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NUMERICAL MODELING OF MATERIAL FLO W WITH AN INTERNAL
LENGTH

F. Dufour1 and G. Pijaudier-Cabot2

ABSTRACT
In this paper we propose a new numerical method to study material flow with an internal length.

The finite element method with Lagrangian interpolation points (FEMLIP) is used for its capability to
model large deformation processes for any type of materials. It is widely accepted in the litterature that
fresh concrete rheology is very well estimated by Bigham model in the classical continuum approach.
Nevertheless in most cases the form size and the distance between reinforced bars are about few times
greater than aggregate size itself. This means that the microstructure has a non negligible effect on the
flow (aggregate rotation independent of material rotation + boundary layer effect) and that it must be
taken into account to get a good estimation of the filling capability of the material. We propose to use a
Cosserat continuum with a Bingham law to tackle this work.

Keywords: Cosserat model, Bingham rheology, fresh concrete flow.

INTRODUCTION
The objectives of this work are to model heterogeneous two-phase fluid like fresh concrete

flow during filling form processes with a particular concern about aggregate segregation and/or
locking effect around reinforced bars. The aggregate mean size is only few times smaller than
the distance between the bars or between the bars and the mould. Therefore, microstructure
must be taken into account to get a good estimation of the concrete flow and boundary condi-
tions must be addressed carefully.

We already have modelled (Dufour, 2002) concrete flow either with an homogeneous or
an heterogeneous approach within the classical continuum framework. In the first approach,
informations about material microstructure are clearly missing (e.g. material locking between
bars cannot be modelled) whereas the second approach is very much demanding on computer
ressources and cannot be used for large scale applications.

Therefore, we propose in this work to combine the Bingham model with a Cosserat contin-
uum in order to enhance microstructure effects into the model without having to use very fine
and numerically costly meshes. We wish to avoid as much as possible heterogeneous modelling
for large scale problems because of memory and computational time limits. Along these lines,
heterogeneous modelling will be used only for validations purposes.

1Correspondingauthor: ERT R&DO, Institutde Recherche GeM, Ecole Centrale de Nantes, 1 rue de la noë,
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NUMERICAL METHOD
To tackle these objectives, we use a finite element method with Lagrangian interpolation

points (FEMLIP) implemented in ourellipsis code (Moresi et al., 2002) where the problem
domain is represented by an Eulerian mesh with an embedded set of Lagrangian integration
points or particles. Unknowns (i.e. velocity field) are computed at the mesh nodes and the
Lagrangian particles carry history variables during the large deformation process including
material properties. This method is ideally suited to model fluid-like behavior of continuum
solids like two-phase fluid. From the material properties point of view, unlike in a pure Eulerian
method, material interfaces do not show convection during computations as fictitious lines
representing interfaces are preserved during flow between two adjacent particles with different
properties. From the computational point of view, interfaces are taken into account in one finite
element for which rheological properties are averaged for integration. The consequence is that
the modelling of heterogeneous material needs very fine meshes with the FEMLIP same as for
any numerical method based on integration over volumes.

RHEOLOGICAL LAWS
Concrete, in its fresh state, can be considered as a homogeneous fluid, provided that a

certain degree of flow can be achieved and that the mix is quasi-homogeneous with regularly
dispersed aggregate particles (in space and size). Modelling concrete rheology is a very difficult
task as every concrete behaves differently depending on their composition and mixing method.
Therefore it is impossible to write a relation between the stress and the strain rate based on
every single parameter at the microscale, quantities and nature of each admixtures in particular,
which are nowadays more and more numerous. Here, the concrete rheology is thought at a
mesoscale and it is written as a relation between the shear stressτ and the shear strain rateγ̇. A
complete review of rheological models for cement based materials has been done by Yahia and
Khayat (2003). We discuss here only the three simplest ones, namely Newton’s, Bingham’s
and Herschel-Bulkley’s models.

The simplest model (one parameter) assumes that concrete is a Newtonian fluid:

τ = ηγ̇ (1)

whereη is the viscosity but Tatersall (1973) has shown that a single parameter is not enough
to model concrete flow. At least two parameters are needed to model concrete with a slump
lower than30 cm. The first one needs to be related to the static behaviour (slump test) and the
second one to the dynamic fluid response (rheometer test). Hence, a stress threshold has been
added to the Newton’s model to give the Bingham’s model:

τ = τ0 + ηγ̇ if τ ≥ τ0 (2)

γ̇ = 0 if τ ≤ τ0

whereτ0 is the yield stress andη is the plastic viscosity.
When experimental data are fitted for many different concretes and for self-compacting

concrete especially, it often yields a negative value of the yield stress although very small. For
this reason de Larrard et al. (1998) prefered to use a Herschel-Bulkley’s model (3 parameters):

τ = τ ′0 + aγ̇b (3)

Ferraris and de Larrard (1998) have found a mean value forb of 1.53 for concrete without
superplasticizer and 1.36 for others. However the Bingham’s model (e.g.b = 1) is most widely
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used(Tsong et al., 1999) becauseit needs less experimental tests to be calibrated. For the same
reason, we have chosen to use the Bingham’s model in this study.

One example for each rheological model is plotted in Figure 1.
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FIG. 1. Different rheological models f or fluid-like materials. (a) Newton (η = 650 Pa.s),
(b) Bingham (τ 0 = 500 Pa, η = 500 Pa.s) and (c) Herschel-Bulkley ( τ ′0 = 400 Pa, a = 500
Pa.sb and b = 1.2).

For an easier numerical implementation, the Bingham’s model needs to be smoothed (Pa-
panastasiou, 1987) in order to avoid the corner atτ = τ0 on the material response and the use
of two equations under and above the shear stress threshold. This yields:

η = η0 +
τ0

γ̇

(
1− e−mγ̇

)
(4)

wherem is the stress growth rateparameter. The higherm, the more accurate the approxima-
tion. We found out, for the range of strain rates reached during our numerical tests, that a value
m=5000 is high enough as we observed no differences with results obtained with a value of
m=10000.

(Dufour and Pijaudier-Cabot, 2004) have already shown the ability of this rheological law
together with the FEMLIP to model concrete flow during slump test (Fig.2) and Lbox filling
(3).

The use of Bingham’s law in for a classical continuum needs two different types of exper-
imental tests. The first one, the slump test, to identify the yield stress and the second one, a
rheometer test, to identify the plastic viscosity. For the rheometer test we have chosen to mea-
sure the flow time of fresh concrete in a funnel. The reason is that it can be easily modelled by
ellipsisas the flow is nearly 2D.

ENHANCED MODEL
In a 2D conventional continuum the deviatoric part of an isotropic material is characterised

by a shear viscosityη. For a Cosserat continuum we also have a Cosserat shear viscosityηc

and a bending viscosityM . The constitutive relation for a generalised Newtonian fluid can be
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FIG. 2. Different snapshots of slump test on SCC at time 0 s. (a), 0.36 s. (b), 1.87 s. (c)
and 7.24 s. (d).
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FIG. 3. Diff erent snapshots of the Lbox test on SCC at time 0 s. (a), 0.45 s. (b), 0.85 s.
(c) and 7.63 s. (d).

written in the usual pseudo-vector form:

τ = ΛD (5)

whereτ is the deviatoric stress vector and the matrixΛ is expressed as:



η η 0 0 0 0
η 0 0 0 0

η + ηc η − ηc 0 0
η + ηc 0 0

symm. M 0
M




(6)
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It means that when the Bingham’s law for a Cosserat continuum is implemented two ad-
ditional parameters are required. Choi and Mühlhaus (1991) have proposed relations between
bending viscosity and viscosityη and internal lengthd such as:

M = 2ηd (7)

If we assume that the internal length of such a material is the granular size, then only one
more parameter needs to be identified. One example of behaviour of this Cosserat continuum is
studied for Newtonian material. We consider the discharge of a Cosserat material from a model
silo (Fig.4). In this case we are interested in the influence of the internal length parameter on
the discharge velocity (Fig.5) of a Cosserat fluid as described by (5–6)

FIG. 4. Snapshots of the model. (a) Initial conditions, (b) t = 4.75 10−4 sec.,
(c) t = 1.42 10−3 sec., (d) t = 2.85 10−3 sec. and (e) t = 3.8 10−3sec.. The plot
below each picture corresponds to the vertical velocity profile throughout the
silo aperture.

In Fig. 5 we plot the volume flowing out the reservoir versus time and for different values
of the ratioα = d/a wherea is the silo aperture andd is the internal length of the material.
The flow rate is almost identical for all values ofα (Fig. 5-d and 5-e) larger than the aperture
(1.0) which corresponds, in the elastic case, to a situation in which no flow can occur. Note
that in purely viscous materials static equilibrium states do not exist, ensuring that stable arches
do not form. For0 ≤ α ≤ 1.0, the smaller the internal length the faster the outflow. Indeed
Dufour et al. (2001) have observed the same effects in the case of an infinite shearlayer. The
first effect is a boundary layer effect along the boundaries. Here is a possibility to force the
material rotation to zero for non spherical aggregates which can slide without rotating. The
second effect is that for the same body force, a Cosserat fluid will flow slower than a classical
one because energy is stored within the material due to bending stiffness. Frictional contacts
between aggregates are modeled by Cosserat couple stresses.

BINGHAM’S FLOW WITHIN A COSSERAT CONTINUUM
To get the microstructure description of a Cosserat model together with the Bingham rhe-

ology we propose to model Bingham’s flow within a Cosserat continuum. In the Cosserat
constitutive matrix the viscosityη can be identified to the Bingham’s viscosity,ηc and M
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FIG. 5. Outgoing volume f or (a) α=0, (b) α=1/3, (c) α=2/3, (d) α=5/3 and (e) α=10/3

needs to be identified. The first term is a constant fraction of the Bingham’s viscosity and the
second one is calculated as a function of the internal length taken equal to the granular size
D50. The coupling of the Bingham’s law with a Cosserat model allows the use of coarser
mesh with a homogeneous fluid approach compared to the modelling of heterogeneous fluid.
The microstructure effect is brought into equations instead of the geometry. This coupling will
be used in the future whenever boundary layer effects are of importance in the concrete flow
for instance in the Lbox problem or in order to study concrete flow in the casting of densely
reinforced strutural elements.
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