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Implicit-explicit time integration algorithms for the numerical simulation of blade/casing interactions

In order to solve fast dynamic problems, an explicit method is the most adapted. But for slower dynamics, an implicit method is more stable. Typical industrial problems are governed by high frequency, e.g. impact, during short time intervals and slower dynamics, e.g. spring-back, during other time intervals. The optimal solution is then to have both implicit algorithm and explicit methods readily avail able in the same code and to be able to switch automatically from one to the other. Criteria that decide when to shift from a method to another have been developed here. Implicit balanced restarting conditions that annihilate numerical oscillations resulting for an explicit calculation are also proposed.

Introduction

Many industrial problems of today need to be simulated with non-linear mod els. This is especially true in the aeronautical domain where the constructor must ensure that components stand up to impact. Adequate non-linear numerical finite elements simulations can avoid a lot of expensive experiments. The choice of a time integration algorithm is an essential criterion to ensure efficiency and robust ness of the numerical simulations. Difficulty in this choice resides in being able to combine robustness, accuracy and stability of the algorithm. Implicit ones need to be solved iteratively on each time increment (time step), contrarily to explicit ones. But, for stability reasons, explicit methods use smaller time steps than implicit ones. Explicit methods, avoiding iterations and convergence problems, are there-fore generally used for fast dynamics simulation for which small time step size is always necessary to capture high frequency solutions. It is especially true for prob lems with many degrees of freedom, for which iterations are very expensive and convergence problems are frequent [1]. On the other hand, for slower dynamics problems, implicit algorithms allow to work with greater time step size, resulting in more numerical stability and accuracy [1,[START_REF] Gelin | Quasi-static implicit and transient explicit analyses of sheet-metal forming using a c three-nodes shell element[END_REF][START_REF] Sun | Comparaison of implicit and explicit finite element methods for dynamic problem[END_REF]. Most industrial problems have some time intervals governed by fast dynamics and others governed by slower dynamics. Then, one can take advantage from a solution method that combines both families of integration algorithms.

A solution is to integrate over some time intervals with an implicit method and other time intervals with an explicit one. Few works have been developed with this latter combination and they were all developed for sheet metal forming anal ysis. Jung and Yang [START_REF] Jung | Step-wise combined implicit-explicit finite element simulation of autobody stamping process[END_REF] have simulated a stamping simulation that begins with an implicit scheme and shifts to an explicit one when a problem of convergence appears. No return to implicit scheme is actually planned. Another method, devel oped by Finn et al. [START_REF] Finn | Use of a coupled explicit-implicit solver for calculating spring-back in automotive body panels[END_REF] and by Narkeeran and Lovell [START_REF] Narkeeran | Predicting springback in sheet metal forming: an explicit to implicit sequential solution procedure[END_REF], simulates stamping (as a fast dynamics problem) with an explicit scheme and springback phase (slow dynamics) is subsequently analyzed with an implicit one. The time of transition is fixed by the user and initial conditions for the implicit phase, such as velocities and accelerations, are set to zero. This method has been generalized in this work and automatic criteria that decide to shift from a family to another have been devel oped. They depend on an integration error [START_REF] Geradin | Analyse, simulation et conception de systemes polyarticules et depluyables[END_REF][START_REF] Noels | Self-adapting time integration management in crash-worthiness and sheet metal forming computations[END_REF] that allows to determinate implicit time step size and they also depend on a ratio between the computational time (or CPU) needed to solve an implicit time step and the CPU needed to solve an explicit time step. Initial conditions, when shifting from explicit to implicit scheme occurs, are also defined to avoid lack of stability and convergence. This paper will be organized into three sections. First, time integration algo rithms will be briefly explained. Second, the mentioned criteria and initial restart ing conditions will be detailed. Third, numerical simulations will be exposed to validate the methodologies.

2 Numerical integration of transient problems

Equations of motion

FEM (Finite Element Model) semi-discretization of the equations of motion of a nonlinear structure leads to the following coupled set of second order nonlinear differential equations [START_REF] Belytschko | Computational methods for transient anal ysis[END_REF]10,[START_REF] Ponthot | On relative merits of implicit schemes for tran sient problems in metal forming simulation[END_REF]:

R ==Mi+ Fi nt (x,x) -;-ext (x,x) == 0 (1)
where R is the residual vector, x the vector of the nodal positions at current time, x the vector of nodal velocities, .i the vector of nodal accelerations. Af is the mass matrix, F i n t the vector of internal forces resulting from body's deformation and F ex t the vector of external forces. Both vectors are non-linear in x and in x due to the coupled phenomena of contact, plastic deformations or geometrical non linearities.

Implicit schemes

The most general scheme for implicit integration of eqn ( 1) is a generalized trape zoidal scheme [START_REF] Belytschko | Computational methods for transient anal ysis[END_REF]10,[START_REF] Chung | A time integration algorithms for structural dynamics with improved numerical dissipations: the generalized-a method[END_REF] where updating of positions and velocities is based on "averaged" accelerations stemming from associated values between t11 and tn+l • It reads for instance 
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where R,,,11+ 1 is the residual vector of time step n ton+ 1.

(4)

Iterative solution of the nonlinear eqn ( 4) requires the writing of the Hessian matrix of the system, i.e. where]( r, Cr are respectively the tangent stiffness and damping matrices. Using eqns (2) to ( 5) and a Newton-Raphson technique, the iterative solution of the prob lem can be written as:

SD.x = -R (6) 

Explicit Scheme

Chung and Hulbert have extended their implicit scheme to an explicit one, tak ing O:F = 1 in eqn (4) [START_REF] Hulbert | Explicit time integration algorithms for structural dynamics with optimal numerical dissipation[END_REF]. Its principal advantage is its numerical dissipation property. Time integration is then:
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This scheme is conditionally stable and time step size is limited, depending on maximal model frequency Wm ax, but also depending on spectral radius (Pb):

(10) with [START_REF] Ponthot | On relative merits of implicit schemes for tran sient problems in metal forming simulation[END_REF] In eqn (10), Is is a safety factor ( < 1) that accounts for the destabilizing effects of non-linearities.

Implicit time step size control

The implicit time step size control is the one proposed by Geradin [START_REF] Geradin | Analyse, simulation et conception de systemes polyarticules et depluyables[END_REF], extended to highly non-linear problems by Noels et al. [START_REF] Noels | Self-adapting time integration management in crash-worthiness and sheet metal forming computations[END_REF]. This scheme continuously adapts time step size to physical modes evolution and keeps time step size constant during long time intervals. To estimate time step size an integration error is computed.

The integration error is deduced from truncated terms of eqn (2) and eqn (3).

This error is of the third order: 0 (itit3i) ::: 0 (itit2tix). To have a problem independent error, it is made non dimensional, using x0 (the initial position vector) and a reference error f [START_REF] Geradin | Analyse, simulation et conception de systemes polyarticules et depluyables[END_REF][START_REF] Noels | Self-adapting time integration management in crash-worthiness and sheet metal forming computations[END_REF]. To take into account the rotation, the integration error is then rewritten by taking the variation of the nodal acceleration modulus (N is the number of nodes) [START_REF] Noels | Self-adapting time integration management in crash-worthiness and sheet metal forming computations[END_REF]:

(12)
Time step size is deduced from the integration error defined in eqn (12:• and from a tolerance P RCU fixed by the user. The relation to be verified is:

ernt < PRCU ( 13 
)
The new time step size tit new to reach a reference integration error (half of the tolerance P RCU) is deduced from the current time step size (tit cur) and from the current integration error (e i nt,cur ), using the following relation developed by Geradin [START_REF] Geradin | Analyse, simulation et conception de systemes polyarticules et depluyables[END_REF]:

(ti tnew) '1 PRCU f:ltc1Lr = 2eint.cur (14) 
with 17 E (2, 3] a user specified parameter [START_REF] Geradin | Analyse, simulation et conception de systemes polyarticules et depluyables[END_REF][START_REF] Noels | Self-adapting time integration management in crash-worthiness and sheet metal forming computations[END_REF]. The time step size management, based on cqns ( 13) and ( 14), is the one developed by Noels et al. [START_REF] Noels | Self-adapting time integration management in crash-worthiness and sheet metal forming computations[END_REF].

3 Shifts from an algorithm family to another

Shift from an implicit algorithm to an explicit algorithm

First the ratio r* between the CPU needed for an implicit time step computation and the CPU needed for an explicit time step computation, is evaluated. In this paper, this ratio is averaged for each step to be able to shift from a method to another for non-linear simulation. Shift to explicit method occurs if:

(15) where 6.. texpl is evaluated with eqn ( 10). The factor µ is taken greater than unity (typical value is disscussed in section 4) to avoid shifting from a method to another too frequently. This methodology allows to take into account the number of degrees of freedom, the algorithms efficiency, the residual tolerance required and the non linearities evolution.

Shift from an explicit algorithm to an implicit algorithm

While the method used is an implicit one, the explicit time step size could always be easily computed from eqn (10). When the current method is explicit, the implicit time step size, which correctly integrates the problem, does not remain directly accessible. Using developments of section occur with a spectral radius Pb (section 2.3) set equal to zero (Pb is a user parame ter). Thus, numerical oscillations have been greatly reduced at time t,,+,.• (Figure 1 ). The second step in the algorithm will be to determine a balanced configuration at time tn+r•+,. .. . Therefore, we act twofold. First an explicit solution using r** (r** will be defined on next paragraph) explicit steps is computed. This solution results In general, the iterative process necessary to reach this equilibrium quickly con verges and this allows to begin the implicit method with a balanced solution at time t,, + ,.•+,. .. . Anyway r** must be defined. It is always lower or equal to /J.r*. It is lower if r* is too large to lead lo convergence of the first truly implicit step after time t11+,.• +r". In this work r** is limited to I 00. But if r** is lower than µr*, time step size i::. increased (multiplied by 2) each two steps to reach 6.t = µr• * 6.texpl

Numerical examples

Numerical ex amples will be computed with three methods. The first method uses a purely implicit algorithm, the second method a purely explicit algorithm, and the third method can shift from an algorithm family to another. The accuracy of the numerical results and the computation costs are compared. The parameters TJ of eqn (16) and µ of eqns (15, 17) are respectively taken equal to 2.5 and 1.5.

Decreasing TJ orµ will result in more shifts from a method to another and thus will degrade the efficiency of the algorithm. Since a return to an implicit scheme leads to some iterations (section 3. 3), computation costs can increase. "' 1 ---_,. A cylindrical bar (external diameter de = G.4mm, length l = 32.4mm, den sity p = 8930kg/m3, Young's modulus E = 117e3 N/mm2, Poisson's ratio v = 0.35), discretized with 1080 elements (27 in each section by 40 along the axis), is at distance x0 = lmm from a rigid plane. The plastic hardening law (crv depending on effective plastic strain €1'1) is av = o-0 + h€P 1 with the yield stress cr0 = 400N/mm2 and the hardening parameter h = 100N/mm2. It has an initial velocity ±0 = 227m/ s directed towards the plane. After the wave has propagated across it, the bar looses contact with the wall. Numerical parameters used for the time integration scheme (section 2) are reported in Table 1.

Central point displacements obtained with the three methods (full implicit, full explicit and combined implicit/explicit) are compared in Figure 2. The combined method reacts as expected. It computes the rigid translation motion and rebound with an implicit scheme and the plastic impact with an explicit scheme. Comparing computed displacement, it appears that all the solution are quite similar. Computa tional costs (Table 2) confirm the marked advantage of the combined algorithm. It is about 30% cheaper than the implicit solution and about 700% cheaper than the explicit solution. When shift to implicit scheme occurs, using the defi ned initial conditions (section 3.3) does not lead to convergence problem. We consider a blade (Figure 3), with a twisted rectangular cross section (casing 3). The plastic hardening law (av depending on effective plastic strain tP1) is O"v = uo + (acoao) ( 1e-h,tP' ) + hEP1 with the initial yield stress O"o = le9N/m2, saturated yield stress u00 = l.3e9N/mm2, exponential hardening parameter he= 100, hardening parameter h = 300N/mrn2.

diameter c:d = l.
To simulate a load unbalance phenomenon, the center of rotation of the blade is moved during the first rotation so that the blade comes into contact with the cas ing and is subsequently deformed. The displacement of the center of rotation is the following. Its initial position is coincident with the center of the casing and there is no contact. During the first half revolution, the rotation center is moved 3cm to the opposite direction of the initial blade position so that contact interactions between the blade and the casing is generated. These interactions lead to irreversible plas tic deformation of the blade. During the second half of the first revolution, the center of rotation is brought back to its initial position. Scheme parameters used (section 2) are given in Table 1. Potential energies (i.e. work done by internal forces) obtained with the three methods (full implicit, full explicit and combined implicit/explicit) are compared in Figure 4. Time intervals treated with implicit or explicit scheme when the combined implicit/explicit algorithm is used are indi cated. This combined scheme behaves as expected. It computes rotation with no large plastic strain (before first half revolution and after first revolution) with an implicit scheme and interval with important plastic deformation (between first and second half revolution) with an explicit scheme. Comparing full implicit and full explicit computed energies, it appears that both solution are qualitatively identical but are about 25 3 different quantitatively. Nevertheless the impliciUexplicit solu tion is bracketed by the two other solutions. It proves that the combined method does not lead to numerical instability. Computational costs (Table 3) confirm the advantage of the combined algorithm. It is about 83 cheaper than the implicit solution and about 503 cheaper than the explicit solution. When shift to implicit scheme occurs, using the defined initial conditions (section 3.3), it does not lead to any convergence problem. An integration scheme that combines implicit and explicit schemes was presented. This scheme integrates some time intervals with an implicit scheme, and others with an explicit scheme. First, automatic criteria that decide to shift from an algo rithm family to another were developed. Next, stable balanced initial conditions have also been proposed when shifting from an explicit algorithm to an implicit algorithm. Finally, numerical examples were proposed that confirm the interest of the combined algorithm.
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 33I schemeClassical explicit schemes such as the central difference method[START_REF] Belytschko | Computational methods for transient anal ysis[END_REF] are well known to generate oscillatory (though stable) solutions. Two solutions are here provided to stabilize and balance the Gauss points values and the nodal values.First, numerical oscillations of the Gauss points values and of the nodal val ues are annihilated thanks to the numerical dissipation property of the used a generalized explicit scheme. Indeed, when eqn (17) is satisfied, thus resulting in the choice to switch to implicit, at step number n (at time tn), r* explicit steps
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  X11 + r•+ r "' x,,+r•+ r• • an m x,,+,.•+r••, wuc m turn IS use as a pre 1ctor value for an implicit solution in one time step between time tn+r• (where numeri cal oscillations have been reduced) and time t11+ , .• + r• •. This procedure proved to be very effective in order to restart an implicit solution based on explicit unbal anced solution . Therefore, a balanced step of size equal to the implicit time step size is reached. The methodology is illustrated on Figure (1 ). This balanced solu tion is reached considering an implicit time step size equal to 6.t,. •• = r** 6.texpl.
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 2 Figure 2: Central point displacement comparison for Taylor bar impact.
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 1 Numerical example 1: Taylor bar impact
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 442 Figure 4: Potential energies comparison for contact between a blade and a rigid casing.

Table 1 :

 1 Numerical properties for the schemes.

Table 2 :

 2 CPU comparison for Taylor bar impact.

	Implicit	Explicit Implicit/explicit
	CPU time (min.)	11.45	66.2	8.3
	d n			

  305m, external blade diameter de = l.3m, internal blade diame ter d; = O.lm, length of section L = O.llm, width of section l = 0.032m, twist ing angle n1. = 45, density p = 4450kg /m3, young's modulus E = 110e9 N /m 2 , Poisson's ratio v = 0.31), discretized with 204 elements, with an uniform rota tion motion in a rigid casing. The rotational velocity is Dr = 3333.3r.p.m. (Fig ure

Table 3 :

 3 CPU comparison for contact between a blade and a rigid casing.

	Implicit Explicit Implicit/explicit
	CPU time (min.)
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