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ABSTRACT

The presence of numerous localized sources of uncertaintie
in stochastic models leads to high dimensional and mulésca
problems. A numerical strategy is here proposed to propagat
the uncertainties through such models. Itis based on a swalf
domain decomposition method that exploits the localize sf
uncertainties. The separation of scales has the doubleflverfie
improving the conditioning of the problem as well as the con-
vergence of tensor based methods (hamely Proper Genetalize
Decomposition methods) used within the strategy for thasep
rated representation of high dimensional stochastic patin
solutions.

1 INTRODUCTION

The propagation of uncertainties through multiscale sieeh
tic models remains today a challenging issue. In the presenc
of numerous localized sources of uncertainties, dedicafed
proaches have to be developed in order to handle the higmdime
sionality and complexity of associated multiscale modai¢e
here propose a numerical strategy based on a multiscaleidoma
decomposition method that exploits the localized side @feun
tainties and incidentally improves the conditioning of freb-
lem by operating a separation of scales. An efficient iteeati
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algorithm is proposed that requires the solution of a secgien
of simple global problems at a macro scale, involving a deter
ministic operator, and local problems at a micro scale foictvh

we have the possibility to use fine approximation spacess Thi
method is an extension of a “numerical zoom” method deditate
to multimodel problems that has been proposed in [1] in the de
terministic framework. Global and local problems are sdlue-

ing tensor based approximation methods, here the Proper Gen
eralized Decomposition methods [2, 3], allowing the repn¢a-

tion of high dimensional stochastic parametric solutioG&n-
vergence properties of these tensor based methods, which ar
closely related to spectral decompositions [4], benefinftbe
separation of scales. Different types of uncertaintiescare
sidered at the micro level. They may be associated with some
variability in the operator or source terms, or even with som
geometrical variability. In the latter case, specific refata-
tions of local problems using fictitious domain methods are i
troduced [5].



2 PROBLEM WITH LOCALIZED VARIABILITIES
2.1 Model problem

We consider a diffusion problem defined on a donfaic
RY:

—0.(KOuw=f on Q
KOu-n=g on Iy Q)
u=0 on Ip

whereK is a diffusion parameter,p andly are the Dirichletand
Neumann boundaries respectively. We introduce a set obrand
parameter€ with values in= that model the uncertainties in
the problem, and=, B,Ps) is the associated probability space,
whereP is the probability law of .

2.2 Initial weak formulation of the problem

We introduce the Hilbert spac® = {v € HY(Q);v =
0 onTp} equipped with the inner product norfulq =
(JoOu-Ou)Y2.  Let V= = L3,(Z:V) be the Hilbert space
equipped with the norrfy- || o = E(| - |3)%2 whereE is the math-
ematical expectatiorE(v) = [=v(y)dP(y).

The classical weak formulation of problem (1) writes:

Vou e V= 2)

ue V=, aq(u,du)=/lq(du)

with

ag(u,0u)=E </QKDU- D(Su)

ég(éu):E(/Qf(Sw-/r géu)

2.3 Patch containing localized variabilities

We consider the case where the sources of uncertainties are

located inside a park C Q, A is called a patch. The localized
uncertainties can stem from the diffusion coeffci€nthe source
term f or even an uncertain part of the bounda® so thatA
may depend 0§ and is such that

Q&) = (AN UA(E)

with Q\A deterministic. Lel = d(Q\A\)NJA be the determin-
istic interface betwee@\A and the patch\, as represented in
Fig. 1.

Therefore forx € Q\A we have K(x,§) = Ko(x) and
f(x,€) = fo(x).

O

FIGURE 1. PatchA C w with localized variabilities.

2.4 Domain decomposition
The solutioru € V= is split as follows

u_UonQ\/\
~lw on A

whereU andw verify the following continuity conditions of
interpreted in a weak sense:

ou ow
w=U and an = on on I

We consider thalt NI'p = 0 and we split the Dirichlet boundary
Ip into the Dirichlet boundary of the patétfy = F'pNJA (even-
tual internal boundary of the patch) and the complementary p

I'g\’\ = FD\I"B. We then introduce the following spaces

U={UeHYQ\A);U=00onrg\"}
W={weHYA); w=0o0nrj}
M=H"Y3r)

and the associated spadés, W= andM=, where for a Hilbert
spaceH, H= denotes the Bochner spac&} (Z;H). Problem (2)

is then equivalent to findin@J,w, A) € U= x W= x M= such that
forall (6U,dw,0A) € U= x W= x M=,

aQ\,\(U,(SU) +br(A,0U) = fQ\/\(éU)
an (W, 5W) — br (A, W) = (a(5W) @3)
br(82,U —w) =0

where for one subdomaif C Q,

ao(v,év):]E(/OKDv-D(Sv), éo(v):E</Ofv)

and where

br()\,v):E</r)\v) )



A represents a Lagrange multiplier ensuring the weak coityinu
of uon the interfacé .

3 A GLOBAL-LOCAL ITERATIVE ALGORITHM WITH
OVERLAPPING DOMAINS
3.1 Reformulation with overlapping domains
In the case wheré\ contains geometrical detailse. if
JN\T" # 0, we introduce a fictitious patch > A such that
AN =T (see Fig. 2).A is then deterministic and does not con-
tain any internal boundaries (no geometrical details). We a
define the deterministic fictitious domaih= (Q\A) UA which
containsQ and is such tha®\A = Q\A.

QW

FIGURE 2. Domain with fictitious patch

We now consider a prolongation of functiohfrom Q\A to
Q. We introduce om a fictitious diffusion fieldK such that

K=K on Q\A (5)
We then introduce the new function space with
U={UeHYQ);U=00nr2"}

For a subse® C Q, we define a bilinear formg : U= x U= — R
associated with the fictitious diffusion coefficient:

CO(U,cSU):E(/ KOou -Déu)

(V]

We notably have
a‘Q\/\(U76U):CQ\/\(U76U):Cﬁ(uvau)_cﬂ(uaau) (6)

Problem (3) can now be reformulated as follows: fidw, A ) €
U= x W= x M= such that for al(dU, dw, 5A) € U= x W= x M=,

Cﬁ(U,5U) — C/N\(U,6U) +br(A,0U) = fQ\/\(éU)
an(w, ow) — br (A, dw) = (A (SwW) (7
br(5A,U —w) =0

3.2 Global-Local algorithm

For the solution of problem (7), we introduce an iterative al
gorithm that defines a sequeng@n, Wn, An) }n>0. Starting with
wp = 0, Ag = 0 andUp = 0 and forn > 1, we defingUn, wn, An)
as follows.

Global step  We compute), € U= such that for albU € U=,
¢5(Un,8U) = ¢;(Un-1,0U) — br(An_1,8U) + Lo\ A(8U) (8)
A relaxation step is introduced
Un=pUn+ (1—p)Un-1

with p > 0. Global step (8) is a problem defined on dom@in
with an arbitrary material paramgtﬁrin A and which does not
contain any geometrical details i The termA, ;1 appears as
an imposed source term on an internal surfac.in

Local step  We then computéwn, An) € W= x M= such that for
all (5w, 54) € W= x M=,

{ an (Wn, 3W) — br (An, SW) = £ (3w) ©)

bl’(éAaWn) = bl’(éAaUn)

Local step (9) is a problem defined on patghwith the true
material parametdf and the true geometrical details, can be
interpreted as a Lagrange multiplier that ensures in a weages
wh=UponTl.

3.3 Multiple patches with independent variabilities

We now consider that the patéhis the disjoint union ofNa
patches{/\s}g;‘1 that contain uncertainties that are statistically
independent between patches so that the set of parameters ca
be split into disjoint subsets of parametdgse =5 ¢ R%, s =
1,...,Np, and

A(&) =N1(E)U...UAN(ENy),

The random fiel and source ternfi also only depend o0&s on
the subdomains, i.e.fors=1,... Ny,

K(x,&) =Ks(x, &) for
f(x,&) =fs(x,&) for

X € Ns(&s)
X € Ns(&s)

The local step is then composed\yf independent problems
on /\s of the same type as problem (9). These problems can be
solved in parallel.



3.4 General features on the algorithm

It can be shown that the sequengedefined byu, = U, on
Q\A andu, = w, on A converges towards for a sufficiently
small relaxation parametgr > 0. Note that the final solution
does not depend on the choicetof However, this choice can
influence the behavior of the iterative algorithm. Note thlat
though problem (7) does not define the prolongatibimside
the fictitious patch\ (this problem admits an infinite number of
solutions), it can be shown that the sequeblgeremains in a
particular subspace @f= in which the problem admits a unique
solution.

4 APPROXIMATE SOLUTION OF LOCAL AND
GLOBAL PROBLEMS
4.1 Approximation spaces
We introduce finite element approximation spaces at the de-
terministic IeveIﬁH cu, W C W andM;, € M. Non conform-

in finding (Wn,An) € (Wh® 8p) x (M, ® 8p) such thatvdw €
Wh® 8p andVoA € My ® Sp,

{

4.4 Local problems with geometrical variabilities

The solution method presented in section 4.3 is valid when
the patch contains geometrical details with a fixed internal
boundaryl o := dA\l'. It suffices to introduce a conforming
approximation spac@, in W. However, if the patch\ contains
uncertain geometrical details, that means an uncertagmnat
boundaryl'a(&), the previous construction of approximation
spaces is not possible since the sp&e has no more a tensor
product structure. Different strategies have been prapase
the literature for solving such problems [4,5, 7, 8]. We hese
reformulations on a fictitious domain, which is simply taken

an(Wn, SW) — br (An, 5W) = LA (SW)

br (A, Wn) = br (8, Up) (10)

ing finite element meshes can be used in order to well describe as the patci\. Depending on the type of boundary conditions

localized quantities in the patches by introducing fine reesh
within these patches. The Lagrange multiplier approxiomati
spaceMy, is simply chosen as the trace dnof the approxi-
mation spacéV;. For the construction of suitable approxima-
tion spaces\i;, in the case of non conforming meshes, see [6]
and the references therein. A finite element approximapaces

3 with dimensionN and basig ¢i }N ; being given, an element
v e H writesv = 3N, vi¢i and an element € H= is such that

V(&) = 3L vi(€) .

We also introduce approximation spaces at the stochastic

level
P
Sp = {v(s) =3 vklPk(E)} C8:= L,%E (2)
k=1

An element € 3{® 8p can then be writted= YN | SE_; w9 ®
Wy

4.2 Global problem A
_ The approximate global problem consists in findldg e
Un ® Sp such that’doU € Uy & Sp,

¢5(Un,8U) = ¢;(Un-1,8U) — br(An_1,8U) + £ A (8U)

If the fictitious diffusion parameteK does not depend on the
uncertain parameters, the operator is deterministic fds@ does
not depend on the uncertain parameters.

4.3 Local problems
Regarding the local problem, the operator and right-hand
side are uncertain. The approximate local problem consists

(Dirichlet or Neumann) that are imposed on the internal lgbun
aryl' = 9Qn dA, different reformulations are introduced.

If I\ is a Neumann boundary with homogeneous data, the
local problem (10) is reformulated on the fictitious domaiby
prolongating bilinear formas and linear form¢s to functions
defined on\. In practice, we make use of the indicator function
I of the random domain. For further details on the numerical
solution of such problems, see [4, 5].

In the case wher€” is a Dirichlet boundary with homo-
geneous data we propose a reformulation based on the use of
a characteristic function method [9]. Approximatiag is pro-
longed on the fictitious patch and is searched under the form
Wn = Uf + Yz, with US = U, in a weak sense oh, and with
Z,=0onl and whera} : A x = — Ris a characteristic function
such that

(c1) ¢(x,&) >0
(€2) Y(x,&) =0
(c3) |Dy(x,&)| # 0

forxe A(§)
forxeMa(&)
forxe Fa(€)

A function (z) with z € Wy, ® Sp then verifies the Dirichlet
boundary conditions ofi".

The prolongation of functiom on the fictitious patcﬁ\ en-
ables the definition of/in W=, with W = H(A\). Function space
W= can now be identified with tensor product sp@@ 8 and
approximation spaces can be introduced such as in section 4.
i.e. by introducing a finite element approximation spﬁz}ec w
and the approximation spa8e C 8.



5 SOLUTION OF LOCAL AND GLOBAL PROBLEMS
USING SEPARATED REPRESENTATIONS

5.1 Tensor structure of stochastic function spaces
If H is a deterministic space, then

H-=H®$

with § = L'%z (Z). An element irf{= can then be interpreted as a

two-order tensor. When the set of random variallésa collec-
tion of d independent set& of random variables witldl = Ny,

then probability measuriés = Py, ®...® PENA' and the spac8

has the following tensor product structure:

$=8lx...o8M

with 8% = L,%E (=s). This tensor product structure of stochastic
S

function spaces will be here exploited.
We denote byR; (H=) the set of rank-one elements in tensor
product spacé{ @ 8'®...® 8™, defined by

R(H) ={z=20¢'®..0 " :Zc 3 ¢° 8%}

and byRm(3=) = {3M, 7 : 7 € R1(H=)} the set of ranknele-
ments.

5.2 Proper Generalized Decomposition

We now propose a construction of a separated representation

of the solution of a variational problem (global problem ocdl
problems). Convergence results can be found in [10]. Let us
consider a problem which admits the following variatioraif

ueH=, Au,0u)=L(du) Youe H=

with A symmetric continuous and coercive. The problem is then
equivalent to

u=arg minj(v) %A(v,v) —L(v)
veJ(=

with  J(v) =

We then define a progressive separated representation-as fol
lows: knowingum-1 € Rm_1(H=), we define a new element
Zm € Ry (H=) by

J(Um-1+2Zm)~ min_ J(um-1+2)

zeR1(H=)

where the symbol means that we compute an approximation

Zy, of an optimal element itR1(H=). In practice, we obtain an
elemenz=Z® ¢'®...® "1 by an alternating minimization
algorithm, consisting in solving alternatively:

e One minimization problem ofi(, which is a deterministic
problem:

— i 1 N/\
Z=argmind(um-1+20 ¢ ®...0¢")
e Np minimization problems 08° fors=1,...,Nx:

¢° = arg,ming(Um-1 -+ 2@ P..0°0...0 oW

6 ILLUSTRATION
6.1 Description of the problem

We consider the diffusion problem (1) wilhy = 0. The
diffusion coefficient is locally uncertain on two patch®s and
Nz illustrated in figure 3. We take

1 onQ\ (/\1U/\2)
Ki=1+3p 1 &FFK(X) on/q
Ky=1+ EE::L Eé( fg(X) on/\y

K:

whereéf andé&, fork=1,...,5, are independent uniform ran-
dom variables on‘:i: (0,1) and=% = (0,1) respectively. We
denote=; = x?_,=X C R® and=; = x;_, =% C RS the sets of
elementary events associated with patohes: A1 andA, = A,
respectively.

DomainQ(&) also presents geometrical details with homo-
geneous Dirichlet conditions on circular boundaries ofdam
radiir3 = 0.2+ 0.1&3 andrg = 0.2+ 0.1&4 in patches\3 and
N4 respectivelyés andé, are independent uniform random vari-
ables ort3 = (0,1) and=4 = (0, 1) respectively.

The solution is computed using the multiscale strategy with
patches. We introduce fictitious patchesand/4 and fictitious
domainQ such that

Q = (0,5) x (0,5)
Q(&) = (Q\ (A3UA4)) U (A3(&3)UN4(E4))

The global problem is defined on doma&@which does not
contain any geometrical detail and it is associated withfdhe



Figure 4 shows a random sample of the “converged” global

Aq A and local solutions obtained using a relaxation parangete0.5
2 . and for a given tolerance of 16 for local and global solvers.
- Figure 5 shows the reconstructed solution
- 1
Ki(&1) UonQ\A
u=
Ko(&) wsonAgsfors=1,--- .4
A3(&) As(Ea)
r3(&s) ra(€s)
/ /
1
FIGURE 3. Diffusion problem 05
lowing deterministic diffusion coefficient:
1 onQ\ (A1UAy) 0
K={Ki=E(K;) onA; (@) U (rank 8)
Ky = E(Kz) on/\y

The global problem has thus a deterministic operator.
The local problems oz(&) and /A4 (&) are solved using
the characteristic function method. The characteristicfion

1
0.8

0.6
0.4
0.2

0

Ns.
‘ 0.8
0.6
04
0.2
duce the stochastic approximation spa8gswith dimensions g

Ps(x, &) is chosen as the random level-set function whose iso-
zero in patch\s (for s= 3,4) defines the random boundary inside (b) wy (rank 47) (c) wz (rank 42)

_ We introduce a finite element approximation spévk;e in

U with dimensionN = 3721. We here use conforming finite el-

ement meshes in the patches although non conforming meshes

could be used. Thus, denoting by} the approximation spaces

associated with patche'ss, we haveW} C Uy. We also intro-

P, = P, = 56 andP; = P, = 60, using multidimensional polyno- (d) ws =wy +zz2 (rank 22)  (€) wa =Wy + Y224 (rank 24)
ml_agbascjaz fos=1and 2, and piecewise polynomial bases for FIGURE 4. Random sample of global solutibhand local solutions
S=sand<. . wsfors=1,....4.

Global and local problems are solved with tensor approx-

imation methods with a given tolerance. The global problem i

solved exactly since it only involves a deterministic operzand In order to illustrate the robustness of the method with re-
the resulting global iterate is compressed using classtelor — spect to approximations, the residual error is plotted inrfig
approximation methods. The PGD method is used for solving a5 a function of the iterations of the method. We see that the
local problems. The solutions are searchedim 8p, © 8B, ® iterative method converges until the finite precision, imrte of

833 ® 844, with I referring tolly or W}, depending on the prob-  the residual error, introduced in the solutions of local glubal

lem. problems is reached.
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FIGURE 5. Random sample of the reconstructed solution

10 =
——10lPGD = 10
o ——tolPGD = 107"
10 ¢ -5
——10lPGD = 10
107}
S
wm
10}
107
10° ‘ ‘ ‘ ‘
0 10 20 30 40 50
Iterations

FIGURE 6. Convergence of the iterative algorithm for different tele
ances of global and local solvers (PGD)

7 CONCLUSION

We have proposed a dedicated method to treat with local-
ized sources of uncertainties. It is based on a domain decomp
sition method associated with a local/global algorithnt thas
nice convergence properties. It profits tensor based msftasd
the PGD method, for tha priori construction of separated rep-
resentations of the solutions of global and local problénisen
dealing with parametric domains, we introduce fictitiousngin
methods that enable the formulation of the problem on a tenso
product space. The multiscale approach enables the irdtrodu
tion of refined local approximation to well describe locaaqti-
ties. Further studies on the convergence of the global-aige-
rithm with respect to the parameters introduced within teeak
tive method are under study for an optimal use of the approach
First results on the influence of the size of the patch notsitdyv
that when chosen too small, that is to say when the patch does
not hold the main effects of the localized uncertainties foa t
response, the convergence rate is deteriorated.
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