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ABSTRACT
The presence of numerous localized sources of uncertainties

in stochastic models leads to high dimensional and multiscale
problems. A numerical strategy is here proposed to propagate
the uncertainties through such models. It is based on a multiscale
domain decomposition method that exploits the localized side of
uncertainties. The separation of scales has the double benefit of
improving the conditioning of the problem as well as the con-
vergence of tensor based methods (namely Proper Generalized
Decomposition methods) used within the strategy for the sepa-
rated representation of high dimensional stochastic parametric
solutions.

1 INTRODUCTION
The propagation of uncertainties through multiscale stochas-

tic models remains today a challenging issue. In the presence
of numerous localized sources of uncertainties, dedicatedap-
proaches have to be developed in order to handle the high dimen-
sionality and complexity of associated multiscale models.We
here propose a numerical strategy based on a multiscale domain
decomposition method that exploits the localized side of uncer-
tainties and incidentally improves the conditioning of theprob-
lem by operating a separation of scales. An efficient iterative

∗Address all correspondence to this author.

algorithm is proposed that requires the solution of a sequence
of simple global problems at a macro scale, involving a deter-
ministic operator, and local problems at a micro scale for which
we have the possibility to use fine approximation spaces. This
method is an extension of a “numerical zoom” method dedicated
to multimodel problems that has been proposed in [1] in the de-
terministic framework. Global and local problems are solved us-
ing tensor based approximation methods, here the Proper Gen-
eralized Decomposition methods [2, 3], allowing the representa-
tion of high dimensional stochastic parametric solutions.Con-
vergence properties of these tensor based methods, which are
closely related to spectral decompositions [4], benefit from the
separation of scales. Different types of uncertainties arecon-
sidered at the micro level. They may be associated with some
variability in the operator or source terms, or even with some
geometrical variability. In the latter case, specific reformula-
tions of local problems using fictitious domain methods are in-
troduced [5].
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2 PROBLEM WITH LOCALIZED VARIABILITIES
2.1 Model problem

We consider a diffusion problem defined on a domainΩ ⊂
R

d:

− ∇ · (K∇ u) = f on Ω
K∇ u ·n = g on ΓN

u = 0 on ΓD

(1)

whereK is a diffusion parameter,ΓD andΓN are the Dirichlet and
Neumann boundaries respectively. We introduce a set of random
parametersξ with values inΞ that model the uncertainties in
the problem, and(Ξ,B,Pξ ) is the associated probability space,
wherePξ is the probability law ofξ .

2.2 Initial weak formulation of the problem
We introduce the Hilbert spaceV = {v ∈ H1(Ω);v =

0 on ΓD} equipped with the inner product norm|u|Ω =

(
∫

Ω ∇ u · ∇ u)1/2. Let VΞ = L2
Pξ

(Ξ;V) be the Hilbert space

equipped with the norm‖ ·‖Ω = E(| · |2Ω)1/2 whereE is the math-
ematical expectation:E(v) =

∫
Ξ v(y)dPξ (y).

The classical weak formulation of problem (1) writes:

u∈ VΞ, aΩ(u,δu) = ℓΩ(δu) ∀δu∈ VΞ (2)

with

aΩ(u,δu) = E

(∫

Ω
K∇ u · ∇ δu

)

ℓΩ(δu) = E

(∫

Ω
f δu+

∫

ΓN

gδu

)

2.3 Patch containing localized variabilities
We consider the case where the sources of uncertainties are

located inside a partΛ ⊂ Ω, Λ is called a patch. The localized
uncertainties can stem from the diffusion coeffcientK, the source
term f or even an uncertain part of the boundary∂Ω so thatΛ
may depend onξ and is such that

Ω(ξ ) = (Ω\Λ)∪Λ(ξ )

with Ω\Λ deterministic. LetΓ = ∂ (Ω\Λ)∩∂Λ be the determin-
istic interface betweenΩ\Λ and the patchΛ, as represented in
Fig. 1.

Therefore for x ∈ Ω\Λ we have K(x,ξ ) = K0(x) and
f (x,ξ ) = f0(x).

Ω\Λ

G

Λ

FIGURE 1. Patchλ ⊂ ω with localized variabilities.

2.4 Domain decomposition
The solutionu∈ VΞ is split as follows

u =

{
U on Ω\Λ
w on Λ

whereU andw verify the following continuity conditions onΓ
interpreted in a weak sense:

w = U and
∂U
∂n

=
∂w
∂n

on Γ

We consider thatΓ∩ΓD = /0 and we split the Dirichlet boundary
ΓD into the Dirichlet boundary of the patchΓΛ

D = ΓD∩∂Λ (even-
tual internal boundary of the patch) and the complementary part
ΓΩ\Λ

D = ΓD\ΓΛ
D. We then introduce the following spaces

U = {U ∈ H1(Ω\Λ) ; U = 0 onΓΩ\Λ
D }

W = {w∈ H1(Λ) ; w = 0 onΓΛ
D}

M = H−1/2(Γ)

and the associated spacesUΞ, WΞ andMΞ, where for a Hilbert
spaceH, HΞ denotes the Bochner spaceL2

Pξ
(Ξ;H). Problem (2)

is then equivalent to finding(U,w,λ )∈UΞ×WΞ×MΞ such that
for all (δU,δw,δλ) ∈ UΞ ×WΞ×MΞ,






aΩ\Λ(U,δU)+bΓ(λ ,δU) = ℓΩ\Λ(δU)

aΛ(w,δw)−bΓ(λ ,δw) = ℓΛ(δw)

bΓ(δλ ,U −w) = 0

(3)

where for one subdomainO ⊂ Ω,

aO(v,δv) = E

(∫

O

K∇ v · ∇ δv

)
, ℓO(v) = E

(∫

O

f v

)

and where

bΓ(λ ,v) = E

(∫

Γ
λ v

)
(4)
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λ represents a Lagrange multiplier ensuring the weak continuity
of u on the interfaceΓ.

3 A GLOBAL-LOCAL ITERATIVE ALGORITHM WITH
OVERLAPPING DOMAINS

3.1 Reformulation with overlapping domains
In the case whereΛ contains geometrical details,i.e. if

∂Λ\Γ 6= /0, we introduce a fictitious patch̃Λ ⊃ Λ such that
∂ Λ̃ = Γ (see Fig. 2).Λ̃ is then deterministic and does not con-
tain any internal boundaries (no geometrical details). We also
define the deterministic fictitious domaiñΩ = (Ω\Λ)∪ Λ̃ which
containsΩ and is such that̃Ω\Λ̃ = Ω\Λ.

Λ

G

Ω\Λ

FIGURE 2. Domain with fictitious patch

We now consider a prolongation of functionU from Ω\Λ to
Ω̃. We introduce oñΩ a fictitious diffusion fieldK̃ such that

K̃ = K on Ω\Λ (5)

We then introduce the new function spaceŨΞ with

Ũ = {U ∈ H1(Ω̃) ; U = 0 onΓΩ\Λ
D }

For a subsetO⊂ Ω̃, we define a bilinear formcO : ŨΞ× ŨΞ → R

associated with the fictitious diffusion coefficient:

cO(U,δU) = E

(∫

O

K̃∇ U · ∇ δU

)

We notably have

aΩ\Λ(U,δU) = cΩ\Λ(U,δU) = cΩ̃(U,δU)−cΛ̃(U,δU) (6)

Problem (3) can now be reformulated as follows: find(U,w,λ )∈

ŨΞ×WΞ×MΞ such that for all(δU,δw,δλ) ∈ ŨΞ×WΞ×MΞ,






cΩ̃(U,δU)−cΛ̃(U,δU)+bΓ(λ ,δU) = ℓΩ\Λ(δU)

aΛ(w,δw)−bΓ(λ ,δw) = ℓΛ(δw)

bΓ(δλ ,U −w) = 0

(7)

3.2 Global-Local algorithm
For the solution of problem (7), we introduce an iterative al-

gorithm that defines a sequence{(Un,wn,λn)}n≥0. Starting with
w0 = 0, λ0 = 0 andU0 = 0 and forn≥ 1, we define(Un,wn,λn)
as follows.

Global step We computeÛn ∈ ŨΞ such that for allδU ∈ ŨΞ,

cΩ̃(Ûn,δU) = cΛ̃(Un−1,δU)−bΓ(λn−1,δU)+ ℓΩ\Λ(δU) (8)

A relaxation step is introduced

Un = ρÛn+(1−ρ)Un−1

with ρ > 0. Global step (8) is a problem defined on domainΩ̃,
with an arbitrary material parameter̃K in Λ̃ and which does not
contain any geometrical details iñΛ. The termλn−1 appears as
an imposed source term on an internal surface inΩ̃.

Local step We then compute(wn,λn)∈WΞ×MΞ such that for
all (δw,δλ) ∈ WΞ ×MΞ,

{
aΛ(wn,δw)−bΓ(λn,δw) = ℓΛ(δw)

bΓ(δλ ,wn) = bΓ(δλ ,Un)
(9)

Local step (9) is a problem defined on patchΛ, with the true
material parameterK and the true geometrical details.λn can be
interpreted as a Lagrange multiplier that ensures in a weak sense
wn = Un onΓ.

3.3 Multiple patches with independent variabilities
We now consider that the patchΛ is the disjoint union ofNΛ

patches{Λs}
NΛ
s=1 that contain uncertainties that are statistically

independent between patches so that the set of parameters can
be split into disjoint subsets of parametersξs ∈ Ξs ⊂ R

ds, s =
1, . . . ,NΛ, and

Λ(ξ ) = Λ1(ξ1)∪ . . .∪ΛNΛ (ξNΛ ),

The random fieldK and source termf also only depend onξs on
the subdomainΛs, i.e. for s= 1, . . . ,NΛ,

K(x,ξ ) = Ks(x,ξs) for x∈ Λs(ξs)

f (x,ξ ) = fs(x,ξs) for x∈ Λs(ξs)

The local step is then composed ofNΛ independent problems
on Λs of the same type as problem (9). These problems can be
solved in parallel.
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3.4 General features on the algorithm
It can be shown that the sequenceun defined byun = Un on

Ω\Λ andun = wn on Λ converges towardsu for a sufficiently
small relaxation parameterρ > 0. Note that the final solution
does not depend on the choice ofK̃. However, this choice can
influence the behavior of the iterative algorithm. Note thatal-
though problem (7) does not define the prolongationU inside
the fictitious patch̃Λ (this problem admits an infinite number of
solutions), it can be shown that the sequenceUn remains in a
particular subspace of̃UΞ in which the problem admits a unique
solution.

4 APPROXIMATE SOLUTION OF LOCAL AND
GLOBAL PROBLEMS

4.1 Approximation spaces
We introduce finite element approximation spaces at the de-

terministic level̃UH ⊂ Ũ, Wh ⊂ W andMh ⊂ M. Non conform-
ing finite element meshes can be used in order to well describe
localized quantities in the patches by introducing fine meshes
within these patches. The Lagrange multiplier approximation
spaceMh is simply chosen as the trace onΓ of the approxi-
mation spaceWh. For the construction of suitable approxima-
tion spacesMh in the case of non conforming meshes, see [6]
and the references therein. A finite element approximation space
H with dimensionN and basis{ϕi}

N
i=1 being given, an element

v ∈ H writes v = ∑N
i=1viϕi and an elementv ∈ HΞ is such that

v(ξ ) = ∑N
i=1vi(ξ )ϕi .

We also introduce approximation spaces at the stochastic
level

SP =

{
v(ξ ) =

P

∑
k=1

vkΨk(ξ )

}
⊂ S := L2

Pξ
(Ξ)

An elementv∈H⊗SP can then be writtenv= ∑N
i=1∑P

k=1vk,iϕi ⊗
Ψk.

4.2 Global problem
The approximate global problem consists in findingÛn ∈

ŨH ⊗SP such that∀δU ∈ ŨH ⊗SP,

cΩ̃(Ûn,δU) = cΛ̃(Un−1,δU)−bΓ(λn−1,δU)+ ℓΩ\Λ(δU)

If the fictitious diffusion parameter̃K does not depend on the
uncertain parameters, the operator is deterministic for italso does
not depend on the uncertain parameters.

4.3 Local problems
Regarding the local problem, the operator and right-hand

side are uncertain. The approximate local problem consists

in finding (wn,λn) ∈ (Wh ⊗ SP)× (Mh ⊗ SP) such that∀δw ∈
Wh⊗SP and∀δλ ∈ Mh⊗SP,

{
aΛ(wn,δw)−bΓ(λn,δw) = ℓΛ(δw)

bΓ(δλ ,wn) = bΓ(δλ ,Un)
(10)

4.4 Local problems with geometrical variabilities
The solution method presented in section 4.3 is valid when

the patch contains geometrical details with a fixed internal
boundaryΓΛ := ∂Λ\Γ. It suffices to introduce a conforming
approximation spaceWh in W. However, if the patchΛ contains
uncertain geometrical details, that means an uncertain internal
boundaryΓΛ(ξ ), the previous construction of approximation
spaces is not possible since the spaceWΞ has no more a tensor
product structure. Different strategies have been proposed in
the literature for solving such problems [4, 5, 7, 8]. We hereuse
reformulations on a fictitious domain, which is simply taken
as the patch̃Λ. Depending on the type of boundary conditions
(Dirichlet or Neumann) that are imposed on the internal bound-
aryΓΛ = ∂Ω∩∂Λ, different reformulations are introduced.

If ΓΛ is a Neumann boundary with homogeneous data, the
local problem (10) is reformulated on the fictitious domainΛ̃ by
prolongating bilinear formaΛ and linear formℓΛ to functions
defined oñΛ. In practice, we make use of the indicator function
IΛ of the random domainΛ. For further details on the numerical
solution of such problems, see [4,5].

In the case whereΓΛ is a Dirichlet boundary with homo-
geneous data we propose a reformulation based on the use of
a characteristic function method [9]. Approximationwn is pro-
longed on the fictitious patch̃Λ and is searched under the form
wn = U⋄

n + ψzn, with U⋄
n = Un in a weak sense onΓ, and with

zn = 0 onΓ and whereψ : Λ̃×Ξ→ R is a characteristic function
such that

(c1) ψ(x,ξ ) > 0 for x∈ Λ(ξ )

(c2) ψ(x,ξ ) = 0 for x∈ ΓΛ(ξ )

(c3) |∇ ψ(x,ξ )| 6= 0 for x∈ ΓΛ(ξ )

A function (ψz) with z ∈ W̃h ⊗ SP then verifies the Dirichlet
boundary conditions onΓΛ.

The prolongation of functionw on the fictitious patch̃Λ en-
ables the definition ofw in W̃Ξ, with W̃ = H1(Λ̃). Function space
W̃Ξ can now be identified with tensor product spaceW̃⊗S and
approximation spaces can be introduced such as in section 4.1,
i.e. by introducing a finite element approximation spaceW̃h ⊂ W̃

and the approximation spaceSP ⊂ S.
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5 SOLUTION OF LOCAL AND GLOBAL PROBLEMS
USING SEPARATED REPRESENTATIONS

5.1 Tensor structure of stochastic function spaces
If H is a deterministic space, then

HΞ = H⊗S

with S = L2
Pξ

(Ξ). An element inHΞ can then be interpreted as a

two-order tensor. When the set of random variablesξ is a collec-
tion of d independent setsξs of random variables withd = NΛ,
then probability measurePξ = Pξ1

⊗ . . .⊗PξNΛ
, and the spaceS

has the following tensor product structure:

S = S1⊗ . . .⊗SNΛ

with Ss = L2
Pξs

(Ξs). This tensor product structure of stochastic

function spaces will be here exploited.
We denote byR1(H

Ξ) the set of rank-one elements in tensor
product spaceH⊗S1⊗ . . .⊗SNΛ , defined by

R1(H
Ξ) =

{
z= Z⊗φ1⊗ . . .⊗φNΛ : Z ∈ H,φs ∈ Ss}

and byRm(HΞ) = {∑m
i=1zi : zi ∈ R1(H

Ξ)} the set of rank-mele-
ments.

5.2 Proper Generalized Decomposition
We now propose a construction of a separated representation

of the solution of a variational problem (global problem or local
problems). Convergence results can be found in [10]. Let us
consider a problem which admits the following variational form

u∈ HΞ, A(u,δu) = L(δu) ∀δu∈ HΞ

with A symmetric continuous and coercive. The problem is then
equivalent to

u = arg min
v∈HΞ

J(v) with J(v) =
1
2

A(v,v)−L(v)

We then define a progressive separated representation as fol-
lows: knowingum−1 ∈ Rm−1(H

Ξ), we define a new element
zm ∈ R1(H

Ξ) by

J(um−1 +zm) ≈ min
z∈R1(HΞ)

J(um−1 +z)

where the symbol≈ means that we compute an approximation
zm of an optimal element inR1(H

Ξ). In practice, we obtain an
elementz= Z⊗φ1 ⊗ . . .⊗φNΛ by an alternating minimization
algorithm, consisting in solving alternatively:

• One minimization problem onH, which is a deterministic
problem:

Z = arg min
Z∈H

J(um−1 +Z⊗φ1⊗ . . .⊗φNΛ)

• NΛ minimization problems onSs for s= 1, ...,NΛ:

φs = arg min
ϕ s∈Ss

J(um−1 +Z⊗φ1⊗ . . .⊗ϕ s⊗ . . .⊗φNΛ)

6 ILLUSTRATION
6.1 Description of the problem

We consider the diffusion problem (1) withΓN = /0. The
diffusion coefficient is locally uncertain on two patchesΛ1 and
Λ2 illustrated in figure 3. We take

K =





1 onΩ\ (Λ1∪Λ2)

K1 = 1+∑5
k=1ξ k

1 f k
1(x) onΛ1

K2 = 1+∑5
k=1ξ k

2 f k
2(x) onΛ2

whereξ k
1 andξ k

2 , for k = 1, . . . ,5, are independent uniform ran-
dom variables onΞk

1 = (0,1) andΞk
2 = (0,1) respectively. We

denoteΞ1 = ×5
k=1Ξk

1 ⊂ R
5 andΞ2 = ×5

k=1Ξk
2 ⊂ R

5 the sets of

elementary events associated with patchesΛ1 = Λ̃1 andΛ2 = Λ̃2

respectively.
DomainΩ(ξ ) also presents geometrical details with homo-

geneous Dirichlet conditions on circular boundaries of random
radii r3 = 0.2+ 0.1ξ3 and r4 = 0.2+ 0.1ξ4 in patchesΛ3 and
Λ4 respectively.ξ3 andξ4 are independent uniform random vari-
ables onΞ3 = (0,1) andΞ4 = (0,1) respectively.

The solution is computed using the multiscale strategy with
patches. We introduce fictitious patchesΛ̃3 andΛ̃4 and fictitious
domainΩ̃ such that

Ω̃ = (0,5)× (0,5)

Ω(ξ ) = (Ω̃\ (Λ̃3∪Λ̃4))∪ (Λ3(ξ3)∪Λ4(ξ4))

The global problem is defined on domainΩ̃ which does not
contain any geometrical detail and it is associated with thefol-
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Λ1

Λ2

Λ3(ξ3) Λ4(ξ4)

r3(ξ3) r4(ξ4)

K1(ξ1)
K2(ξ2)

FIGURE 3. Diffusion problem

lowing deterministic diffusion coefficient:

K̃ =





1 onΩ̃\ (Λ1∪Λ2)

K1 = E(K1) onΛ1

K2 = E(K2) onΛ2

The global problem has thus a deterministic operator.
The local problems onΛ3(ξ ) andΛ4(ξ ) are solved using

the characteristic function method. The characteristic function
ψs(x,ξs) is chosen as the random level-set function whose iso-
zero in patch̃Λs (for s= 3,4) defines the random boundary inside
Λ̃s.

We introduce a finite element approximation spaceŨH in
Ũ with dimensionN = 3721. We here use conforming finite el-
ement meshes in the patches although non conforming meshes
could be used. Thus, denoting bỹWs

h the approximation spaces

associated with patches̃Λs, we haveW̃s
h ⊂ ŨH . We also intro-

duce the stochastic approximation spacesSs
Ps

with dimensions
P1 = P2 = 56 andP3 = P4 = 60, using multidimensional polyno-
mial bases fors= 1 and 2, and piecewise polynomial bases for
s= 3 and 4.

Global and local problems are solved with tensor approx-
imation methods with a given tolerance. The global problem is
solved exactly since it only involves a deterministic operator, and
the resulting global iterate is compressed using classicaltensor
approximation methods. The PGD method is used for solving
local problems. The solutions are searched inH⊗ S1

P1
⊗S2

P2
⊗

S3
P3
⊗S4

P4
, with H referring toŨH or W̃s

h depending on the prob-
lem.

Figure 4 shows a random sample of the “converged” global
and local solutions obtained using a relaxation parameterρ = 0.5
and for a given tolerance of 10−4 for local and global solvers.
Figure 5 shows the reconstructed solution

u =

{
U onΩ\Λ
ws onΛs for s= 1, · · · ,4

(a) U (rank 8)

(b) w1 (rank 47) (c) w2 (rank 42)

(d) w3 = wU +ψz22 (rank 22) (e) w4 = wU +ψz24 (rank 24)

FIGURE 4. Random sample of global solutionU and local solutions
ws for s= 1, . . . ,4.

In order to illustrate the robustness of the method with re-
spect to approximations, the residual error is plotted in figure 6
as a function of the iterations of the method. We see that the
iterative method converges until the finite precision, in terms of
the residual error, introduced in the solutions of local andglobal
problems is reached.
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FIGURE 5. Random sample of the reconstructed solutionu.
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FIGURE 6. Convergence of the iterative algorithm for different toler-
ances of global and local solvers (PGD)

7 CONCLUSION
We have proposed a dedicated method to treat with local-

ized sources of uncertainties. It is based on a domain decompo-
sition method associated with a local/global algorithm that has
nice convergence properties. It profits tensor based methods, as
the PGD method, for thea priori construction of separated rep-
resentations of the solutions of global and local problems.When
dealing with parametric domains, we introduce fictitious domain
methods that enable the formulation of the problem on a tensor
product space. The multiscale approach enables the introduc-
tion of refined local approximation to well describe local quanti-
ties. Further studies on the convergence of the global-local algo-
rithm with respect to the parameters introduced within the itera-
tive method are under study for an optimal use of the approach.
First results on the influence of the size of the patch notablyshow
that when chosen too small, that is to say when the patch does
not hold the main effects of the localized uncertainties on the
response, the convergence rate is deteriorated.
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