fluid cells approach would be u.seful. Such a method is ami/able in the STAR-CD code {28] and is curnmtly im• estigated in the present coupl«i problem. Pa. The whole system is subjected to a sine wave acceleration: 

y ( t ) = Jrxsi '(2, T �) if Osrsr (42) 1 0 if r< t

  bases on mechanical exchanges between each sub-problem. ln the present study other fluid-structure coupling phenomena, such as them1al ef f ect, are not taken into account. At th e fluid structure interface, fluid and structure arc coupled via fluid forces and structure displacement, as sketched by Fig. I.
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 I Figure I. Mechanical Fluid/structure coupling 1201
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 2 Figure 2. ID sh•uctu.re-3D fluid non linear coupled problem

Figure 3 .

 3 Figure 3. Fluid and structure code coupling: general principle 1.STRUCTURE PROBLEM

( 6 )Figure 4 .

 64 Figure 4. Beam finite element \\ith two nodes, three degrees of freedom per node
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 0 and [M.]= Jps S { N , XN.). the: st:i.ffu c:ss matrices arc: expressed as0 [K.]= J Es { 0 �• } ( aN .) and o a _ O= [ K . ]= J El { o2 �• } fo2N, ) • o a _ \ 0= L and the: l oading vector is written {<!>.}=-fpssr{N.}. With the: 0 shape functio ns defined by Eqs. (

  (J) external forcc:s2• and -Mr being the: inertial tc:mt3. If flui d forces arc: taken into account. <I> is obtained from the discrete form of the following virtual work §W = Jbii • 5 • iidr where: 5 is the: fluid stress t ensor. r(t) n is the outer nomtal at the flui d-structure i nterface r .

  [START_REF] Washizu | Variational Methods in Elasticity and Plasticity[END_REF] and[START_REF] Washizu | Variational Methods in Elasticity and Plasticity[END_REF]. S P and Sv, stand respectively for mass and momentun1 sources: the fluid problem can then be formulated in the moving frame. The fluid unknown are the pressure and velocity fields p. v; . bu t as the conservation equation are integrated over a moving control volume. Eqs.[START_REF] Warsi | Conservation form of the Navier Stokes Equations in General on Steady Coordinates[END_REF] and[START_REF] Washizu | Variational Methods in Elasticity and Plasticity[END_REF] show another unknown fluid that is tl1e grid velocity v, • : another equation has to be us ed to close the fluid problem. This supplementary equation is the space law conservation[START_REF] Demirdzic | Space Conservation law in Finite Volume Calculations of Fluid Flow[END_REF] which is written:[START_REF] Wintergerste | Fluid-Structure Interaction with STAR-CD and PERMAS using MpCCI[END_REF] The fluid problen1 is then fully charact erized by Eqs. (25) to (27t Additional boundary conditions are to be taken into account suc:h as imposed pressure or vdoc:ity. The �:oupling with the struc:ture bl . d -� ori I h -. th pro em IS expresse as \' =w ere u IS e sl:nlcture r o f r displaccmmt and r is the fluid-structure: interface.

(27) 4

 4 In the case of a compress ible fluid, the fluid statll law p(p) allows a closure of thll problem.

[ 6 ]

 6 . The grid velocity " i • appearing in the right side of Eq.[START_REF]STAR-CD Methodology-User Guide[END_REF] becomes then a source term on the left hand side. Integrated conservation equation are written for each cell: P is the cell center. WW.W.SW.S.SE.E.EE.NE.N are the centers of neighboring cells.

Jl 2 . 2 .

 22 (29) and (30) leads to the following algebraic non linear system [ A((J) X(J} = {b}. that is: A ...1 •• • = " A ..,� ... . +b ...1 • Time integration: PISO algorithm From discretisation practices presented above. it is possible to produce the following algebraic system resulting from the finite volume discretisation of the momenrum equation. Eq. (32). and POISSO>l equations. Eq. (33). A v••• = H(v .. 1)+D(p .... 1)+ S ...

Figlll•e 6 .

 6 Figlll•e 6. Elementa11• validation of the mo\ing mesh and pressut• e force calculation with the Star-CD CFD code 3. COUPLED PROBLEM The fluid and structure problem are solved \\-ith the numerical principles presented in the previous paragraphs. The numerical methods for fluid are available as such in the CFD code STAR-CD.

Fig. 7 .

 7 Fig. 7. At time step tn. structure displacement ll n is known. From previous fluid geomeny On 1 . it is possible to calculate the new fluid geomeny On and solve the space law conservation equation to obtain the grid velocity field v11

Fluid'

  " • I • Po. 1 PISO '" • • p, FY ��. � � --�• � ======� . .-----� . �----�� Cod@ _l
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 17 Figure 7. FE sh•ucture code and FV fluid code explicit time coupling From the structure point of view. the implicit approa ch requires the knowledge of external forces at time step rn+l. whereas the explicit coupling procedure gives fluid forces from r n 1 to r n : a l inear extrapolation is used to a better prediction of the fluid forces: the external forces used in the structure advance are qJn = 2rp, -f/Jn I • For small time step size. or small mesh displacemenL the computed flu i d forces show high frequency numerical oscillat i ons.

Figure 8 .Fig. 9 .Figure 9 .

 899 Figure 8. Dis�rete numeri� ruter 3.2. Couplin& in space The space coupling procedure handles numerical exchanges between the fluid and structure problems. Structure displacement are transferred from the structure mesh to the fluid mesh. and fluid forces are projected from fluid boundaries to structure mesh. as sketched by Fig. 9.

Figure 10 .

 10 figure I 0 shows a 20 half slice of the fluid mesh. in the initial state and a deformed state: fluid cells length ratios are preserved even for large amplitude inner cylinder motion 8.
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 7 (:) = -KR"'[_P, (R) x cos(q,:)x I 0 • a\• , J-, ((.l ) c os (q,()d( + pFn: R :y o or (40) This leads to the calculation of an added mass matri..'t M • in the left hand side of structure equation of motion and a displaced fluid force vector M .,r on the right hand side:(M +.\1. h )X + K(X) =-(M-Md )r(41)The structure problem taking into account fluid effect is then solved with numerical techniques presented in §.1. The geometrical and physical characteristics of the coupled problem are R = 0.1 m. R' :0.2 m. L:! m. e:0.02 m, Ps :8000 kglm3• E:6.04x!08

Figure 11

 11 Figure11shows the analytical solution and CFD calculation nith explicit fEIFV coupling in terms of beam free end displacement. The parameters of the imposed acceleration is are r =50 ws2• r = 100 ms. The numerical results sho w a good agreement between the two methods. which valid ates the explicit coupling procedure.

Figure 11 .Figure 12 .

 1112 Figure 11. Non lineal' beam response: free end displacement v(L,t) computed mtb the analytical solution and CFD calculation with non linear FEIFV coupling technique Figure 12 gi ves a comparison of two coupled calculation with the pre-.. -ious acceleration parameters: the elastic beam is coupled with a light and heavy fluid. The numerical simulations illustrates the added mass and displaced mass effect: the period of oscillation is increased the amplitude oscillation decreased in the coupling with the heavy fluid. compared to the coupling with the light fluid

//is a11 ex/elision in the 3D case of the 11011linear

2D problem stud i ed in a previous publ i cation[START_REF] Stgrjst | Numerical Simulation of Fluid Stntcture Problems by Coupling Fluid Finite Volume and St/1/Cillre Finite Element or Modal Approach[END_REF].

In the present paper, the exren10/ forces are the fluid forces, which will be compured from a CFD code using a finite ,-a fume approach, see §.2. J The proposed -.\41"" notation in Eq. (12) is a n altemati\'e ""0) of writing the

-� numerical srudy currmu�v in progress focuses on the calculation of addtzd mass and added damping coeffi cient in the case of a l-iscotl$ fluid. PreliminaT)' results show a good agrell1 1l llll t l•dth the anal y tical model from CHEN and compari son ll-ith other numm-ical results[START_REF] Bendjedou | Steam Generator Tube Vibrations £-rperimental determination versus ALE Computation of Fluidelastic Forces[END_REF] will be carritzd out.