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École Centrale de Nantes
1, rue de la Nöe

44321 Nantes cedex 3, France
sebastien.roques@ec-nantes.fr

Carlo M. Stoisser
EDF Research & Development
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ABSTRACT
A rotor-stator model of a turbogenerator has been developedto solve rotational velocity transients: to this end, the

angular position of a beam cross section is considered as a variable, allowing for the angular deceleration due to rotor-
to-stator friction to be calculated in a more realistic representation of the interaction. The equations of motion derived
from an energetic formulation are highly nonlinear and require a specific time integration procedure. Calculations
were run considering different types of diaphragms.

KEY WORDS
Speed transient, heavy rotor-to-stator contact, rubbing,Lagrange constraints.

NOMENCLATURE
w traction (Z axis) β torsion (Z direction)
(u, θv) bending in (X,Z) plane (v, θu) bending in (Y,Z) plane
ϕ angular position s curvilinear abscissa
(Ec, Ed) respectively kinetic and strain energies(kij , dij) stiffness and damping coefficients
ϕ̇ angular spinning velocity Ωnom nominal rotating speed
Disk nomenclature
MD disk mass IDX moment of inertia
IDZ polar moment of inertia
Beam nomenclature
E Young’s modulus ν Poisson’s ratio
G shear modulus S cross section area

kx transverse shear form factor λ =
12EIx

kxGSl2
transverse shear effect

Ix moment of inertia Ip polar moment of inertia
ρ mass density l element length
z axial distance
Subscripts
D disk b imbalance
c casing
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Figure 1: Nomenclature

1 INTRODUCTION

In nuclear power plant turbosets, the design basis accidentconsists of the loss of a blade on the low pressure
turbine last stage. During the accidental shut down, a severe rotor-casing interaction may occur at critical speeds due
to large shaft line displacements originated by a high unbalance excitation. The contact between the shaft and the
diaphragm induces an important deceleration rate and modifies the turbogenerator dynamics including the amplitude
of the loads in the bearings. Risks of failure of the contacting components may also occur due to the heavy friction
torque. Therefore the main objective is to verify that the designed turbine is capable of going through critical speeds
without catastrophic consequences for the shaft line.

In a general manner, contact dynamic is highly nonlinear andmany studies have been carried out to understand
the rubbing phenomenon in order to prevent serious damages.Most of papers usually make the assumption that the
angular velocity is known, even during contact [1]. As far aswe know, a few models have considered the angular
position as a variable and the rotor was assumed to be rigid ([2] and [3]).

In this paper, only the shaft-diaphragm interaction is considered: the blades-to-diaphragm contact [4] is assumed
to be negligible in comparison with the shaft-stator interaction to compute the angular deceleration due to friction.
Moreover the nonlinear behavior of the bearings is linearized. The Lagrange multipliers method in conjunction with
an explicit time-stepping procedure is used to solve equations of motion [5].

2 ROTOR SPEED TRANSIENT MODELLING

2.1 Shaft line components

A 1-D model has been developed considering the angular position of a cross section as a variable. Flexural
vibrations in two orthogonal planes, torsional vibrationsof a straight shaft and axial vibrations are considered. The
following assumptions are used throughout the paper:

1. The shaft has a uniform circular cross section along its length.
2. Timoshenko theory is used.
3. The shaft is balanced (no mass eccentricity).
4. Gyroscopic terms are included.
5. External torques with constant direction along the undeformed centroidal axis are applied at each extremity of the

shaft.

2.1.1 Rigid disk

Considering a rigid circular disk with an unknown angular speed, and due to its geometric symmetry, the kinetic
energyED

c takes the form:

2ED
c = MD

[

u̇2 + v̇2 + ẇ2
]

+ IDX

[

θ̇2
u cos2 θv + θ̇2

v

]

+ IDZ

[

θ̇2
u sin2 θv +

(

ϕ̇ + β̇
)2

+ 2
(

ϕ̇ + β̇
)

θ̇u sin θv

]

(1)
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whereMD,IDX ,IDZ respectively stand for the mass, the second moment of inertia and the polar moment of inertia of
the disk. Assuming small rotations and small displacements, the kinetic energy is rewritten as follows:

2ED
c = MD

[

u̇2 + v̇2 + ẇ2
]

+ IDX

[

θ̇2
u + θ̇2

v

]

+ IDZ

[

(

ϕ̇ + β̇
)2

+ 2
(

ϕ̇ + β̇
)

θ̇uθv

]

(2)

This formula is exact up to the third order and equations of motion will be written up to the second order.

2.1.2 Shaft

The kinetic energyEc of a rotating beam is written by considering that the energy of the shaft corresponds to the
integration of the disk energy along the longitudinal direction:

2Ec = ρ

∫ l

0

[

S
(

u̇2 + v̇2 + ẇ2
)

+ Ix

(

θ̇u

2
+ θ̇v

2
)

+ Ip

(

(

ϕ̇ + β̇
)2

+ 2
(

ϕ̇ + β̇
)

θ̇uθv

)]

dz (3)

The potential energyEd of a spinning Timoshenko beam is equal to:

2Ed =

∫ l

0

{

ESw2
,z + EIx

(

θ2
u,z + θ2

v,z

)

+ kxGS
[

(u,z − θv)
2

+ (v,z + θu)
2
]}

dz (4)

Bending and torsion are coupled together because of gyroscopic terms and to the unknown angular position. The
equations of motion derived from Hamilton’s principle are nonlinear even without contact.

2.1.3 Linearized bearing

The dynamical study of a shaft line requires to describe the nonlinear behavior of the oil film. Assuming small
displacements of the rotor, stiffness and damping coefficients of the oil film can be calculated by linearizing Reynolds’
equations with respect to the equilibrium position. Calculating the virtual workδW of external forces acting on the
shaft yields:

δW =
[

Fu Fv

]

·

{

δu
δv

}

whereFu andFv are the components of the generalized forces acting in the bearings. After linearizing, they can be
written in a matrix form:

{

Fu

Fv

}

= −

[

kxx kxy

kyx kyy

]

·

{

u
v

}

−

[

dxx dxy

dyx dyy

]

·

{

u̇
v̇

}

2.1.4 Imbalance

The imbalance is a concentrated mass. Then writing the kinetic energy, it comes:

2EB
c = mb

[

u̇2 + v̇2 + ẇ2 + r2
b ϕ̇2 + 2rbϕ̇ (v̇ cos ϕ− u̇ sinϕ)

]

(5)

2.1.5 Diaphragm

Different types of casing have been considered.

Casing C1: rigid and fixed ring Casing C1 (see figure 2(a)) is completely rigid and can be seenas a mathematical
boundary: it was first developed to validate the contact algorithm.
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Figure 2: Schematic of diaphragm models

Casing C2: rigid ring with flexibility and damping This model is an extension of the first model and based on a
previous EDF study [6]: stiffnesses and dampers have been added (see figure 2(b)).

Casing C3: flexible diaphragm A planar flexible diaphragm (see figure 2(c)) has been developed to enrich the
modelling: the inner ring is discretized in curved beam FE with four dof per node (uc, uc,s, vc andvc,s wheres
denotes path variable). The blades are discretized in straight Euler-Bernoulli beams FE with three dof per node.

2.2 FE modelling

Shaft line Traction and torsion are discretized using the usual shape functions. Writingξ =
z

l
andq = w,β yields:

q(z) =
[

1− ξ ξ
]

{

q1

q2

}

The modified Hermite shape functions for bending used in [7] are chosen. The degrees of freedomu(z), θv(z), v(z)
andθu(z) are written as follow:
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Diaphragm C3 The inner ring of casing C3 is discretized with cubic polynomials in u andv. Definingζ =
s

lc
the

shape functions are:

N1(s) = 1− 3ζ2 + 2ζ3 N2(s) = lcζ
(

1− 2ζ + ζ2
)

N3(s) = ζ
(

λ + 3ζ − 2ζ2
)

N4(s) = lcζ
(

−ζ + ζ2
)

wherelc denotes the length of a finite element. The discretized displacement field becomes for an element whose
nodes are denoted 1 and 2:

{

uc(s) = N1(s)u1 + N2(s)u1,s + N3(s)u2 + N4(s)u2,s

vc(s) = N1(s)v1 + N2(s)v1,s + N3(s)v2 + N4(s)v2,s

Equations of motion are then derived using Hamilton’s principle and the stiffness, gyroscopic and imbalance matrices
depend on the angular speed and acceleration.
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2.3 Contact forces

The forces of particular interest in this study are the contact forces acting between the shaft and the diaphragm
where friction is considered. As a first approach, contact isassumed to be punctual at the hot spot, i.e. highest value
of rotor eccentricity (point C, see figure 3). With the assumption of small rotations and displacements, the radial gap
is equal to the sum of the eccentricity of the cross section’scenter (distance OR) and the radius of the shaft.

O

R

C

Figure 3: Schematic of contact detection

The radial contact force componentFN is obtained by using Lagrange multipliers method, which guarantees the
impenetrability condition. The tangential contact forceFT is deduced using the Coulomb friction lawFT = µFN .
Finally the friction torque takes the formCfric = µRFN .

2.4 Boundary conditions and external loads

As the angular speed is a variable, boundary conditions are necessary for the angular speed law:

– Driven torque: assumed to be constant and equal toCmax;

– Resisting torque (alternator): equal to−Cmax

ϕ̇

Ωnom

(model use to obtain an exponential shape).

During the accidental shut down, forces acting on the turbogenerator correspond to aerodynamical and fluids
forces:

– Newtonian fluid friction torque:Cnewt = −Anewt ϕ̇;
– Aerodynamical friction torque:Caero = −Aaero ϕ̇2.

Anewt, Aaero are positive constants. These friction coefficients have been identified by a EDF’s study [8]. The
accidental shut down is only of interest for our studies: as the shaft line is disconnected from the rest of the network
there is no driven torque (Cmax = 0)

2.5 General algorithm

A previous study [4] shows that the penalty method is not adapted for the contact detection. A sensitivity study [9]
on implicit time scheme with contact constraints shows a dependency on Newmark parameters. It turns out that the
central finite differences based on Carpenter’s work [5] (prediction-correction algorithm) exactly satisfies the contact
detection and ensures the compatibility of the speed and theacceleration. Consequently, equations of motion are
discretized in time according to central finite differences. Because of the nonlinear system of equations, the following
time procedure is developed as follows:
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Initialization of variablesX andϕ for t0 andt1: X0,X1 andϕ0, ϕ1 are estimated

For n from n2 to nend do

Prediction of (Xn+1, ϕn+1) assuming that the acceleration is locally
linear.
Search of the solution (Xn+1, ϕn+1) satisfying the governing equations (nonlinear solver)
While (‖ Residual vector of the discretized equations of motion‖2 ≤ ε) do

If (No penetration) then

λN = 0

else
Calculation of the Lagrange multipliers λN = λN (predicted solution)∗∗
Correction by radial and tangential (according to Coulomb law) contactforces and then the
friction torqueCfric = µRλN

end If
New solution guess(Xn+1, ϕn+1)

done
If (ϕn+1 ¡ ϕn) then

Computation stopped∗

end If
Results are recorded
Next time step increment an−1 ← an andan ← an+1

end For

∗: when the angular speed become negative, which means the shaft is counter rotating, the calculation is stopped
because this case is not of interest.
∗∗: the Lagrange multipliers is calculated assuming that the angular position, which is estimated in the neighborhood
of the converged solution, is correct.

At each time step, the rotor displacements are predicted. The matrices depending on the spinning speed and
acceleration are updated. If a contact is detected, the rotating speed and acceleration change according to the friction
torque.

3 SIMPLIFIED MODEL OF SHAFT LINE

In order to check the developed algorithm, a simplified turbine model has been considered (see figure 4(a)). FE
models for the turbogenerator and the diaphragm are chosen so that the first eigenfrequencies match the corresponding
ones of the real structures. Campbell diagram of the rotor isshown in figure 4(b).
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(b) Campbell diagram

Figure 4: Model of shaft line
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Disk
Inner radius 0.5m Thickness 0.1m
Outer radius 1m Mass density 7860kg/m3

Shaft
E 200GPa ν 0.3

Total length 10 m Mass density 7860kg/m3

Radius 0.5m kx 6/7

Imbalance
Imbalance mass 5kg for C1 and45kg for C2 and C3 Phase shift 0rad
Distance between imbalance and center of the disk 1m
Bearing
β 0.0002 (0.02% of the stiffness coefficients )
kxx 2 · 105N/m kxy 0N/m
kyx 0N/m kyy 5 · 105N/m
cxx β × 2 · 105N.s/m cxy 0N.s/m
cyx 0N.s/m cyy β × 5 · 105N.s/m
Casing C3
E 200GPa ν 0.3

Mass density 7860kg/m3

Radius of the inner ring = outer radius of the shaft + gap (gap=8mm)

Table 1: Numerical characteristics of the shaft line

4 TIME INTEGRATION RESULTS
The developed algorithm was first checked and validated simulating a speed transient. The speed law was given

and results have been compared to the ones obtained from a commercial code.

4.1 Simulations with casing C1
Case without torsion As a preliminary study case, the mathematical diaphragm C1 is considered. The imbalance
mass is set to5 kg in order to excite the rotor. Figure 5(a) depicts the computed spinning velocity. A zoom of this figure
during the contact phase is depicted in Figure 5(b)) and the angular acceleration is plotted in Figure 5(c). According
to simulations, convergence of the displacements is achieved.
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Figure 5: Rotating speed and angular deceleration with casing C1

The eccentricity of the node in front of the diaphragm (see figure 6(a)) shows that the contact is well considered:
even for an high value of time step that ensures convergence,the residual penetration is negligible (lower than0.2µm,
value to be compared with the gap8mm). The rotor response spectrum (see figure 6(b)) shows components at the
rotating frequency and at the natural frequencies of the model.

The influence of the friction coefficient is shown in figures 7(a) and 7(b). For a small value, just the forward whirl
motion is excited. Withµ greater than0.5, the reverse whirl phenomenon is observed. Backward whirl phenomena
are pointed out with a lower friction coefficient with a higher imbalance mass too. These two figures show the trivial
dependency on the friction coefficient which is directly linked with the contact friction torque.
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Figure 6: Eccentricity of the node4 and frequency content of the shaft line

an
gu

la
r

sp
ee

d
(r

ad
/s

)

5 6 7 8 9

time (s)

106

110

114

118

122

µ = 0.1

µ = 0.2

µ = 0.3

(a) µ = 0.1, 0.2, 0.3

5 6 7 8 9

time (s)

20

40

60

80

100

120

µ = 0.1

µ = 0.5

µ = 1.0

(b) µ = 0.1, 0.5, 1.0

Figure 7: Influence of the friction coefficientµ

Case with torsion When torsionβ is added to the model, results become more complex. Figure 8(a) shows that
there is convergence except during contact: during interaction, results locally depend on the time step, which may be
due to high frequency phenomena. The spatial discretization of the shaft might be too poor and could explain it. Even
with an high value of time step that ensures convergence, theresidual penetration is negligible (lower than0.2µm,
value to be compared with the gap8mm). Further analysis must be performed to understand the results. Figure 8(c)
depicts the angle of torsionβ. The frequency spectrum of the latter is complex to analyze due to the nonlinear coupling
between bending and torsion and the contact nonlinearity.
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Figure 8: Rotating speed, deceleration and the torsion d.o.f. with casing C1

As a intermediate conclusion, the developed procedure has been validated simulating rotor-stator interactions.It
has been shown also that additional analysis concerning thed.o.f. of torsion have to be done. However flexibility
and damping of the diaphragm are not included in such a casing. The unbalance mass is now set to45kg and only
simulations without considering the torsion d.o.f. are considered.
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4.2 Simulations with casing C2
Simulations are performed with the diaphragm C2, which is more realistic but simplified. Analogously figure 9(a)

depicts the calculated rotating speed and figure 9(b) the corresponding angular deceleration. The results can be com-
pared to computations with casing C1 (see−− on figures 9(a) and 9(c)): without flexibility (casing C1), the contact
is harder. The contact detection is still well considered asfigure 9(c) shows. Figure 10(a) depicts the spectrum of the
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Figure 9: Rotating speed, deceleration and eccentricity with casing C2

diaphragm displacements during interaction. Some frequencies of the stator are common with the frequency content
of the rotor: it seems that these frequencies are harmonics of the rotating speed and related to the number of impacts
per revolution.
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Figure 10: Frequency spectrum when contact occurs

4.3 Simulations with casing C3
Time integration results are shown figures 11(a) and 11(b). Conclusions remains the same: no dependency regard-

ing the time step, negligible residual penetration.
Loads on bearings directly depend on the casing stiffness. If coupled with a nonlinear solver Reynolds equations

solver, this algorithm could compute the real effects of nonlinear bearings and verify that the turbine passes critical
speeds without catastrophic consequences.

Authors start to study a3-D or pseudo2-D casing FE model in order to add axial deformations of the diaphragm.

5 CONCLUSION AND PROSPECTS
A numerical tool has been developed to analyze speed transients of a turbogenerator with rotor-stator interactions.

The developed contact algorithm have been checked according to the first time integration results. With the use of
Lagrange multipliers, the computations don’t depend on time step and the contact detection is well considered so that
there is just numerical residual penetration.
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Figure 11: Rotating speed and eccentricity of node4 with casing C3
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