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In this work we propose a new approach for solving the heat equation within the Boundary Elements method framework. This technique lies in the use of a separated representation of the unknown field that allows decoupling the space problem (that results steady state) from the temporal one (one dimensional that only involves the time coordinate).

Introduction

The Boundary Elements Method (BEM) allows efficient solution of partial differential equations whose kernel functions are known. The heat equation is one of these candidates when the thermal parameters are assumed constant (linear model). When the model involves large physical domains and time simulation intervals the amount of information that must be stored increases significantly.

We propose here an alternative strategy able to change the nature of the problem. Thus, the temperature field involved by the so called heat equation is approximated using a separated representation involving products of space and time functions. This kind of approximation is not new, in fact proper orthogonal decomposition [START_REF] Chinesta | Alleviating mesh constraints: Model reduction, parallel time integration and high resolution homogenization[END_REF] allows such one decomposition, but in this case this decomposition must be applied a posteriori, i.e. on the transient solution of the considered model.

The technique that we propose in this paper allows to transform the transient model in a sequence of space problems (all of them steady state) and time problems (that only involve the time coordinate). This iteration procedure lead to a proper space-time generalized decomposition of the model solution.

The efficiency of such one approach was proven in [START_REF] Ammar | The nanometric and micrometric scales of the structure and mechanics of materials revisited: An introduction to the challenges of fully deterministic numerical descriptions[END_REF][START_REF] Ammar | A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids[END_REF][START_REF] Ammar | A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids: Part ii: Transient simulation using space-time separated representations[END_REF]. In our knowledge, this technique has never been coupled with a BEM for solving the resulting steady problem defined in the physical domain.

A Proper Generalized Decomposition Boundary Element Method

Let Ω ⊂ R n be a domain of boundary Γ and let τ ⊂ R + a time interval in which the model is defined. The strong form of the heat equation with homogeneous initial and boundary conditions writes: Find the temperature field (assuming known the heat source b (x,t)) such that:

∂ ,t u (x,t) -u (x,t) = b (x,t) x ∈ Ω,t ∈ τ (1) u (x,t) = 0 x ∈ Γ,t ∈ τ (2) u (x, 0) = 0 (3) 
In the proposed technique the transient equation is not solved by applying the standard BEM technique. On the contray, we are using the fact that u (x,t) can be expressed into the separated representation form:

u (x,t) ≈ n ∑ k=1 R k (x) S k (t)
We are looking for the functional couples (R k (x), S k (t)). We must recall that the efficiency of the method depends on a number of functional couples n small enough. However, the solution of many models can be written from a reduced number of functional couples.

First, we should give the equations that must verify the different functional couples. For the sake of simplicity we introduce the notation:

R i, j (x) = S i (t) , ∂ ,t S j (t) τ R j (x) -S i (t) , S j (t) τ R j (x) S i, j (t) = R i (x) , R j (x) Ω ∂ ,t S j (t) -R i (x) , R j (x) Ω S j (t)
where

(u, v) τ = τ u(t)v(t)dt and (u, v) Ω = Ω u(x)v(x)dx.
We can prove that Proposition 1 (Galerkin method for separated representations). The couples (R k (x) S k (t)) that verify the strong form of the heat equation are also solution of the non-linear systems:

     R 1,1 (x) + • • • + R 1,n (x) = (S 1 (t) , b (x,t)) τ . . . . . . R n,1 (x) + • • • + R n,n (x) = (S n (t) , b (x,t)) τ      S 1,1 (t) + • • • + S 1,n (t) = (R 1 (x) , b (x,t)) Ω . . . . . . S n,1 (t) + • • • + S n,n (t) = (R n (x) , b (x,t)) Ω (4) 
Proof. Let H τ be a Hilbert space with the scalar product

(u(t), v(t)) τ = τ u(t)v(t) dt
We assume that the functions S k (t) define a basis B τ of H τ . By applying the Galerking method to the heat equation, we are looking for the functions

R k (x) such that n ∑ k=1 R k (x) ∂ ,t S k (t) -R k (x) S k (t) , S i (t) τ = 0 ∀i = 1 • • • n
that can be rewritten as:

n ∑ k=1 R i,k (x) = (S i (t) , b (x,t)) τ ∀i = 1 • • • n (5) 
Now, we consider another Hilbert space H Ω with the associated scalar product

(u(x), v(x)) Ω = Ω u(x)v(x) dx
We consider that functions R k (x) define the basis B Ω of H Ω . Thus, we look for the functions S k (t)

such that n ∑ k=1 R k (x) ∂ ,t S k (t) -R k (x) S k (t) , R i (x) Ω = 0 ∀i = 1 • • • n
that can be rewritten as:

n ∑ k=1 S i,k (t) = (R i (x) , b (x,t)) Ω ∀i = 1 • • • n (6)
Equations eq [START_REF] Carslaw | Conduction of Heat in Solids[END_REF] and eq (6) correspond to the system eq (4).

In the context of the proposed strategy, the number of functional couples R k (x) S k (t) is "a priori" unknown. We propose to build-up this basis iteratively, until reaching convergence.

Thus, at the first iteration we consider the basis B Ω (resp. B τ ) composed of a single element R 1 (x), (resp. S 1 (t)). Thus, we look for R 1 (x), S 1 (t) such that:

R 1,1 (x) = (S 1 (t) , b (x,t)) τ S 1,1 (t) = (R 1 (x) , b (x,t)) Ω
At iteration p, the basis B Ω (resp B τ ) is composed by the functions previously computed R 1 (x) to R p-1 (x), (resp. S 1 (t) to S p-1 (t)) and by R p (x) and S p (t) verifying

R p,p (x) = S p (t) , b (x,t) τ -∑ p-1 i=1 R p,i (x) S p,p (t) = R p (x) , b (x,t) Ω -∑ p-1 i=1 S p,i (t) (7) 
Proposition 2. First, we introduce the notation b

i (x,t) = R i (x) ∂ ,t S i (t) -R i (x) S i (t). If at iteration n, we have b (x,t) = ∑ n k=1 b i (x,t), then u (x,t) = ∑ n k=1 R k (x) S k (t)
is solution of eq [START_REF] Chinesta | Alleviating mesh constraints: Model reduction, parallel time integration and high resolution homogenization[END_REF]. We can affirm that the method converges. In that case the couples R k (x)S k (t) verify the system eq (4), as well as the conditions:

∑ n i=p+1 S p (t) , b i (x,t) τ = 0 ∑ n i=p+1 R p (x) , b i (x,t) Ω = 0 1 p n -1
that can be written as:

∑ n i=p+1 R p,i (x) = 0 ∑ n i=p+1 S p,i (t) = 0 1 p n -1 Proof. Because b (x,t) = ∑ n k=1 b i (x,t), we have S p (t) , b (x,t) τ = n ∑ i=1 S p (t) , b i (x,t) τ = n ∑ i=1 R p,i (x) 
At iteration p, R p (x) is computed from eq (7) that also writes

R p,p (x) = n ∑ i=1 R p,i (x) - p-1 ∑ i=1 R p,i (x)
This implies ∑ n i=p+1 R p,i (x) = 0.

Remark 1. The proposed iteration scheme stops when the relation

b (x,t) - n ∑ k=1 R i (x) ∂ ,t S i (t) -R i (x) S i (t) Ω×τ ε
holds, where ε is a small enough threshold value.

In order to enforce the homogeneous boundary and initial conditions eq (2), one should enforce

R k (x) = 0 x ∈ Γ and S k (t) = 0 t ∈ τ.
In order to solve the resulting non-linear problem eq (7) at iteration p, we use a fixed point strategy.

We denote by R (q) p (x) and S (q) p (t) the values of R p (x) and S p (t) at iteration q. We consider that R (q) p (x) and S (q) p (t) are known, and we determine R

(q+1) p (x) from S (q) p (t) , ∂ ,t S (q) p (t) τ R (q+1) p (x) -S (q) p (t) , S (q) p (t) τ R (q+1) p (x) = S (q) p (t) , b (x,t) τ -∑ p-1 i=1 R (q) p,i (x) (8) 
In fact is that equation related to the boundary conditions on R p (x) that we are solving by applying the BEM. However, as the kernel is different depending on the sign of S (q) p (t) , ∂ ,t S (q) p (t) τ , we rewrite that equation as:

-S (q) p (t) , S (q) p (t) τ R (q+1) p (x) = S (q) p (t) , ∂ ,t S (q) p (t) τ R (q) p (x) + S (q) p (t) , b (x,t) τ -∑ p-1 i=1 R (q) p,i (x) (9)
where the first term of the rigth hand member of eq (8) is computed at iteration q instead of q + 1. Thus, R (q+1) p will be the solution of a Poisson equation.

We are now calculating S 

R (q+1) p (x) , R (q+1) p (x) Ω ∂ ,t S (q+1) p (t) -R (q+1) p (x) , R (q+1) p (x) Ω S (q+1) p (t) = R (q+1) p (x) , b (x,t) Ω -∑ p-1 i=1 S (q) p,i (t) (10)
This equation is a simple ODE whose solution does not represent any difficulty.

The method needs the computation of integrals R i (x) , R j (x)

Ω , R i (x) , R j (x) Ω
, and for that we define an approximation in Ω such that R i (x) = N T (x)s, N T (x) is the matrix containing the shape functions and s the vector containing the nodal values. We can chose the finite element shape functions, or the ones associated with the MLS or the RBF. Vector s is obtained using the BEM representation formula.

We proceed in the same way for the integral (S i (t) , S i (t)) τ , (S i (t) , ∂ ,t S i (t)) τ .

Numerical example

In this section we validate the just proposed approach. We consider the square domain Ω = [0, 1] × [0, 1] and the time interval τ = [0, 0.2]. The source term is constant b (x,t) = 1 and both boundary and initial conditions homogeneous.

The exact solution of the problem writes: (see [START_REF] Carslaw | Conduction of Heat in Solids[END_REF])

u as (x,t) = τ 1 0 1 0 G (x, y, x, ȳ, t) d xd ȳd t where G (x, y, x, ȳ, t) = 4 ∞ ∑ n=1 ∞ ∑ m=1 sin (nπx) sin (mπy) sin (nπ x) sin (mπ ȳ) exp -π 2 n 2 + m 2 t
The Poisson's equation eq (9) is solved by the BEM. the domain boundary Γ is discretized by using n Γ × n Γ segments Γ i , the field u (x,t) being constant on each one.

To compute de integrals R i (x) , R j (x)

Ω , R i (x) , R j (x)
Ω the field u (x,t) is reconstructed within Ω on a mesh compatible with the segments defined on the domain boundary Γ i . Each element of the mesh defined a domain Ω i (see figure 1). The field is approximated using quadratic MLS based shape functions.

The integrals are computed by using a single integration point located at the middle point of each segment Ω i . The time interval is discretized using linear MLS based shape functions from the n τ nodes uniformly distributed.

We are checking the convergence for different space (i.e. n Γ ) and time (i.e. n τ ) discretizations.

Table 1 and figure 2 show the evolution of the L 2 error in time and space as a function of the number of functional couples R k (x) S k (t) involved in the approximation of u (x,t) and the mesh densities. We define this error as: 

n Γ n τ e 2 1 e 2 
e n = n ∑ k=1 R k (x) S k (t) -u as (x,t) L 2 
Ω×τ we can notice that for a number of couples n the error e n decreases reaching a plateau when n Γ increases. For reducing this error we must increase n Γ and recompute more couples R k (x) S k (t).

In the example here addressed, 6 couples must be considered for reaching a linear convergence of 5 n Γ 32.

Figures 4 depict R 1 (x), R 2 (x), R 3 (x), R 4 (x) and figures 5 show S 1 (t), S 2 (t), S 3 (t), S 4 (t) for n Γ = 5 and n τ = 32. Figure 3 depicts the field u (x,t) the error u (x,t)u as (x,t).

Conclusion

The proposed approach transform an incremental BEM procedure into a decoupled one that needs the solution of some steady problems defined in space (Poisson equation in the case here addressed), and some ordinary differential equations that only involve the time coordinate. Significant reduction of CPU time is expected due to the non-incremental nature of the proposed technique, as well as 
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