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ABSTRACT 

A probabilistic dynamic approach is used for the slope stability analysis. In 
this approach, the effect of both the soil spatial and the Ground-Motion (GM) time 
variabilities on the dynamic responses are studied and discussed. The soil shear 
modulus G is considered as an isotropic non-Gaussian random field. The simulation 
of variable acceleration time histories based on a real target accelerogram is done 
using a fully nonstationary stochastic model (i.e. which has nonstationary 
characteristics in both time and frequency domains). The deterministic model is based 
on numerical simulations using the dynamic option of the finite difference code 
FLAC3D. An efficient uncertainty propagation methodology which builds up a sparse 
polynomial chaos expansion for the dynamic responses is used. The probabilistic 
numerical results have shown that: (i) the decrease in the autocorrelation distance of 
G (i.e. the soil heterogeneity) leads to a small variability of the dynamic responses; 
(ii) adding the randomness of the earthquake GM has a significant influence on the 
variability of the dynamic responses; (iii) the probabilistic mean values of the 
dynamic responses are more critical than the deterministic ones. 

INTRODUCTION 

The seismic stability of slopes is widely investigated in literature using 
deterministic approaches. However, the material properties of soils are known to vary 
greatly from point to another, and many of these older pen and paper methods have 
difficulty to successfully model this heterogeneity. Things are more complicated 
when dealing with dynamic loading situations. In this paper, the effect of both the soil 
spatial variability and the time variability of Ground-Motion (GM) on the dynamic 
responses of a simple slope are studied. Few authors have worked on the analysis of 
the dynamic horizontal soil behavior using probabilistic approaches where the spatial 
variability of soil properties and the time variability of seismic excitations were 
considered [Koutsourelakis et al (2002), Popescu et al (2006), ...]. In these works, 
three main deficiencies can be detected: First, the classical Monte Carlo Simulation 
(MCS) methodology with a small number of realizations is used to determine the 
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probability density function (PDF) of the system responses (e.g. 50 simulations). It is 
well known that in order to be a rigorous approach, MCS is very time-expensive. 
Second, the stochastic model for generating synthetic acceleration time-histories is 
based on the spectral representation in order to simulate accelerograms which are 
compatible with a prescribed response spectrum and not real GM acceleration. 
Finally, the spatial variability of soil properties is studied for specific autocorrelation 
distances. 

In this study, the three mentioned deficiencies will be improved by (i) using a 
more efficient probabilistic approach instead of the crude MCS which is the Sparse 
Polynomial Chaos Expansion (SPCE) [Blatman and Sudret (2010), Al-Bittar and 
Soubra (2011)]; (ii) simulating the stochastic accelerogram using the method given by 
Rezaeian and Der Kiureghian (2010). This method has the advantage of solving the 
majority of problems encountered in the previous models [Rezaeian and Der 
Kiureghian (2008)]; (iii) considering a large range of autocorrelation distances for the 
soil shear modulus G modeled as an isotropic non-Gaussian random field. The 
Expansion Optimal Linear Estimation (EOLE) methodology proposed by Li and Der 
Kiureghian (1993) is used to generate this random field.  

The deterministic model is based on numerical simulations using the dynamic 
option of the finite difference code FLAC3D. Samples of the synthetic GM time-
histories were generated and a dynamic stochastic calculation for each realization was 
performed to compute the dynamic responses (i.e. the permanent displacement at the 
toe of the slope and the maximum amplification of the acceleration at the top of the 
slope). The paper is organized as follows: The first three sections aim at presenting (i) 
the method used to generate the random field of the shear modulus G, (ii) the method 
used to generate the stochastic synthetic accelerograms based on a real target one and 
finally (iii) the SPCE methodology employed to determine the analytical expression 
of the dynamic system responses. These sections are followed by a presentation of the 
probabilistic numerical results in which only the soil spatial variability is first 
considered and then combined with the time variability of the GM in order to 
highlight its effect on the variability of the dynamic responses. 

GENERATION OF NON-GAUSSIAN RANDOM FIELD 

Let’s consider the non-Gaussian random field ( , )NG

GZ x y (where G 
represents the soil shear modulus) described by: (i) constant mean μG and standard 
deviation σG, (ii) non-Gaussian marginal cumulative distribution function FG, and (iii) 
a square exponential autocorrelation function NG

Z [(x, y), (x', y')] which gives the 
values of the correlation function between two arbitrary points (x, y) and (x', y'). This 
autocorrelation function is given as follows: 

22
' '[( , ), ( ', ')] exp

Z

NG

x y

x x y y
x y x y

a a


                 
   (1) 

where ax and ay are the autocorrelation distances along x and y respectively. The 
EOLE method proposed by Li and Der Kiureghian (1993) is used herein to generate 
the random field of G. In this method, one should first define a stochastic grid 
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composed of q grid points (or nodes) obtained from the different combination of H 
points in the x (or horizontal) direction, and V points in the y (or vertical) direction 
assembled is a vector Q= ( , )n h vQ x y  where h=1, …, H, v=1, …, V and n=1, …, 

q. Notice that for the vector Q composed of q elements, the values of the field are 
assembled in a vector  ( , )n h vZ x y   where h=1, …, H, v=1, …, V and 
n=1, …, q. Then, one should determine the correlation matrix for which each element 
 ; ,

NG

i j 
  is calculated using Equation (1) as follows: 

 ; ,
,

Z

NG NG

i j
i j

Q Q
 

              (1) 

where i=1, …, q and j=1, …, q. Notice that the matrix 
;

NG

 
 in equation (2) provides 

the correlation between each point in the vector χ and all the other points of the same 
vector.  The non-Gaussian autocorrelation matrix 

;

NG

 
  should be transformed into the 

Gaussian space using the Nataf transformation. As a result, one obtains a Gaussian 
autocorrelation matrix ;

G

   that can be used to discretize the random field of the 
shear modulus G as follows: 

( , );
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         (3)  

where ( ,j j  ) are the eigenvalues and eigenvectors of the Gaussian autocorrelation 
matrix ;

G

  ,  ( , );Z x y   is the correlation vector between each point in the vector χ and 
the value of the field at an arbitrary point (x, y), 

j is a standard normal random 
variable, and N is the number of terms (expansion order) retained in EOLE method. 
Once the Gaussian random field is obtained, it should be transformed into the non-
Gaussian space by applying the following formula: 

 1( , ) ( , )NG

G G GZ x y F Z x y     
        (4) 

where (.)  is the standard normal cumulative density function. 
It should be mentioned here that the presented method can be applied for both 
Gaussian and non-Gaussian random fields. Since non-negative values must be 
obtained for G, a non-Gaussian (lognormal) random field was used in this paper.  

GENERATION OF STOCHASTIC GROUND MOTION ACCELEROGRAMS 

In this paper, the method proposed by Rezaeian and Der Kiureghian (2010) 
was used to generate stochastic acceleration time histories from a target accelerogram. 
This method consists in fitting a parameterized stochastic model that is based on a 
modulated, filtered white-noise process to a recorded ground motion. The 
parameterized stochastic model in its continuous form is defined as: 

 1( ) ( , ) , ( ) ( )
( )

t

f

x t q t h t w d
t

     
 

 
  

 
      (5) 

 In this expression, ( , )q t   is a deterministic, positive, time-modulating 
function with parameters α controlling its shape and intensity; ( )w   is a white-noise 
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process; the integral inside the curved brackets is a filtered white-noise process with 
 , ( )h t    denoting the Impulse-Response Function (IRF) of the filter with time-

varying parameters ( )  ; and  2 2( ) , ( )
t

h t h t d    


  is variance of the 

integral process. Because of the normalization by ( )h t , the process inside the 
curved brackets has unit variance. As a result, ( , )q t   equals the standard deviation 
of the resulting process x(t). It should be clear that the modulating function 

( , )q t  completely defines the temporal characteristics of the process, whereas the 
form of the filter IRF and its time-varying parameters define the spectral 
characteristics of the process. In this study, a ‘Gamma’ modulating function is used: 

2 1
1 3( , ) exp( )q t t t

            (6) 
where 1 2 3( , , )    , 1 3, 0   , and 2 1  . Of the three parameters, α1 controls 
the intensity of the process, α2 controls the shape of the modulating function and α3 

controls the duration of the motion. These parameters 1 2 3( , , )    are related to 
three physically based parameters 5 95( , , )a midI D t  which describe the real recorded 
GM in the time domain; where aI , is the Arias Intensity (AI), D5−95 represents the 
effective duration of the motion. It is defined as the time interval between the instants 
at which the 5 and 95% of the expected AIs are reached respectively. tmid is the time 
at the middle of the strong-shaking phase. It is selected as the time at which 45% 
level of the expected AI is reached. The relations between 1 2 3( , , )    and 

5 95( , , )a midI D t are given in details in Rezaeian and Der Kiureghian (2010). 
For the filter IRF, we select a form that corresponds to the pseudo-acceleration 

response of a single-degree-of-freedom linear oscillator: 
 
    2

2

( ), ( ) exp ( ) ( )( ) sin ( ) 1 ( ) ( )
1 ( )

0 otherwise

f
f f f f

f

h t t t t
              
 

         



 (7) 

where ( ) ( ( ), ( ))f f       is the set of time-varying parameters of the IRF with 
( )f   denoting the frequency of the filter and ( )f   denoting its damping ratio. 

These two parameters, ( )f  and ( )f  are related to two physical parameters that 
describe the recorded GM in the frequency domain and which are respectively the 
predominant frequency and the bandwidth of the GM. For more details about the 
identification procedure between the recorded GM and the stochastic model described 
previously, the reader may refer to Rezaeian and Der Kiureghian (2008, 2010).  

SPARSE POLYNOMIAL CHAOS EXPANSION (SPCE) METHODOLOGY 

The polynomial chaos expansion (PCE) methodology aims at replacing a 
complex deterministic model whose input parameters are modeled by random 
variables by a meta-model which allows one to calculate the system response using 
an approximate analytical equation [Blatman and Sudret (2010)]. The coefficients of 
the PCE are computed herein using a regression approach.  
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For a deterministic numerical model with M input uncertain parameters, the 
uncertain parameters should be represented first by independent standard normal 
random variables   1,....,i i M




 gathered in a random vector ξ. The random response Γ 
of our mechanical model can then be expressed by a PCE of order p fixed by the user 
as follows: 

1

0 0
( ) ( ) ( )

P

PCE a a   
 

  
 

 

             (8) 

where P is the number of terms retained in the truncation scheme, a are the unknown 
PCE coefficients to be computed and   are multivariate (or multidimensional) 
Hermite polynomials which are orthogonal with respect to the joint probability 
distribution function of the standard normal random vector ξ. These multivariate 
polynomials are given by  

1
i

M

i

H  


  , where (.)
i

H   is the αi-th one-dimensional 

Hermite polynomial and αi are a sequence of M non-negative integers  1,..., M  . In 
practice, one should truncate the PCE representation by retaining only the 
multivariate polynomials of degree less than or equal to the PCE order p. For this 
reason, a classical truncation scheme based on the determination of the first order 
norm is generally adopted in the literature. This first order norm is defined as follows: 

1
1

M

i

i

 


 . The classical truncation scheme suggests that the first order norm 

should be less than or equal to the order p of the PCE. Using this method of 
truncation, the number P of the unknown PCE coefficients is given by 

( ) !
! !

M p
P

M p


 . Thus, the number P of the PCE coefficients increases dramatically 

with the number M of the random variables and the order p of the PCE. To overcome 
such a problem, it was shown that the number of significant terms in a PCE is 
relatively small since the multidimensional polynomials   corresponding to high-
order interaction are associated with very small values for the coefficients a. Thus, a 
truncation strategy based on this observation was developed in which the 
multidimensional polynomials   corresponding to high-order interaction were 
penalized. This was performed by considering the hyperbolic truncation scheme that 
considers the q-norm instead of the first order norm. The q-norm is given by 

1

1

qM
q

iq
i

 


 
  
 
  where q is a coefficient (0<q<1). The hyperbolic truncation scheme 

suggests that the q-norm should be less than or equal to the order p of the PCE. The 
proposed methodology leads to a SPCE that contains a small number of unknown 
coefficients which can be calculated from a reduced number of calls of the 
deterministic model. This is of particular interest in the present case of random fields 
which involve a significant number of random variables. This strategy will be used in 
this paper to build up a SPCE of the system response using an iterative procedure 
[Blatman and Sudret (2010)]. Once the unknown coefficients of the SPCE are 
determined, the PDF of the dynamic responses can be estimated using Monte Carlo 
technique.  
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NUMERICAL RESULTS 

The aim of this section is to present the probabilistic results. It should be 
remembered here that the dynamic system responses involves the permanent 
displacement at the toe and the maximum amplification of the acceleration at the top 
of the slope. In this study, the effect of both the soil spatial variability and the time 
variability of Ground-Motion (GM) on the dynamic responses are considered. The 
soil shear modulus G is considered as an isotropic lognormal random field. The mean 
and the coefficient of variation of G are respectively 112.5G MPa   and 

40%GCov  . In order to simulate the stochastic synthetic time histories, the Kocaeli 
(Turkey 1999) earthquake is used as the target accelerogram (see Fig.1). The 
deterministic model is based on numerical simulations using the dynamic option of 
the finite difference code FLAC3D. The slope geometry considered in the analysis is 
10m in height and 45o in inclination angle (see Fig.2). It should be noted that the size 
of a given element in the mesh depends on both the autocorrelation distances of the 
soil properties and the wavelength λ associated with the highest frequency component 
fmax of the input signal. For the autocorrelation distances of the soil properties, Der 
Kiureghian and Ke (1988) have suggested that the length of the smallest element in a 
given direction (horizontal or vertical) should not exceed 0.5 times the autocorrelation 
distance in that same direction. As for the wavelength λ associated with the highest 
frequency component fmax of the input signal, Itasca (2000) has suggested that the 
smallest element should not exceed 1/10 to 1/8 this wavelength λ in order to avoid 
numerical distortion of the propagating waves. Respecting these two conditions, a 
size element of 2m was chosen to perform the dynamic analysis. For the boundary 
conditions, the bottom horizontal boundary was subjected to an earthquake 
acceleration signal and free field boundaries were applied to the right and left vertical 
boundaries. The numerical simulations are performed using an elastoplastic model 
based on the Mohr-Coulomb failure criterion. The corresponding model parameters 
are the shear modulus G which is modeled as a random field, the bulk modulus K, the 
cohesion c, the friction angel φ, the dilation angel ψ, and the soil unit weight which 
are considered as deterministic. The values of these deterministic parameters are as 
follows: K=133MPa, c=10kPa, φ=30o, ψ =20o, and γ =18kN/m3. 
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Figure 1.  Kocaeli (Turkey 
1999) accelerogram 

 
Figure 2. The slope geometry and FLAC3D 

mesh 
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In the following sections, one examines the effect of the soil spatial variability 
on both the amplification at the top and the permanent displacement at the toe of the 
slope using deterministic and stochastic GM accelerograms. 

Effect of the soil spatial variability on the amplification at the top of the slope using 

deterministic and stochastic GM accelerograms 

The effect of the soil spatial variability on the amplification at the top of the 
slope using deterministic and stochastic GM accelerograms is studied and presented 
in Figs 3, 4 and Table 1. Different values of the isotropic autocorrelation distance 
(θ=0.5, 1, 2, 3, 5) were considered in the analyses. Notice that in the current study, 
the autocorrelation distance has been nondimensionalized by dividing it by the height 
of the slope. Figs 3 and 4 show that the PDF is less spread out when the isotropic 
autocorrelation distance θ decreases. The variability of the amplification at the top of 
the slope decreases with the increase in the soil heterogeneity (i.e. small values of θ). 
This can be explained by the fact that the fluctuations of the shear modulus are 
averaged to a mean value along the seismic wave’s path propagation. This mean is 
close to the probabilistic mean value of the random field G. This leads to close values 
of the responses amplification and thus to a smaller variability in this response. 
Notice however that adding the randomness of the earthquake GM has a significant 
incidence on the variability of the amplification. Table 1 shows that for the range of 
the autocorrelation distances considered in this study, the coefficient of variation 
COV of the amplification is between 2.78% and 10.91% when deterministic GM 
accelerogram is used. This range of COV increases significantly when the 
randomness of the earthquake GM is introduced. In this case, the COV of the 
amplification have values between 4.23% and 31.78%. One can notice that for the 
largest autocorrelation distance θ=5, the variability of the amplification in the case 
where stochastic GM accelerograms were used is 2.9 time larger than the one 
obtained with the deterministic GM accelerogram.  

Figure 3.  Amplification at the top of 
the slope with deterministic GM 

 
Figure 4.  Amplification at the top of 

the slope with stochastic GM 
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Table 1 also shows that the autocorrelation distance θ has practically no effect 
on the mean value of the amplification. This mean value is shown to be larger than 
the corresponding deterministic value. This means that the probabilistic results are 
much more critical than the deterministic value with a difference of 5% in the case 
where deterministic GM accelerogram is used, and 29% in the case where stochastic 
GM accelerograms are used. 

Table 1. Effect of the autocorrelation distance θ on the statistical moments (μ, σ) 
of the amplification 

Effect of the soil spatial variability on the permanent displacement at the toe of the 

slope using deterministic and stochastic GM accelerograms 

The effect of the soil spatial variability on the permanent displacement at the 
toe of the slope using deterministic and stochastic GM accelerograms is studied and 
presented in Figs. 5, 6 and Table 2. The same values of the isotropic autocorrelation 
distance θ used in the previous section are also used herein. Figs. 5 and 6 show that 
the PDFs are very close to each other and thus the shear modulus variability has a 
small influence on the permanent displacement. This is because the permanent 
displacement appears only when the plastic phase is reached which means that the 
effect of the shear modulus G on this response is relatively small. Table 2 confirms 
this observation because very small values of the COV of the permanent displacement 
are obtained when only the spatial variability of G is considered. On the other hand, 
one can see that introducing the randomness of the earthquake GM considerably 
affects the permanent displacement. High values of the COV are detected because of 
the important increase in the mean value of the permanent displacement due to the 
variability of the GM.  

θ Mean 
μ x 10-2 (m) 

Standard  
deviation   COV (%) Deterministic

amplification

Deterministic 
GM 

0.5 2.6 0.073 2.784 

2.48 
1 2.6 0.114 4.364 
2 2.6 0.135 5.176 
3 2.6 0.166 6.362 
5 2.6 0.285 10.915 

θ Mean 
μ x 10-2 (m) 

Standard  
deviation   COV (%) Deterministic

amplification

Stochastic 
GM 

0.5 3.2 0.138 4.237 

2.48 
1 3.2 0.301 9.301 
2 3.2 0.472 14.610 
3 3.2 0.567 17.565 
5 3.2 1.030 31.780 
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Table 2 also shows that the mean value of the permanent displacement 
presents a maximum. This maximum was detected when θ=2, i.e. when the isotropic 
autocorrelation distance is equal to the height of the soil domain. When θ decreases 
from 5 to 2, one can notice that the mean of the permanent displacement increases. 
This can be explained by the fact that increasing the soil heterogeneity introduces 
weak zones with small values of the shear modulus G, thus leading to larger values of 
the permanent displacement. The decrease in the permanent displacement for values 
of θ smaller than 2 may be explained by the fact that as the autocorrelation distance 
decreases, the propagating wave can face some stiff zones which reduce the 
permanent displacement. Finally, on can notice also that introducing the soil spatial 
variability and the randomness of GM lead to more critical results since all the mean 
values of the permanent displacement obtained in the probabilistic study are larger 
than the corresponding deterministic value. 

 
Table 2. Effect of the autocorrelation distance θ on the statistical moments (μ, σ) 

of the permanent displacement 

 
Figure 5.  Permanent displacement at the 

toe of the slope with deterministic GM 

 
Figure 6.  Permanent displacement at 
the toe of the slope with stochastic GM 

 θ Mean  
μ x 10-2 (m) 

Standard 
deviation   

COV 
(%) 

Deterministic permanent 
displacement 

Deterministic 
GM 

0.5 8.20 0.0005 0.610 

0.0407 
1 8.62 0.0014 1.624 
2 8.84 0.0020 2.262 
3 8.75 0.0021 2.400 
5 8.55 0.0025 2.924 

 θ Mean  
μ x 10-2 (m) 

Standard  
deviation   

COV 
(%) 

Deterministic permanent 
displacement 

Stochastic 
GM 

0.5 26.20 0.0596 22.75 

0.0407 
1 26.46 0.1248 47.16 
2 27.40 0.1267 46.24 
3 27.17 0.1359 50.02 
5 25.57 0.2793 109.23 
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CONCLUSIONS 

The effect of both the soil spatial variability and the Ground-Motion (GM) 
time variability on the dynamic responses is studied. The soil shear modulus G is 
considered as an isotropic non-Gaussian random field. The simulation of variable 
acceleration time histories based on a real target accelerogram is done using a fully 
nonstationary stochastic model. The deterministic model was based on numerical 
simulations using the dynamic option of the finite difference code FLAC3D. The 
methodology adopted in this paper makes use of a non-intrusive approach to build up 
a sparse polynomial chaos expansion (SPCE) for the dynamic system responses. The 
main conclusions can be summarized as follows: (i) the decrease in the 
autocorrelation distance of G (i.e. the soil heterogeneity) leads to a small variability 
of the dynamic responses; the amplification being more affected; (ii) adding the 
randomness of the earthquake GM has a significant incidence on the variability of the 
dynamic responses; (iii) the isotropic autocorrelation distance affects the probabilistic 
mean values of plastic responses (eg. the permanent displacement); its effect being 
negligible on elastic responses (eg. the amplification). 
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