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Modelling of rotor speed transient with rotor-to stator contact
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A rotor-stator model of a turbogenerator has been developed to solve rotational velocity transients: to this end, the angular position of a beam cross section is considered as a variable, allowing for the angular deceleration due to rotorto-stator friction to be calculated in a more realistic representation of the interaction. The equations of motion derived from an energetic formulation are highly nonlinear and require a specific time integration procedure. Calculations were run considering different types of diaphragms.

NOMENCLATURE

D R A F T - → x - → y - → z u v w - → X - → X - → Y - → Y - → Z - → Z -→ x1 - → y1 - → z1 -→ x2 - → y2

INTRODUCTION

In nuclear power plant turbosets, the design basis accident consists of the loss of a blade on the low pressure turbine last stage. During the accidental shut down, a severe rotor-casing interaction may occur at critical speeds due to large shaft line displacements originated by a high unbalance excitation. The contact between the shaft and the diaphragm induces an important deceleration rate and modifies the turbogenerator dynamics including the amplitude of the loads in the bearings. Risks of failure of the contacting components may also occur due to the heavy friction torque. Therefore the main objective is to verify that the designed turbine is capable of going through critical speeds without catastrophic consequences for the shaft line.

In a general manner, contact dynamic is highly nonlinear and many studies have been carried out to understand the rubbing phenomenon in order to prevent serious damages. Most of papers usually make the assumption that the angular velocity is known, even during contact [START_REF] Muszynska | Rotordynamics. Taylor & Francis edition[END_REF]. As far as we know, a few models have considered the angular position as a variable and the rotor was assumed to be rigid ( [START_REF] Dai | Dynamic behavior of the full rotor/stop rubbing: numerical simulation and experimental verification[END_REF] and [START_REF] Bartha | Dry friction backward whirl of rotors[END_REF]).

In this paper, only the shaft-diaphragm interaction is considered: the blades-to-diaphragm contact [START_REF] Legrand | Modèles de prédiction de l'interaction rotor/stator dans un moteur d'avion[END_REF] is assumed to be negligible in comparison with the shaft-stator interaction to compute the angular deceleration due to friction. Moreover the nonlinear behavior of the bearings is linearized. The Lagrange multipliers method in conjunction with an explicit time-stepping procedure is used to solve equations of motion [START_REF] Carpenter | Lagrange constraints for transcient finite element surface contact[END_REF].

ROTOR SPEED TRANSIENT MODELLING 2.1 Shaft line components

A 1-D model has been developed considering the angular position of a cross section as a variable. Flexural vibrations in two orthogonal planes, torsional vibrations of a straight shaft and axial vibrations are considered. The following assumptions are used throughout the paper:

1. The shaft has a uniform circular cross section along its length. 2. Timoshenko theory is used. 3. The shaft is balanced (no mass eccentricity). 4. Gyroscopic terms are included. 5. External torques with constant direction along the undeformed centroidal axis are applied at each extremity of the shaft.

Rigid disk

Considering a rigid circular disk with an unknown angular speed, and due to its geometric symmetry, the kinetic energy E D c takes the form:

2E D c = M D u2 + v2 + ẇ2 + I DX θ2 u cos 2 θ v + θ2 v + I DZ θ2 u sin 2 θ v + φ + β 2 + 2 φ + β θu sin θ v (1) 
D R A F T where M D ,I DX ,I DZ respectively stand for the mass, the second moment of inertia and the polar moment of inertia of the disk. Assuming small rotations and small displacements, the kinetic energy is rewritten as follows:

2E D c = M D u2 + v2 + ẇ2 + I DX θ2 u + θ2 v + I DZ φ + β 2 + 2 φ + β θu θ v (2) 
This formula is exact up to the third order and equations of motion will be written up to the second order.

Shaft

The kinetic energy E c of a rotating beam is written by considering that the energy of the shaft corresponds to the integration of the disk energy along the longitudinal direction:

2E c = ρ l 0 S u2 + v2 + ẇ2 + I x θu 2 + θv 2 + I p φ + β 2 + 2 φ + β θu θ v dz (3) 
The potential energy E d of a spinning Timoshenko beam is equal to:

2E d = l 0 ESw 2 ,z + EI x θ 2 u,z + θ 2 v,z + k x GS (u ,z -θ v ) 2 + (v ,z + θ u ) 2 dz (4) 
Bending and torsion are coupled together because of gyroscopic terms and to the unknown angular position. The equations of motion derived from Hamilton's principle are nonlinear even without contact.

Linearized bearing

The dynamical study of a shaft line requires to describe the nonlinear behavior of the oil film. Assuming small displacements of the rotor, stiffness and damping coefficients of the oil film can be calculated by linearizing Reynolds' equations with respect to the equilibrium position. Calculating the virtual work δW of external forces acting on the shaft yields:

δW = F u F v • δu δv
where F u and F v are the components of the generalized forces acting in the bearings. After linearizing, they can be written in a matrix form:

F u F v = - k xx k xy k yx k yy • u v - d xx d xy d yx d yy • u v

Imbalance

The imbalance is a concentrated mass. Then writing the kinetic energy, it comes:

2E B c = m b u2 + v2 + ẇ2 + r 2 b φ2 + 2r b φ ( v cos ϕ -u sin ϕ) (5) 

Diaphragm

Different types of casing have been considered. 

FE modelling

Shaft line Traction and torsion are discretized using the usual shape functions. Writing ξ = z l and q = w ,β yields:

q(z) = 1 -ξ ξ q 1 q 2
The modified Hermite shape functions for bending used in [START_REF] Chen | Dynamic stability of a Cantilever shaft-disk system[END_REF] are chosen. The degrees of freedom u(z), θ v (z), v(z) and θ u (z) are written as follow:

                         u(z) = N 11 (z) N 12 (z) N 13 (z) N 14 (z)        u 1 θ v1 u 2 θ v2        θ v (z) = N 21 (z) N 22 (z) N 23 (z) N 24 (z)        u 1 θ v1 u 2 θ v2        and                          v(z) = N 11 (z) -N 12 (z) N 13 (z) -N 14 (z)        v 1 θ u1 v 2 θ u2        θ u (z) = N 21 (z) -N 22 (z) N 23 (z) -N 24 (z)        v 1 θ u1 v 2 θ u2        Diaphragm C3
The inner ring of casing C3 is discretized with cubic polynomials in u and v. Defining ζ = s l c the shape functions are:

N 1 (s) = 1 -3ζ 2 + 2ζ 3 N 2 (s) = l c ζ 1 -2ζ + ζ 2 N 3 (s) = ζ λ + 3ζ -2ζ 2 N 4 (s) = l c ζ -ζ + ζ 2
where l c denotes the length of a finite element. The discretized displacement field becomes for an element whose nodes are denoted 1 and 2:

u c (s) = N 1 (s)u 1 + N 2 (s)u 1,s + N 3 (s)u 2 + N 4 (s)u 2,s v c (s) = N 1 (s)v 1 + N 2 (s)v 1,s + N 3 (s)v 2 + N 4 (s)v 2,s
Equations of motion are then derived using Hamilton's principle and the stiffness, gyroscopic and imbalance matrices depend on the angular speed and acceleration.

D R A F T

Contact forces

The forces of particular interest in this study are the contact forces acting between the shaft and the diaphragm where friction is considered. As a first approach, contact is assumed to be punctual at the hot spot, i.e. highest value of rotor eccentricity (point C, see figure 3). With the assumption of small rotations and displacements, the radial gap is equal to the sum of the eccentricity of the cross section's center (distance OR) and the radius of the shaft. The radial contact force component F N is obtained by using Lagrange multipliers method, which guarantees the impenetrability condition. The tangential contact force F T is deduced using the Coulomb friction law F T = µF N . Finally the friction torque takes the form C f ric = µRF N .

Boundary conditions and external loads

As the angular speed is a variable, boundary conditions are necessary for the angular speed law:

-Driven torque: assumed to be constant and equal to C max ; -Resisting torque (alternator): equal to -C max φ Ω nom (model use to obtain an exponential shape).

During the accidental shut down, forces acting on the turbogenerator correspond to aerodynamical and fluids forces:

-Newtonian fluid friction torque:

C newt = -A newt φ; -Aerodynamical friction torque: C aero = -A aero φ2 .
A newt , A aero are positive constants. These friction coefficients have been identified by a EDF's study [START_REF] Fortin | Modélisation de ralentissement de GTA[END_REF]. The accidental shut down is only of interest for our studies: as the shaft line is disconnected from the rest of the network there is no driven torque (C max = 0)

General algorithm

A previous study [START_REF] Legrand | Modèles de prédiction de l'interaction rotor/stator dans un moteur d'avion[END_REF] shows that the penalty method is not adapted for the contact detection. A sensitivity study [START_REF] Giraudon-Guilloteau | Modélisation du contact en dynamique: Construction d'un élément simplifié de contact et application à l'interaction rotor/stator[END_REF] on implicit time scheme with contact constraints shows a dependency on Newmark parameters. It turns out that the central finite differences based on Carpenter's work [START_REF] Carpenter | Lagrange constraints for transcient finite element surface contact[END_REF] (prediction-correction algorithm) exactly satisfies the contact detection and ensures the compatibility of the speed and the acceleration. Consequently, equations of motion are discretized in time according to central finite differences. Because of the nonlinear system of equations, the following time procedure is developed as follows: D R A F T Initialization of variables X and ϕ for t 0 and t 1 : X 0 , X 1 and ϕ 0 , ϕ 1 are estimated For n from n 2 to n end do Prediction of (X n+1 , ϕ n+1 ) assuming that the acceleration is locally linear. end For * : when the angular speed become negative, which means the shaft is counter rotating, the calculation is stopped because this case is not of interest.

Search of the solution

* * : the Lagrange multipliers is calculated assuming that the angular position, which is estimated in the neighborhood of the converged solution, is correct. At each time step, the rotor displacements are predicted. The matrices depending on the spinning speed and acceleration are updated. If a contact is detected, the rotating speed and acceleration change according to the friction torque.

SIMPLIFIED MODEL OF SHAFT LINE

In order to check the developed algorithm, a simplified turbine model has been considered (see figure 4(a)). FE models for the turbogenerator and the diaphragm are chosen so that the first eigenfrequencies match the corresponding ones of the real structures. Campbell diagram of the rotor is shown in figure 4(b). 

TIME INTEGRATION RESULTS

The developed algorithm was first checked and validated simulating a speed transient. The speed law was given and results have been compared to the ones obtained from a commercial code.

Simulations with casing C1

Case without torsion As a preliminary study case, the mathematical diaphragm C1 is considered. The imbalance mass is set to 5 kg in order to excite the rotor. Figure 5(a) depicts the computed spinning velocity. A zoom of this figure during the contact phase is depicted in Figure 5(b)) and the angular acceleration is plotted in Figure 5(c). According to simulations, convergence of the displacements is achieved. The eccentricity of the node in front of the diaphragm (see figure 6(a)) shows that the contact is well considered: even for an high value of time step that ensures convergence, the residual penetration is negligible (lower than 0.2µm, value to be compared with the gap 8mm). The rotor response spectrum (see figure 6(b)) shows components at the rotating frequency and at the natural frequencies of the model.

The influence of the friction coefficient is shown in figures 7(a) and 7(b). For a small value, just the forward whirl motion is excited. With µ greater than 0.5, the reverse whirl phenomenon is observed. Backward whirl phenomena are pointed out with a lower friction coefficient with a higher imbalance mass too. These two figures show the trivial dependency on the friction coefficient which is directly linked with the contact friction torque. Case with torsion When torsion β is added to the model, results become more complex. Figure 8(a) shows that there is convergence except during contact: during interaction, results locally depend on the time step, which may be due to high frequency phenomena. The spatial discretization of the shaft might be too poor and could explain it. Even with an high value of time step that ensures convergence, the residual penetration is negligible (lower than 0.2µm, value to be compared with the gap 8mm). Further analysis must be performed to understand the results. Figure 8(c) depicts the angle of torsion β. The frequency spectrum of the latter is complex to analyze due to the nonlinear coupling between bending and torsion and the contact nonlinearity. As a intermediate conclusion, the developed procedure has been validated simulating rotor-stator interactions.It has been shown also that additional analysis concerning the d.o.f. of torsion have to be done. However flexibility and damping of the diaphragm are not included in such a casing. The unbalance mass is now set to 45kg and only simulations without considering the torsion d.o.f. are considered.

D R A F T
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Simulations with casing C2

Simulations are performed with the diaphragm C2, which is more realistic but simplified. Analogously figure 9(a) depicts the calculated rotating speed and figure 9(b) the corresponding angular deceleration. The results can be compared to computations with casing C1 (see -on figures 9(a) and 9(c)): without flexibility (casing C1), the contact is harder. The contact detection is still well considered as figure 9(c) shows. Figure 10 diaphragm displacements during interaction. Some frequencies of the stator are common with the frequency content of the rotor: it seems that these frequencies are harmonics of the rotating speed and related to the number of impacts per revolution. Loads on bearings directly depend on the casing stiffness. If coupled with a nonlinear solver Reynolds equations solver, this algorithm could compute the real effects of nonlinear bearings and verify that the turbine passes critical speeds without catastrophic consequences.

Authors start to study a 3-D or pseudo 2-D casing FE model in order to add axial deformations of the diaphragm.

CONCLUSION AND PROSPECTS

A numerical tool has been developed to analyze speed transients of a turbogenerator with rotor-stator interactions. The developed contact algorithm have been checked according to the first time integration results. With the use of Lagrange multipliers, the computations don't depend on time step and the contact detection is well considered so that there is just numerical residual penetration. 
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 1 Figure 1: Nomenclature

Figure 2 :

 2 Figure 2: Schematic of diaphragm models

Figure 3 :

 3 Figure 3: Schematic of contact detection

  (X n+1 , ϕ n+1 ) satisfying the governing equations (nonlinear solver) While ( Residual vector of the discretized equations of motion 2 ≤ ε) do If (No penetration) then λ N = 0 else Calculation of the Lagrange multipliers λ N = λ N (predicted solution) * * Correction by radial and tangential (according to Coulomb law) contact forces and then the friction torque C f ric = µRλ N end If New solution guess (X n+1 , ϕ n+1 ) done If (ϕ n+1 ¡ ϕ n ) then Computation stopped * end If Results are recorded Next time step increment a n-1 ← a n and a n ← a n+1

Figure 4 :

 4 Figure 4: Model of shaft line

  time (s) angular speed (rad/s) dt = 10 -5 s dt = 5 • 10 -6 s dt = 10 -6 s dt = 5 • 10 -7 s angular speed (rad/s) dt = 10 -5 s dt = 5 • 10 -6 s dt = 10 -6 s dt = 5 • 10 -7 s

Figure 5 :

 5 Figure 5: Rotating speed and angular deceleration with casing C1

  Frequency content of the rotor without contact

Figure 6 :Figure 7 :

 67 Figure 6: Eccentricity of the node 4 and frequency content of the shaft line

  time (s) angular speed (rad/s) dt = 10 -5 s dt = 5 • 10 -6 s dt = 10 -6 s d.o.f. of torsion β (node 4)

Figure 8 :

 8 Figure 8: Rotating speed, deceleration and the torsion d.o.f. with casing C1

of node 4 Figure 9 :

 49 Figure 9: Rotating speed, deceleration and eccentricity with casing C2

Figure 10 : 4 . 3

 1043 Figure 10: Frequency spectrum when contact occurs

Dof node 4 Figure 11 :

 411 Figure 11: Rotating speed and eccentricity of node 4 with casing C3

  , E d) respectively kinetic and strain energies (k ij , d ij )

	w	traction (Z axis)	β		torsion (Z direction)
	(u, θ v )	bending in (X,Z) plane	(v, θ u )	bending in (Y,Z) plane
	ϕ	angular position	s		curvilinear abscissa
	(E c stiffness and damping coefficients
	φ	angular spinning velocity	Ω nom		nominal rotating speed
	Disk nomenclature		
	M D	disk mass	I DX		moment of inertia
	I DZ	polar moment of inertia		
	Beam nomenclature		
	E	Young's modulus	ν		Poisson's ratio
	G	shear modulus	S		cross section area
	k x I x	transverse shear form factor moment of inertia	λ = I p	12EI x k x GSl 2 transverse shear effect polar moment of inertia
	ρ	mass density	l		element length
	z	axial distance		
	Subscripts			
	D	disk	b		imbalance
	c	casing		

Table 1 :

 1 Radius of the inner ring = outer radius of the shaft + gap (gap=8mm) Numerical characteristics of the shaft line

	Disk			
	Inner radius	0.5m	Thickness	0.1m
	Outer radius	1m	Mass density 7860kg/m 3
	Shaft			
	E	200GPa	ν	0.3
	Total length Radius Imbalance Imbalance mass 5kg for C1 and 45kg for C2 and C3 Phase shift 10 m Mass density 7860kg/m 3 0.5m k x 6/7 0rad Distance between imbalance and center of the disk 1m Bearing β 0.0002 (0.02% of the stiffness coefficients ) k xx 2 • 10 5 N/m k xy 0N/m k yx 0N/m k yy 5 • 10 5 N/m c xx β × 2 • 10 5 N.s/m c xy 0N.s/m c yx 0N.s/m c yy β × 5 • 10 5 N.s/m Casing C3 E 200GPa ν 0.3 D R A F T Mass density 7860kg/m 3
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