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1 Introduction

Continuum damage mechanics is often used as a framework for describing the
variations of the elastic properties of due to micro-structural degradations.
Experimentally, concrete specimens exhibit a network of microscopic cracks
that nucleate sub-parallel to the axis of loading. Due to the presence of hetero-
geneities in the material (aggregates surrounded by a cement matrix), tensile
transverse strains generate a self-equilibrated stress field orthogonal to the
loading direction, a pure mode I (extension) is thus considered to describe
the behaviour even in compression. This rupture mode must be reproduced
numerically. This is the reason why the failure criterion of the chosen consti-
tutive law is expressed in terms of the principal extensions and that a tension
test is modelled at the end of this paper. The influence of micro-cracking due
to the external loads is introduced via damage variables, ranging from 0 for
the undamaged material to 1 for a completely damaged material.

This approach, however, is known to be inadequate for studies where strain
softening appears. Calculations performed with a local classical continuum
model - which does not incorporate an internal length variable - are unable to
objectively model intrinsic failure zones. Spurious mesh dependence appears
and also cases of failure without any energy dissipation. In order to improve
computational performance the nonlocal damage approach is often used in the
literature. A different solution is investigated within this work. Local second
gradient models are chosen to include a meso scale in the continuous . This
approach differs from the nonlocal one in the sense that it is a local theory
with higher order stresses depending only on the local kinematic history.

A brief presentation of a classical damage mechanics constitutive law used
for the calculations is given at the first part of the paper. The second gra-
dient local approach for a 1D medium is then introduced. Finally, different
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numerical computations with 1D specimens in traction are presented. Using
a random initialisation of the iterative solver of the equilibrium equation we
search the existence of various solutions and we show that the second gradi-
ent term regularise the problem giving results that are mesh insensitive and
objective.

2 Scalar damage model

Introduced in 1958 by Kachanov [1] for creep-related problems, continuum
damage mechanics has been applied in the 1980s for simulating the non linear
behaviour of concrete [2],[3],[4]. Thermodynamics of irreversible processes gave
the framework to formulate the adapted constitutive laws [5],[6]. Considering
the material as a system described by a set of variables and a thermodynamic
potential, constitutive laws are systematically derived along with conditions
on the evolution of damage. However, an adequate choice of the potential
and of the damage variable (scalar or tensor) remains to be made. Several
anisotropic damage models have already been proposed [7],[8],[9],[10]. Possible
applications cover also dynamic problems [11],[12], porous materials [13] and
chemical damage [14]. Recent literature reviews on damage mechanics and
concrete can be found in [15],[16],[17].

The outlines of a local scalar 3D damage mechanics law for concrete are
presented hereafter [18],[19]. In this model, the material is supposed to behave
elastically and to remain isotropic. The loading surface takes the following
form:

f (D) = ǫeq − K (D) (1)

with ǫeq the equivalent strain defined as:

ǫeq =

√

√

√

√

3
∑

i=1

< ǫi >2
+ (2)

being ǫi the principal strains with (+ for traction)

< ǫi >+= ǫi if ǫi ≥ 0 and < ǫi >+= 0 if ǫi < 0 (3)

The choice of the previous definition of the equivalent strain ǫeq is guided
by the fact that tensile transverse strains are considered to describe the be-
haviour even in compression (see section 1). D is a scalar whose value is in
the domain [0, 1]. The hardening-softening parameter K (D) takes the largest
value of the equivalent strain ever reached by the material at the consid-
ered point. In that way it retains the previous loading history. Initially K (0)
equals a given threshold ǫD0. Evolution laws for damage are used to describe
the response in tension or compression - index j refers either to tension (t) or
compression (c):
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Dj = 1 −
ǫD0 (1 − Aj)

ǫeq

− Aj exp [−Bj (ǫeq − ǫD0)] (4)

Aj and Bj are material parameters identified independently from compres-
sion tests on cylinders and bending tests on beams. The scalar damage variable
D, that has to be introduced in the constitutive equation, is a weighted sum
of Dt and Dc.

D = αβ
t Dt + αβ

c Dc (5)

β is a parameter that has been added to the original version of the model
in order to reproduce more accurately the behaviour of under shear. It is
usually taken equal to 1.06. We call σ+ and σ

−
(σ = σ+ + σ

−
) the tensors

in which appear only the positive and negative principal stress respectively,
and ǫt and ǫc the strain tensors defined as:

ǫt = Λ
−1 : σ+ and ǫc = Λ

−1 : σ
−

(6)

Λ(D) is a fourth-order symmetric tensor interpreted as the secant stiffness
matrix and it is a function of damage. The weights αt and αc are defined by
the following expressions:

αt =

3
∑

i=1

Hi

ǫti (ǫti + ǫci)

ǫ2eq

(7)

αc =

3
∑

i=1

Hi

ǫci (ǫti + ǫci)

ǫ2eq

(8)

Hi = 1 if ǫi = ǫci +ǫti ≥ 0, otherwise Hi = 0. αc and αt are the coefficients
defining the contribution of each type of damage for general loading. From (7)
and (8) it can be verified that for uniaxial tension αt = 1, αc = 0, D = Dt,
and vice versa for compression. Responses under uniaxial compression and
tension of this model are presented in figure 1.

3 Local second gradient model

It is today well established that strain softening induces bifurcation, strain
localisation, and that the numerical codes often predict failure without any
energy dissipation [20],[21]. One of the possible remedies is to use classical
damage mechanics constitutive laws based on the nonlocal damage theory
(e.g., [22],[23],[24]) or nonlocal second within the flow theory of plasticity.
The latter involve the second gradient of the plastic strain in the consistency
condition and/or the flow rule, while the kinematic and equilibrium equations
remain unchanged (e.g., [25],[26],[27]). For these models the constitutive equa-
tion in its incremental form is itself a partial differential equation. Peerlings



4 P. Kotronis, F. Collin, P. Bésuelle, R. Chambon and J. Mazars

Fig. 1. Response of the Mazars damage model for concrete in uniaxial tension (left)
and compression (right), (E being the Young modulus)

[28],[29] and Fremond [30] have also studied second gradient models within
the theory of damage mechanics. Zervos et al. [31] proposed a mixed type
model that can be interpreted as a strain-gradient theory with softening law
enriched by the second gradient on an internal variable.

A different approach is investigated within this work consisting of using
second gradient local models to introduce a meso scale in continuous mod-
els [32],[33],[34]. The word local means that the constitutive equation is a
relation only between local quantities. Strain gradients are considered as ad-
ditional observable state variables and are conjugate to higher order stresses
that enter the equilibrium equations. This local model is a direct extension
of microstructured or micromorphic continua proposed in [35] and [36]. Its
general formulation follows:

For a 1D medium the internal virtual power P ∗

in for the domain Ω = [a, b]

is a linear form in u̇∗
′

and u̇∗
′′

, the first and second derivatives with respect
to the space variable x of the virtual velocity field u̇∗ (. is the symbol used for
the derivatives with respect to time and ′ with respect to the space variable
x). It takes the following form:

P ∗

in = −

∫ b

a

(Nu̇∗
′

+ Mu̇∗
′′

)dx (9)

N being the usual normal stress in 1D continuum, M is a double stress.
In order to calculate the external virtual power P ∗

ex, additional external
forces µ, associated to the second gradient terms, have to be added to the
classical external forces ν, associated to the first gradient terms (no distributed
forces are taken into consideration, so the only forces are those acting on the
two ends a and b). The virtual power of the external forces is then:

P ∗

ex = νbu̇
∗

b + νau̇∗

a + µbu̇
∗
′

b + µau̇∗
′

a (10)
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The virtual power formulation of the equilibrium equation of the contin-
uum is for all kinematically admissible field u̇∗:

P ∗

ex + P ∗

in = 0 (11)

Integrating by parts twice shows that equation (11) is equivalent to:

N
′

− M
′′

= 0 (12)

and

M(a) = −µa; M(b) = µb; N(a) − M
′

(a) = −νa; N(b) − M
′

(b) = νb (13)

The next step is to choose the constitutive laws linked with the first and
the second gradient part of the model.

Ṅ = f(u̇′) (14)

Ṁ = g(u̇′′) (15)

For large strain computations, there is a difference between the time deriv-
ative of the strains ǫ and u̇

′

, the derivative of the velocity with respect to the
actual space variable. ǫ is a Lagrangian measure and u

′

, u̇
′

are Eulerian ones.
When small strains are assumed ǫ = u

′

and both models can be written in an
integral manner as follows:

N = f(ǫ) (16)

M = g(ǫ
′

) (17)

The balance equation (12) can be integrated as:

N − M
′

= constant = N1 (18)

Substituting N and M given by equations (16) and (17) in equation (18),
yields a differential equation which has to be met by the function u of x. This
equation can be solved analytically under certain conditions. Assuming that
there is no coupling between those f and g, various types of constitutive rela-
tions can be studied. In the original papers [32],[33], a classical elastoplastic
bilinear model (or a CLoE family model [37],[38]) exhibiting softening has
been chosen for f and a linear relation for g. The authors have proven ana-
lytically that for a given problem the solutions have to be built using patches
of different fundamental solutions, consisted of ‘hard parts’ corresponding to
the unloading pieces and ‘soft parts’ for the loading pieces of the media. In
that way, different solutions are possible (an inner hard solution, a hard-soft
solution, a soft-hard-soft solution... see figure 2). In order to built a patch
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solution, one has to equate the values of the displacements u, strains u
′

and
of the two internal forces N − M

′

and M at the ends of the different pieces
in order to meet the virtual power equation, and then to check that u

′

< elim

in hard pieces and u
′

> elim in soft pieces (elim being a threshold of the
constitutive law, for example elim = ǫD0 for the Mazars law).

Fig. 2. Patches of different fundamental solutions

A 2D second gradient element has been developed [39],[40] and imple-
mented in the finite element code LAGAMINE (Université de Liège). The
formulation of the element and the corresponding constitutive equations use
a mathematical constraint between the micro kinematics description and the
usual macro deformation gradient field. They are valid for large strains. This
constraint is enforced in a weak sense by using Lagrange multipliers in order
to avoid difficulties with the C1 continuity (second involving the first and the
second derivatives of the displacement field).

In the following section, the feasibility of this local approach with con-
stitutive laws based on damage mechanics is proven numerically using 1D
simulations. The Mazars damage mechanics law is used for the function f
and some remarks about the uniqueness of solution, the objectivity of the
calculations and the influence of a possible coupling between the functions f
and g are drawn.

4 1D numerical simulations

A 1D concrete bar submitted to traction is studied hereafter and the length
of the localisation zone is compared with the analytical solutions provided in
[32],[33]. The bar is modelled using the 2D second gradient element of the
finite element code LAGAMINE (Université de Liège, [39],[40]) under plane
deformations. In order to avoid any 2D effects, a zero vertical displacement is
applied at the upper and lower boundaries along the bar (u2 = 0, figure 3). The
right end of the bar is fixed (u1 = u2 = 0) and the external traction displace-
ment is applied at the left end. The additional external forces νb, νa, µb, µa

are assumed to be zero at both ends. The section of the bar is 0.1x1m2 and
its length 1m.

For the calculations presented hereafter it is assumed that there is no
coupling between the first and the second gradient part of the model (functions
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Fig. 3. Boundary conditions for simulating 1D traction in a 2D FE code

Fig. 4. Constitutive models: (a) first gradient part, (b) second gradient part

f and g). The constitutive relations are the Mazars damage law for the first
gradient part and a linear relation for the second gradient part (figure 4). The
parameters chosen for the damage law correspond to that of a typical specimen
(A1 = 30.E + 09Pa, ǫD0 = 1.E − 04, At = 0.5, Bt = 2E + 04, poisson’s ratio
0.2, parameters that provide A2 ≈ −16.7E + 09Pa).

The second gradient local approach defines implicitly two internal lengths,
the first (namely

√

B/A1) corresponding to the unloading regime of the first

gradient part of the model, and the second (namely
√

B/(−A2)) correspond-
ing to the softening loading regime just after the peak (B being the slope of
the linear relation of the second gradient part, see figure 4). A way to define
the order of magnitude used for B, is to use the criteria proposed in [32],[33]
- valid under the small strain assumption and for a bilinear plastic law - in
order to have possible analytical solutions and to avoid snap-back phenomena
for the corresponding differential equation. Assuming a two-part solution is
possible (built with a patch of a hard part and a soft one) and considering
B = 0.37E + 09N , one finds analytically that under small strains and for a
bilinear law with A1 = 30.E + 09Pa and A2 = −16.7E + 09Pa the length
of the soft part is equal approximately to 0.37m. For the case of a three-part
solution (hard - soft - hard) the length of the soft part equals approximately
0.78m.

A soon as the peak is reached the problem exhibits a loss of uniqueness. In
order to determine numerically bifurcation thresholds, an algorithm of random
initialisation of the iterative solver of the equilibrium equation is used just
after the peak (at ǫD0 = 1.2E − 04, [41],[42]). For every step, a full Newton-
Raphson method under displacement control, involving a numerical consistent
tangent stiffness operator for the complete model (i.e. the second gradient
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terms as well as the classical ones) is used [39]. The results of two meshes
with 14 and 50 elements are presented hereafter [43]. Figure 5 shows the global
force displacement curve for both meshes. Figure 6 presents the distribution
of the damage variable D just after the peak (ǫD0 = 1.2E − 04), and figure 7
at the end of the loading (ǫD0 = 2.9E − 04).

Fig. 5. 1D traction: Force - displacement curves for the two meshes

Fig. 6. Localisation patterns (distribution of damage variable D) just after the peak
(ǫD0 = 1.2E − 04): (a) 14-element mesh, (b) 50-element mesh

Both meshes reproduce the homogeneous solution when no random ini-
tialisation of the iterative solver is used. When random initialisation of the
velocities is used just after the peak, differences in the global curves appear.
This is due to the different corresponding localisation patterns. The mesh with
14 elements has converged to a solution with two patches (a hard part and
a soft one with a length equal approximately to the length calculated ana-
lytically). The mesh with 50 elements has converged to a three-part solution



Local second gradient models and damage mechanics: Concrete 9

Fig. 7. Localisation patterns (distribution of damage variable D) at the end of the
loading (ǫD0 = 2.9E − 04): (a) 14-element mesh, (b) 50-element mesh

(hard - soft - hard) with the length of the soft part again very similar to the
analytical value (figure 6). One can also notice that the maximum values of
the damage variable D are different (0.587 for the 14 element mesh and 0.347
for the 50 element mesh). Of course, other random initialisation can converge
to different solutions, independently of the mesh discretisation.

The 50-element mesh switches after to the two-part solution (figure 7),
thus the localisation pattern and the global curves become identical. This is
also seen in [44]. The maximum values of the damage variable D for both
mesh are almost the same (approximately equal to 0.876).

From the previous results, it is obvious that the use of local second with
damage mechanics laws provide internal lengths, and consequently solutions
that do not depend on the spatial discretisation. Finite element meshes with
different number of elements provide the same solutions (figures 5 and 7 at the
end of the loading). However, this approach does not restore the uniqueness
properties for the corresponding boundary value problem. Different converged
solutions can appear (figures 5 and 6 just after the peak). Nevertheless, all
these solutions are correct and possible to happen, contrary to the parasitic
solutions obtained with a classical medium [20],[21].

5 Expansion of the plastic region

The previous results show that when the magnitude of the softening modulus
decreases during the softening process, the plastic region is expanding. Some
limited expansion of the plastic region is acceptable. However, as the soften-
ing modulus tends to zero, the size of the plastic region can grow without any
bounds. This, as mentioned in [45], is a spurious, non physical effect which can
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be accompanied by stress locking, manifested by a non vanishing residual re-
sistance of the structure even at very large elongations. The total work needed
to completely break the bar (given by the area under the load-displacement
diagram) is larger than in the absence of localisation. In other words, the bar
cannot fail by yielding of its limited segments, but every section must sooner
or later start yielding. This is in contradiction with the observed failure of
concrete specimens, typically localised in regions having a limited length.

A way to deal with this problem is to abandon the hypothesis of the non
coupling between the first and the second gradient part of the model (functions
f and g). Assuming an anelastic relation also for the function g (inducing a
decrease of the tangent modulus with the loading), one can expect that the
structure will not present any residual resistance at very large elongations,
and that the spurious stress locking will disappear. The function g could be
such that the internal length corresponding to the softening loading regime
after the peak stays constant throughout the whole loading history or is a
function of the damage variable D. In that way we could control the evolution
of the localisation zone, that can now increase, stay constant or even decrease
depending on the form of the chosen function.

For the following simulation the functions f and g are considered coupled.
The Mazars damage mechanics law is used for the function f and the material
parameters are kept the same as before. However, this time the second order
stress M is calculated as a function of the damage variable D. Figure 8 shows
the global force - displacement curves using the second gradient model with
or without coupling. Figure 9 presents the distribution of the damage variable
D during the whole loading when f and g are coupled.

Fig. 8. 1D traction: Force - displacement curves considering or not coupling between
the first and the second gradient part

In figure 8, one can observe that although the global curve presents a
non-zero stress for large elongations, the localisation zones in figure 9 do
not expand. At the beginning and for the first displacement increments the
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Fig. 9. 1D traction: Evolution of the localisation pattern for the whole loading
history considering coupling between the first and the second gradient part

damage variable has the same value all along the bar. However, a hard soft
hard soft solution soon appears and the localisation zone does not increase
although the damage variable D approaches to 1. This behaviour is more
realistic. The results of this first simulation seem to indicate that the coupling
of the first and the second gradient part of the model could provide a solution
in order to correctly predict complete failure.

6 Conclusions

The feasibility of using local second gradient models with constitutive laws
based on damage mechanics is proved throughout this work. 1D numerical
computations with concrete specimens and the relevant post-localisation stud-
ies are presented. Using a random initialisation of the iterative solver of the
equilibrium equations it is shown once again that the second gradient term
regularises the problem providing results that are mesh insensitive and objec-
tive. However, as expected, it does not restore uniqueness properties for the
corresponding boundary value problem. Numerical results considering cou-
pling of the first and the second gradient part of the model indicate that the
length of the localisation zone can stay constant, property that could be useful
in order to reproduce correctly the complete failure of concrete specimens.

Work in progress concerns the implementation of advanced following path
techniques into the finite element code LAGAMINE to reproduce correctly
snap-back phenomena [46], and various studies on the boundary conditions to
use within a second gradient medium. Numerical simulations of biaxial tests
will also be performed and comparisons with experimental 2D failure schemes
of various concrete specimens.
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