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NUMERICAL AND EXPERIMENTAL INVESTIGATIONS OF A RIGID CONE STRIKING THE FREE SURFACE OF AN INCOMPRESSIBLE FLUID

In the present paper, the hydrodynamic impact problem of a blunt and rigid body is considered. The three-dimensional asymptotic problem is solved numerically using variational formulation together with finite element method. The so-called wetting correction is obtained through an iterative procedure. The numerical method is successfully validated against analytical solutions for simple geometries such as wedges and cones. The second part of the paper describes an experimental investigation, which consists in series of free fall drop -tests of cone shaped models with different deadrise angles. Pressures at different locations have been measured and are compared against the numerical simulations. Good agreement is generally reported.

INTRODUCTION

In severe sea conditions, ship hulls experience slamming loads due to their large amplitude motions.

These impulsive loads associated with the impact may induce locally plastic deformations of the hull. In extreme cases, they may threaten the integrity of the overall ship structure due to a large increase of the global bending stresses. The ability to better predict local and global structural responses of the ship hull to these impulsive loads appears necessary. From a practical point of view local flexion are included among dimensioning criteria of the hull.

Generally, impact loads are commonly estimated within the framework of potential flow theory. This modelling is one of the simplest to describe the violent motion of the free surface in the •vicinity of a moving surface-piercing body. Despite these simplifications, the resulting problem remains strongly non-linear because of the free surface boundary conditions which do not only include quadratic terms but also are written on an a priori unknown boundary.

Impact loads are especially high when the tangents to free surface and the body are almost parallel near the contact point, i.e. for a blunt body striking an almost flat free surface. In this geometrical configuration, an asymptotic analysis of the problem can be performed using the ratio between the immersion and the wetted length as the perturbation parameter. The famous [START_REF] Wagner | Uber Stoss und Gleitvorgange an der Oberflache von Fltissigkeiten[END_REF] intuitive analysis has since then been put into formal basis and extended using the framework of matched. asymptotic expansions [START_REF] Cointe | Two dimtnsional water solid impact[END_REF][START_REF] Howison | Incompressible water entry problems at small deadrise angles[END_REF][START_REF] Howison | Incompressible water entry problems at small deadrise angles[END_REF]. In most studies planar flow in each cross section is assumed. Neglecting gravity effects, the free surface condition reduces, to the leading order, to a Dirichlet condition for the potential on the undisturbed position of the free surface. The flow is then similar to that around a flat plate placed perpendicularly into a uniform stream, for which an analytical solution can be derived.

These classical asymptotic two dimensional solutions have been validated against experiments for drop tests of planar wedges [START_REF] Chuang | Experiments on slamming of wedge-shaped bodies[END_REF][START_REF] Fontaine | Asymtotic theory of water entry[END_REF], cylinders [START_REF] Cointe | Hydrodynamic impact analysis of a cylinder[END_REF], or more generally ship cross-section [START_REF] Zhao | Water entry of arbitrary two-dimensional sections with and without flow separation[END_REF], Magee & Fontaine, 1997). Good agreement between the two dimensional numerical and the experimental results is generally 1 reported although the comparisons require sometimes three dimensional side effects to be accounted for in a simplified way.

In the above mentioned studies, the body is assumed to be rigid. Structural deformations due to these two dimensional impact loads have been studied by Faltinsen (1997) and [START_REF] Korobkin | Wave impact on the bow end of a catamaran wetdeck[END_REF] assuming the deformations velocities to be small compared to the vertical impact velocity. Recently, Donguy, Peseux & Fontaine (2000) use the two-dimensional pressure distribution to compute the local deformations of the hull using FEM. For a realistic impact event, it is nevertheless shown that the local structural deformations exhibit a strongly three-dimensional character. If the two-dimensional cross flow assumption can be jus�ified for slender rigid bodies, three dimensional effects play a great importance when fully coupled fluid -structure interaction problem is considered.

One of the next improvements in the modeling of the hydrodynamic impact problem is therefore to take into account the three-dimensionality of the flow. Within the blunt body asymptotic analysis, the main difficulty for solving the simplified problem is the evaluation of the contact line between the body and the free surface.

If analytic or quasi-analytic solutions can be obtained in the two dimensional case, a purely numerical approach has to be developed to treat the more general three-dimensional situation. The aim of this study is to develop a three dimensional simplified method which allows to evaluate impact loads on a rigid body.

In the present paper, the classical two-dimensional asymptotic approach is extended to the three dimensional case.

First, the simplified modeling is described, focusing attention on the physical assumptions sustaining the analysis. The numerical method used to solve the asymptotic problem is then presented. The approach is based on a variational formulation of the asymptotic problem together with the use of Finite Element Method. As suggested by [START_REF] Korobkin | Formulation of penetration problem as a variational inequality[END_REF], the contact line is evaluated using the displacement potential while the geometrical non-linearity associated with the determination of the wetted surface is solved through an iterative procedure. Pressure is finally obtained by velocity potential formulation approach. Comparing numerical results to classical asymptotic solutions finally validates the method. The two dimensional solutions for a wedge or a parabola, and the three dimensional one for the axisymmetric case of a cone are successfully recovered. The accuracy of the numerical scheme is also tested, in particular near the contact line where the asymptotic solution is singular.

The second part of the paper describes a preliminary experimental investigation, which consists in series of free fall drop tests of rigid cone shaped models with different deadrise angles. The experimental parameters have been tchosen so that realistic impact situation is reproduced. As shown in earlier experiments, see e.g. [START_REF] Chuang | Experiments on slamming of wedge-shaped bodies[END_REF], performing accurate drop test experiments is difficult due to the complexity of the involved phenomena. Experimental results are very sensitive to small perturbations, such as small variation of the effective deadrise angle or air trapped phenomenon. In the present experiments, pressures at different locations have been measured and are successfully compared with the numerical simulations for the smallest deadrise angle. The practical domain of validity of the asymptotic solution is finally discussed in connection with the deadrise angle increase.

THREE-DIMENSIONAL PROBLEMS

Exact formulation

The flow generated during the impact of a body on a free surface is considered. The fluid is assumed to be perfect and incompressible, and the flow is irrotational. The velocity field can therefore be evaluated according to v = grad(/J , where l/J=t/J(x,y,z,t) is the velocity potential. The body shape is assumed to be given by its position u$ = u$(x,y,z,t) and the notation z=h(x,y,t) is used for the unknown free surface elevation. (1)

on the body

(2)

on the free surface

(3) on the free surface (4)

Equation (2) states the continuity of the normal velocity on the body. The kinematic and dynamic free surface conditions, eq. ( 3) and (4)

respectively, express that the free surface is a material surface with constant pressure. In the far field, the fluid is assume to be at rest: and the following initials conditions:

h(x,y,O)=O t/J(x,y,z,O)=O
are imposed in the case of a fluid initially at rest. Once the potential is known, the pressure on the body can be derived from Bemoulli's equation:

P aq, 1 _ 2 -= ----(grad4J) -gz p ar 2 in .q.
(5)

2.2 Asymptotic formulation .

As mentioned earlier, numerous difficulties arise if one wish to solve directly the unsteady nonlinear boundary value problem. Indeed, the motion of the free surface is violent. Experimentally, jets _developing along the body are observed (see e.g. [START_REF] Greenhow | Wedge entry into initially calm water[END_REF].

Classically, according to [START_REF] Wagner | Uber Stoss und Gleitvorgange an der Oberflache von Fltissigkeiten[END_REF], the problem is simplified into:

�l/>=0 dl/J :.an = us.n

l/>=0 dh = dl/> dt dZ (6) onrs (7) (8) (9)
where r8 and rL are respectively the projections on the plane z = 0 of the wetted body surface and the free surface. The contact line fTt), defined as the intersection between Ts and TL , is a priori Unknown.

The simplified problem (6)-( 9) requires gravity effect and quadratic terms to remain small compare to the linear terms. The • displacements of both, the body and the free surface, must also remain small to justify the geometrical linearisation of the boundary conditions. These assumptions can be justified formally through an asymptotic analysis of the impact problem for a blunt and rigid body [START_REF] Cointe | Two dimtnsional water solid impact[END_REF][START_REF] Wilson | The mathematics of ship slamming[END_REF]. The small parameter used in the asymptotic expansion is the ratio between the immersion and characteristic length scale of the body wetted area. The method of matched asymptotic expansions leads then to define three different zones in which three asymptotic expansions are performed and matched successively:

• the far field domain, where the flow is similar to the that around a flat plate of unknown width in an unbounded fluid,

• the spray root domain near the contact line, where the flow overturns to create a jet,

• and the jet domain, along the body.

The perturbation procedure relies strongly on the blunt body assumption. In the far field, the body boundary condition (2) can be written on the undisturbed position of the free surface without introducing significant error, therefore justifying eq. (6). To the leading order, the quadratic terms in eq. ( 3) and ( 4) can be neglected in the far field, but must be retained to describe the flow within the jet. The exact dynamic condition, eq. (3), has been replaced by a Dirichlet condition for the potential on the undisturbed position of the free surface. Equation (7) is therefore applied on z = 0. Physically, the acceleration in the fluid has been assumed to be large compared to gravity. For a body impacting the free surface with constant speed V, this assumption is justified until g. tiV < < 1. Finally, the simplified kinematic free surface condition states that the vertical displacement of the free surface is equal to the fluid vertical motion, evaluated on the linearised position of the free surface.

Within this modelling, the solution is singular on the contact line since the slope of the free surface and the vertical velocity tend to infinity. This singularity is physically correlated with the existence of a jet located near the intersection between the free surface and the body surface. This singularity also appears in the pressure distribution given to the leading order by : d fP p = -p dt (10)

In the present modelling, the far field solution for the pressure is matched to the asymptotic s p lution describing the flow in the spray root domain. The resulting composite solution is therefore regular and can be integrated to evaluate the corresponding impact loads.

At this stage, it is important to note that the three dimensional character of the flow has been retained in the equations. In particular, Laplace's equation is not simplified into its two dimensional form as would be usually done using strip theory based on slender body assumption (see e.g. Fontaine et at 1997).

NUMERICAL RESOLUTION

Variational formulation

The weighted residual method consists in searching for functions l/> that cancel the integral quantity:

W ((/�) = i q> • R((/J) dD (1 1) n/
for all weighting functions q>. For our problem, the residue R( l/>) is set equal to L1lf>. After applying Green's identity and taking into account the boundaries conditions, the integral eq. (11) gives:

(12)

The discretization of this equation is performed' using Gal er kin's method. The potential q, and the weight functions q> are approximated using the same shape functions according to To evaluate the right hand side of eq. ( 16), it is necessary to know the wetted portion of the body, or, equivalently, the position of the contact line between the body and the fluid. Due to the deformations of the free surface, the wetted surface is part of the unknown of the problem. An additional equation is therefore needed to close the problem. Physically, the contact line is determined by

• imposing to the solution to satisfy volume of the fluid conservation [START_REF] Wilson | The mathematics of ship slamming[END_REF], Fontaine & Cointe, 1992) or equivalently, by imposing the existence of an intersection point between the elevation of the free surface and the body as intuitively done by [START_REF] Wagner | Uber Stoss und Gleitvorgange an der Oberflache von Fltissigkeiten[END_REF]. Volume conservation should be automatically satisfied since Laplace's equation is solved. Nevertheless, the problem is singular at the initial time when the contact line reduced to a single point, thus the need for an extra closure equation. As suggested by [START_REF] Korobkin | Formulation of penetration problem as a variational inequality[END_REF], it is easier to introduce the displacement potential given by: 1f!(x,y,z;t)= f�tJ>(x,y,z;s)ds ( 17) instead of the velocity potential. The boundary value problem satisfied by 1f1 is similar to the one satisfied by Q> except for the body boundary condition. The main advantage of introducing this transformation is that the value of 1f1 on z = 0 is by construction the free surface elevation. Solving for 1f1 does not require the knowledge of the temporal evolution of the free surface elevation. From a numerical point of view, the same discretisation scheme is applied to the displacement potential leading to:

H{lfl) =(G.,) (18) 
where the discretised body boundary condition writes:

(19)
The wetted surface is determined through an iterative procedure: starting from an initial surface guess for (T8)0, the problem for displacement potential problem is solved until that the free surface elevation is equal to the position of the body at the boundary fTt) :

(20)

Once convergence has been reached, the position of the contact line is known. the linear system for the velocity potential is then solved. It is worth noting that the matrix H which depends only from the geometry has already been assembled and so doesn't have to be computed once again to solve the velocity potential problem. From one time step to the other, the boundary mesh doesn't move, and therefore no substantive derivative has to be introduced. As a result, a simple first order backward finite difference scheme give an accurate estimation of the pressure even close to the singularity as will be demonstrated in the next section.

VALIDATION OF THE NUMERICAL PROCEDURE

Two dimensional case

The example of a two dimensional parabolic hull defined by z=a/, penetrating with constant velocity V a free surface initially at rest, is considered. The numerical method previously described has been applied to this case. Comparisons between numerical and analytical results are presented in fig. 2 and3. Triangular and quadrilateral elements were used for the numerical computation. for the free surface elevation around a parabolic hull.
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Three dimensional axlsymmetric case

Comparisons for a cone shaped hull are presented in fig. 4 and5.

Hexahedron types of elements were used in the numerical simulation. Good agreement between numerical and analytical results is obtained again. All parameters being comparable to the previous two dimensional computation, the relative error remains of the same order, despite the mesh is this time really three dimensional. In fig.

6, the pressure distribution for a two-dimensional wedge and a cone having the same immersion are compared to estimate roughly three dimensional effects. The maximum error on the pressure distribution is around 30%. The figure also shows that the two dimensional computations appears also to be conservative. To conclude this section, analytical and numerical results are very close to each others for both 20 and 30 cases. The evaluation of the free surface elevation remains nevertheless sensitive to the boundary between the structure and the fluid. To represent the singular behavior of the solution in the vicinity of this boundary, the finite elements mesh has to be refined in this zone. The regularity of the mesh is also an important parameter which controls the accuracy of the numerical resolution. Cones shaped models were rigidly attached to a cylindrical support itself connected to the guided frame of the impact tower. The models were set free without initial velocity by means of pliers �operated by two hydraulic jacks. During the drop, the cone was guided by a system of cables <V which allows to control the relative position between the body and the free surface. After impact into water surface, the cone was stopped progressively by a metallic frame covered with foam.

Three different cone shaped models with deadrise angles of 6, 10, and 14 degrees have been successively tested (see fig. 8). The effective thickness of the steel models were sufficiently important, reaching from 25 to 50 mm, so that the rigid body assumption is verified during impact. The aim of this first set of experiments is to test the accuracy and domain of validity of the simplified numerical method previously described, but also to prepare more complex experiments to study the influence of hydroelasticity effects. The impact velocity was chosen to rise realistic values from 3 to 6 m/s approximately. The drop height of the model was set up to 3.0 m. Due to rubbing of the pulley-cables connections, additional weight were necessary to reach the desired impact velocity. Drop velocity and pressure measurements were performed during impact. Two quartz ICP compensated pressures sensors were set at 40 mm and 90 mm from the cone symmetry axis (fig. 8). These sensors are well suited for impact measurements. Their sampling frequency is up to 400 kHz, and the measurement range is 0 to 69 bar. They also allow for the use of relatively long wires (20 m) without altering the electric signal so that the data processing system does not need to be too close to the water.

The drop velocity was measured by mean of a dynamo connected to the guidance pulley of the cable. Finally, pressure and velocity signals are plotted and recorded by a numerical memory oscilloscope. The cones were dropped against calm water. At least three drops were performed in each test condition to make sure of the repeatability of the measurements. Results presented below are representative ' of these drop test series.

Comparisons between theorv and experiments

Table 1 reports the main parameters of each experiment, i.e. the drop height (H) and the falling velocity at the initial time of impact on sensor 1 and sensor 2. The two maximum values of the pressure at the two locations, measured and calculated, for the three deadrise angles (�) are presented in table 2. Numerical and experimental results for the pressure levels are found to be in reasonable agreement although the pressure is always slightly over predicted, indicating that the numerical model is therefore conservative.

On the first sensor, and for the smallest deadrise angle, the experimental value is by far over predicted. Physically, it is believed that air entrapment occurs, leading to a decay of the pressure. This phenomenon has also been observed by [START_REF] Chuang | Drops test of cones to investigate the three-dimensional effects of slamming[END_REF] on cones with deadrise angles smaller than 1°, and by [START_REF] Hagiwara | Fundamental study of wave impact loads on ship bow[END_REF] for wedges with deadrise angles lower than 3 degrees. Examples of temporal evolution of the pressure on the two probes are presented in fig. 9 (a) to (e) corresponding to the different deadrise angles and impact velocities. Although experimental and numerical distribution pressures don't fit exactly the same in details, the experimental distribution is globally well represented by the 'numerical simulation. Both signals show a pressure peak travelling along the body, followed by a plateau. The location of the peak is clearly well described by the simplified theory. The wetted length seems therefore to be correctly estimated. This local qJ.Iantity results nevertheless from global volume conservation property as mentioned previously. It is therefore not surprising that the modeling is able to give a good estimate of this quantity. The pressure rise immediately after impact is also well reproduced. The simplified model is indeed asymptotically valid for small times. The level of the peak, i.e. the maximum pressure, is reasonably estimated for the smallest deadrise angle, but the error increase with an increase of the deadrise angle. According to the asymptotic solution, the level of the pressure peak should not vary along the body. The experiments clearly indicate that the peak intensity increases between the two probes. This discrepancy can be partially explained by the fact that the impact velocity of the cone is also increasing due to gravity acceleration. This phenomenon is not reproduced in the numerical simulation where the impact velocity remains constant. A posteriori calculus confirms that the velocity increases immediately after impact, the acceleration decreasing but remaining downward. The plateau level is also slightly over estimated, certainly as a result of using a simplified body boundary condition. It is well know that the geometrical linearisation of the boundary condition yields to an overestimation of the pressure coefficient (see e.g. Faltinsen, 1997[START_REF] Fontaine | Asymtotic theory of water entry[END_REF].

Secondly, we observe two zones where oscillations are generated. In the first zone we couldn't give definitely an explanation for this oscillations. In the second zone, the oscillations correspond not only at the moment when the cylindrical support come into the water but also to the flat circumference. Then, this is the body geometry which generates the second zone oscillation.

Even if the different experimental results outline above are rather good, examination of the angle impact, who doesn't fit exactly with the real one, prevent us to validate wholly the experimental investigation. We are now setting a new scheme which allows to control this parameter.

CONCLUSION

In the present paper, the three-dimensional Wagner problem is solved numerically using a variational formulation together with a finite element method. The so-called wetting correction is obtained through an iterative procedure. The numerical resolution is validated computing simple problems, such as the water impact problem of a wedge with small deadrise in the two dimensional case, or a cone for the three-dimensional case. Good agreement is obtained between numerical and analytical solution. This paper also describes a first series of drop-test experiments. These drop-tests consist in the impacts of rigid cones on a free surface initially at the rest. Experimental histories are well predicted by numerical pressure simulations, although differences are reported. In particular, it has been found a dissimilarity between peak pressure values (the first peak being weaker than the second), resulting from an increase in the velocity. The retardation effect, resulting from impact loads, appears latter on in the experiments.

We are now leading new drops-tests investigation for which measurement of the velocity is made by incremental coder. It allows us a more accurate analysis of results. 
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 3 Figure 3. Comparison between numerical and analytical solutions for the outer pressure distribution on a parabolic hull. The errQr distribution is plotted on the right.
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 4 Figure 4. Comparison between numerical and analytical solutions for the free surface elevation around a cone shaped hull
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 56 Figure 5. Comparison bet�en numerical and analytical solutions for the outer pressure distribution on a cone shaped hull
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 8 Figure 8. Detailed views of the cone shaped models with different deadrise angles
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 7 Figure 7. Pressure histories (a) cone 14°-(b)-(c) cone 10°-(d)-(e) cone 6° (I) velocity during all the drop test

Table 1 .

 1 Measured velocities for different free fall drop heights

			P1 (bar)		P2 (bar)
	�	Exp.	Nu m.	Exp.	Nu m.
	60	7,8	10,5	8,3	11
	60	15	25,3	26,4	25,7
	IQO	3,5	4,2	5,2	4,3
	10°	7,8	9	10,6	9,1
	14°	1,3	2	1,7	2,2

Table 2 .

 2 Experimental-numerical pressures levels comparison for different heights of impacts
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