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Abstract. This work concerns the shape identification of curvilinear objects, for example bent
beams or wires in mechanics. The beam’s digital picture is analyzed with the introduced Vir-
tual Image Correlation method. This one consists in finding the optimal correlation between the
beam’s image and a virtual beam, whose curvature field is described by a truncated series. The
gray level and amplitude of the virtual beam does not need to reproduce exactly the ones of the
physical beam image. The analytical form of the optimal shape allows one to derive mechanical
properties: the identification of the Young’s modulus of a bar is given as an example. We will
also show the robustness of the method with regards to the quality of the image.

Introduction

Full-field strain measurements recently took a major place in experimental mechanics [1, 2].
However, these methods do not apply to uni-dimensional objects, such as wires or beams im-
ages, whose width can be of the order of one pixel. Furthermore such objects may show large
deformations, even including the formation of loops.

Methods issued from the image processing field, such as skeletonizing, level set methods,
ridge following methods [3] or Radon transform based methods provide numerical results con-
sisting in a set of pixels. This kind of discrete result is unadapted for beam mechanics that
requires the computation of the curvature field (the second derivative of the shape is very noisy
in this case).

The proposed method consists in finding the best correlation between the physical beam
image and a virtual beam. From an approximate initial shape consisting of a set of straight
segments, the virtual beam is gradually ”deformed” until it perfectly matches (with respect to a
quadratic distance) the physical beam image.

Unidimensional sketch of the method

This section explains the method in a simplified 1D case in which x is the abscissa. The goal
is to recover the symmetry axis of a physical image f0 from the digitalized image f . In the
present example, f0 has a symmetry axis at xs = 1.4, ranges from 0 (black) at the border to 1
(white) at its center (Fig. 1a). The available information is the digital image f (Fig. 1b), where
the gray level of each pixel is computed as the mean value of f0 along the pixel (the pixel size
corresponds here to an unit). Due to the choice of xs in between two pixels, the digital image, 4
pixel width, has no symmetry axis. The proposed method for the recovery of xs from f consists
in finding the abscissa x0 for which the quadratic distance between f and the virtual image g is
minimum. This one, defined for any x ∈ [−R,R] is expressed as:

g(x) =
1

2

(
1 + cos

(πx
R

))
. (1)
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It has a symmetrical bell shape (Fig. 1c, shifted by a trial value x0 = 5) and its width and
shape are a priori different from the one of f0. In order to maximize the precision of the
method, g is discretized over a mesh (not represented in figure 1) thinner than the pixel size of
f . The computation of the quadratic distance (Eq. 2) requires the computation of f ∗, the (cubic)
interpolation of f over the fine mesh of g (Fig. 1d). Generally, f ∗ is not similar to f0.

φ(x0) =

∫ x0+R

x0−R

(f ∗(x)− g(x− x0))
2dx (2)

For the sake of simplicity, calculi over f ∗ and g are expressed here as continuous integrals but
are computed numerically (over the fine mesh of g).
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Figure 1: 1D sketch of the method: a) physical image, b) digital image, c) virtual image, d)
interpolated digital image, e) quadratic distance, f) 1D mean line detection

The figure 1e shows the variation of the quadratic distance φ as a function of the shift x0:
it is minimum at x0 = 1.396 pixels. Compared to the prescribed xs = 1.4 pixels, this result
shows that the proposed method reaches a subpixel precision for this example. Extra tests with
various values xs and square or triangle functions f0 show quite similar accuracy as soon as
f0 is symmetric. Sub-pixel performance is usually observed with such algorithms used in the
Digital Image Correlation field; mathematical explanations can be found in [2].

This simplified 1D analysis can be seen as a beam’s mean line detection process along some
axis x in a 2D image (Fig. 1f); function f corresponding to a cross section of the 2D image.

The virtual beam

We consider an image f of a physical beam (Fig. 1f, 3, 5). Compared to the 1D case (previous
section), the researched mean line of the beam is no more a position but a curve. This curve
represents the mean line of the virtual beam g, defined from its curvatures γ(s), where s is the
curvilinear abscissa. They are described by a truncated series:

γ(s) =
N∑

n=0

Anγ̃n(s̃), (3)

where s̃ ∈ [0, 1] = s/L and L is the (fixed) overall length of the beam. The functions γ̃n are
the basis functions of the series description (Lagrange or Fourier in the present case) and the
An are their respective weights. The angles θ(s) and positions x(s) of the virtual beam mean
line are obtained by successive integration; introducing the integration constants θ0 = θ(0) and
x0 = x(0), the problem consists in determining the (N+4) terms {x0, θ0, A0, ..., AN} for which
the virtual beam is the closest to the physical one. The gray level of the virtual beam g(X) is
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defined, similarly to Eq. (1), from the distance r ∈ [−R,R] from the current point X to the
virtual beam mean line then g is a sole function of r:

g(r) =
1

2

(
1 + cos

(πr
R

))
. (4)

The virtual beam g is not defined out of its definition domain Dg (r ∈ [0, R], s ∈ [0, L]).

Figure 2: Example of virtual beam. Dashed line: mean line.

Optimization process

The searched parameters are the coefficients Ak of the series and the two integration constants
θ0 and the ordinate x0,2 of x0 (abscissa x0,1 is fixed because if not the problem is underdefined).
These terms are joined together in a pseudo vector Vk = {x0,2, θ0, Ak}. The optimization
consists in finding the minimum, over Vk of the function Φ defined, similarly to Eq. 2, as:

Φ =

∫∫
Dg

(f − g)2 dS, (5)

that is the quadratic distance between the virtual (g) and physical (f ) beam images, where Dg is
the definition domain of g and dS the surface element. For the sake of clarity this section uses
continuous integrals and does not distinguish f from f ∗. Writing the condition of minimum
∂Φ/∂Vk = 0 (and considering g(X), where X(Vk) is a current point of the virtual beam) gives:∮

∂Dg

(
(f − g)2 n.

∂X
∂Vk

dVk

)
dl − 2

∫∫
Dg

(f − g)

(
grad(g).

∂X
∂Vk

dVk

)
dS = 0. (6)

The first term, a line integral over the contour ∂Dg of Dg (n is the outer normal vector) is ne-
glected on the two (small) ends of the beam at s = 0 and s = L. Its value over the lateral
borders (r = ±R) can be also neglected if one supposes that f , at these points (in the back-
ground of the physical image), is a constant value f |∂Dg : since g(±R) = 0 (see Eq. 4), using
the divergence theorem leads to∮

∂Dg

(f − g)2 n.
∂X
∂Vk

dVk dl = (f |∂Dg)2 ∂

∂Vk

(∫∫
Dg

div(X)dS

)
dVk. (7)

As div(X) is constant (equals to 2), the surface integral equals 2S where S is the surface of the
virtual beam. As S does not change with respect to the shape parameters Vk (a kinematic prop-
erty of the beams of constant length), the right hand term equals to zero and the optimization
condition (Eq. 6) reduces to the one proposed by Hild and Roux [2] for the DIC method:∫∫

Dg

(f − g)

(
grad(g).

∂X
∂Vk

)
dS = 0. (8)

The analytical definition of g (Eq. 3, 4) allows a fast computation of grad(g) and ∂X/∂Vk (not
shown here). The problem is discretized in order to use a Newton iterative process:

g(Vk + ∆Vk) = g(Vk) + grad(g).
∂X
∂Vp

∆Vp. (9)
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This, with Eq. (8), gives:

∆Vp

∫∫
Dg

(
grad(g).

∂X
∂Vk

)(
grad(g).

∂X
∂Vp

)
dS =

∫∫
Dg

(
grad(g).

∂X
∂Vk

)
(f−g)dS, (10)

which is a matrix equation, that can be rewritten as Mkp∆Vp = Lk. Its solution ∆Vp defines
the updated shape of the virtual beam. The iterative process stops with respect to a speed
convergence criterion.

From a numerical point of view, Eq. (10) is computed with discrete integrals. The mesh of g
is obtained from a discretization of s and r; it is more refined than the pixel size (about 3 times
in the examples). Computations require the value of f on the mesh of g: as presented in the first
section, this is done with a cubic interpolation (the result was referred as f ∗ in the first section).
As the shape of the virtual beam changes at each step, this interpolation is reevaluated at each
step.

Preliminary identification of the beam shape

Fig. (1e) shows that, even in 1D, the quadratic distance is convex only close to the solution
x0 = xs. In this condition, the Newton algorithm requires the initial step to be close to the
solution, in other words that Dg contains the beam image in f since the first iteration.

For this reason, a preliminary step by step algorithm identifies the beam shape segment by
segment. A segment correspond to a small straight virtual beam (of typical length 4R) whose
gray level is defined by Eq. 4. Each new segment starts at the middle of the previous. Its angular
orientation is defined from the smallest quadratic distance (Eq. 5) between it and the physical
image f (the computation of Φ uses again the interpolation of f on the fine mesh of g).

trial

trial 1 
pi

xe
l

Figure 3: Segment by segment preliminary identification.

This method has proven to be robust and able to deal with loops. Fig 3 illustrates such pre-
liminary identification. The image is extracted from a film of a thin fiber transported by a fluid
flow in a transparent fracture [4]. No preliminary image processing was done. Despite the low
definition of the image, the identification is already smooth and accurate. The half-width of the
virtual beam was set at R = 1 pixel and the computing time was a few seconds on a current
computer.

Technical aspects

Once the preliminary identification is made, the user can choose the type (Fourier or Legendre
for instance) and the order N of the series. The initial values of the parameters Vk are obtained
from this preliminary identification. The process starts and the shape of the virtual beam is
gradually deformed until it fits the physical beam shape.

Fig. 4 shows the result of the identification, using a Fourier series et the order N = 80. The
virtual beam perfectly matches the physical one, even in the detail view. Due to the analytical
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Figure 4: Shape identification. (a) global view. (b) loop detail.

definition of the virtual beam, this shape remains smooth (and infinitely differentiable). The
precision of the identification depends upon the retained order of the series. Orders too low
(here N < 8) do not allow the virtual beam to match the physical shape. The quadratic distance
Φ decreases monotonically as N increases and asymptotically reaches a plateau whose value,
generally nonzero, depends only upon the similarity between physical and virtual beams (but is
not correlated to the precision of the identification).

Validation of the method: identification of the mechanical properties of a cantilever beam

A 2017-T4 aluminium straight bar (diameter 4.95 mm, length 2459 mm) has been fixed in the
horizontal chuck of a milling machine in front of a black curtain. It bends under its own weight.
The proposed method provides the shape, angles and the curvatures of the bar. This last one has

Figure 5: Aluminium bar bending under its own weight.

a strong mechanical meaning in the Timoshenko’s beam theory as it is related to the bending
moment. Considering that the external actions only reduce to the gravity, the beam theory writes
as:

M(s) =

∫ L

s

ρg (x1(ξ)− x1(s)) dξ, (11)

M(s) = E
πR4

4
γ(s), (12)

in which M is the flexural moment, ρ the linear mass density, g the standard gravity, E the
Young’s modulus and x1 denotes the horizontal axis. In the large transformation framework,
this problem accepts a numerical solution. This solution is used to validate the precision of our
technique. The criterion retained for the comparison is the least square distance between the
ordinates x2. The best fit was obtained for E = 72 GPa, that corresponds to the value found
in the literature. Furthermore, this value was confirmed by a three point bending test that gave
E = 72.6 GPa.

The mean discrepancy between the ordinates of the analytical shape and the one measured
by the present method was only 2 pixels (1.2 mm). Compared to the beam size, this gives a
relative error of 5.10−4. This identification was done with a Legendre series at an order N = 8.
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Figure 6: The aluminium bar seen in the unwrapped frame of the virtual beam

Another tests, in which the chuck was turned of an half turn, shown that this was comparable
to the imperfect straightness of the beam. The optical aberrations were not compensated in the
present study, taking them into account would increase the precision of the method. Another
strong visual information is given by the image of the physical beam in the straightened frame
of the virtual beam g (Fig. 6): a correct identification theoretically leads to a symmetrical image,
whatever the beam is curved.

Conclusions

The Virtual Image Correlation method presented here provides an analytical identification of
the shape of any elongated object. It does not require any previous image processing and the
full process only takes a few minutes for an high resolution image and a standard computer.
Various test have shown the accuracy of the result, even on ill-defined images. The method uses
only the pixels that belong to the beam image and its close vicinity, reducing the computing
time and inducing insensitivity to far field artifacts (such as stones in Fig. 5). Furthermore, all
the pixels of the beam are taken into account by the correlation (and not only the brightest ones);
this contributes to the precision of the method.

This method can be applied in various fields, for example medicine (intestine shape identi-
fication, for example), biology (bacterium shape), engineering (beam measurement) and have
already be successfully used in fluid mechanics for the shape identification of thermal plumes.

Using some relevant procedure (for example [5]), it will be possible to extract automatically
the flexural properties of a fiber or beam from their images under various loadings. Further
developments will concern image sequences, in which the result of an image will be used as
initial values for the next one. This should allow the identification of the loop formation.
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