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-INTRODUCTION

The pressuremeter test is an in-place test widely used in soil mechanics in order to assess soil properties [START_REF] Baguelin | The pressuremeter and foundation engineering[END_REF][START_REF] Cassan | Essais in situ en mécanique des sols -Tome I : réalisation et interprétation[END_REF][START_REF] Wroth | The interpretation of in situ test[END_REF]. The pressuremeter device (Fig. 1) is composed of a radially expandable cylindrical probe either inserted into a pre-bored hole (Ménard pressuremeter test) or directly driven into the soil (Self-boring pressuremeter test) at the desired depth. Application of water pressure increments, monitored from the pressure -volume control unit located at the surface, causes the probe to be inflated. A standard procedure (French Standard NF P 94-110 or US Standard ASTM D 4719-87) then allows to deduce an experimental stress -deformation curve, named S exp . Its shape (Fig. 1) depends on the mechanical properties of the soil in which the probe has been inserted.

A theoretical pressuremeter curve S th can also be obtained by solving the mechanical boundary problem posed by the pressuremeter test, either analytically or by finite elements computations, depending on the degree of complexity of the constitutive model adopted for representing the behaviour of the tested soil. Then, it becomes possible to identify the parameters of the constitutive model by inverse analysis. The purpose of this mathematical tool is to fit the estimates of the theoretical pressuremeter curve S th to field data S exp by iterative computations on the values of the parameters of the constitutive model.

In this paper, we analyse some pressuremeter tests carried out in uncemented soils. The soil behaviour is represented using the linear isotropic elastic plastic model shown in Figure 2. The elastic part is defined by the elastic modulus E and the Poisson's ratio ν. The shear modulus G is equal to E/(2(1+ν)). The Mohr-Coulomb failure criterion (Eq. 1), characterised by the friction angle ϕ', determines the value of the peak strength :
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where σ r and σ θ are respectively the radial stress and the orthoradial stress. Volumetric strains in the plastic domain are calculated assuming a non-standard flow rule (Eq. 2) :
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where ψ is the dilation angle and χ a value between 0 and 1. ( [START_REF] Carter | Analysis of cylindrical cavity expansion in a strain weakening material[END_REF] have noted that the post-peak behaviour has a great effect on the stress distribution around the cavity, that is why we consider a post-peak strain softening law that depends on the deviatoric plastic strain ε d p such as :
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where α represents the strain softening rate. The function k is equal to 1 at the peak strength and is set to the value β < 1 at the critical state at which the strength remains constant. We model therefore a gradual decrease of the friction angle between the peak and the critical state. The semi-analytical expression of the pressuremeter curve developed from this constitutive model is then compared to relationships found in the literature [START_REF] Hughes | Pressuremeter tests in sands[END_REF][START_REF] Yu | Finite cavity expansion in dilatant soils : loading analysis[END_REF][START_REF] Monnet | Etude théorique de l'équilibre élasto-plastique d'un sol pulvérulent autour du pressiomètre[END_REF]. We show the effect of the different assumptions on the values of the friction angle obtained by optimisation computations.

-EXPRESSIONS OF THE PRESSUREMETER CURVE

-Resolution of the mechanical problem

The pressuremeter test is formally a problem of expansion of a cylindrical cavity, with an initial radius a, into an infinite medium (Fig. 2). We assume that : -the initial stress state is isotropic and is defined by the earth pressure at rest p 0 ; -the medium is homogeneous and isotropic ; -the problem is axisymmetric ; -the vertical stress is always the intermediate principal stress.

The assumption of plane strain is also adopted. It is justified by the use of guard cells placed on both sides of the probe. Finally, the elastic strains ε e and the plastic strains ε p are linked to the total strain ε by the partition rule (Eq. 5) :

p e ε + ε = ε
(Eq. 5) To determine the relation between the deformation u(a)/a and the pressure p applied by the probe at the cavity wall, we have to combine equations of the constitutive model, equilibrium equations in the horizontal plane (Eq. 6), compatibility equations (Eq. 7) that link the strains to the displacements, initial and boundary conditions (Eq. 8).
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The following notations are also adopted :
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-Pressuremeter curve equation using the strain softening model

Initial pressure increments are small enough to cause small and reversible strains. We can therefore consider that the soil behaves elastically as long as p is less than p pl such as :
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The equation of the pressuremeter curve in the elastic domain is then :

( ) G 2 p p a a u 0 - = (Eq. 10)
As soon as p reaches the value p pl , a plastic annulus develops concentrically around the borehole. The soil between the radius a and the radius c (Fig. 2) undergoes strain softening. Then :
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Equation ( 11a) is a polynomial function of the variable (c/a) raised to two distinct powers that depend on the values of the friction angle and the dilation angle.

The determination of this variable requires to calculate the deformation at the cavity wall (eq. 11b). It can be done by optimisation using a Gauss-Newton algorithm.

These equations (11a,b) are suitable as long as the pressure p into the probe is less than p pa for which the soil reaches the critical state. The pressure p pa mainly depends on the parameters α and β :
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When p > p pa , a third domain (a < r < b) coexists with the two previous zones (Fig. 2) : the elastic zone (r > c) and the strain softening zone (b < r < c). Assuming that the area of the strain softening zone is set when the critical state is reached, that is to say that the ratio (c/b) is set to the value R lim , the pressuremeter curve (Eq. 13) can be explicitly calculated :
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-Pressuremeter curve equation using the small strain assumption

The previous developments constitute a generalisation of the pressuremeter curves proposed in the literature. Indeed, if we assume : -a linear elastic perfectly plastic constitutive model ; -a small strain hypothesis ; -α = 0, β = 1, then p pl = p pa and (Eq. 13) becomes :
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Equation ( 14) is similar to the relation proposed by [START_REF] Monnet | Etude théorique de l'équilibre élasto-plastique d'un sol pulvérulent autour du pressiomètre[END_REF] if the elastic strain is set to a constant value in the plastic domain. On the contrary, if the elastic strain is supposed negligible in the plastic domain, we obtain the relation proposed by [START_REF] Hughes | Pressuremeter tests in sands[END_REF] :
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The equation ( 15) leads to a stiffer pressuremeter curve than the equation ( 14).

2.4 -Pressuremeter curve equation using the large strain assumption [START_REF] Yu | Finite cavity expansion in dilatant soils : loading analysis[END_REF]) have put the validity of the small strain hypothesis into question since it tends to give too high values of the limit pressure. With the linear elastic perfectly plastic model, they have developed an expression of the pressuremeter curve, using a large strain hypothesis and new definition of the compatibility rules (Eq. 16) :
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(Eq. 16) [START_REF] Yu | Finite cavity expansion in dilatant soils : loading analysis[END_REF] then stated that :
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where Γ is a function of the parameters of the constitutive model. Γ requires the calculation of a serie whose first five terms provide a good estimation.

-OPTIMISATION PROCEDURE

-Minimisation algorithm

The different equations of the pressuremeter curve (Eqs. 10, 11, 13, 14, 15, 17) have been implemented in a commercial software that also provides an optimisation algorithm, based on either the Gauss-Newton algorithm or the conjugate gradient method. The Gauss-Newton algorithm minimises the difference, raised to the power 2, between the experimental pressuremeter data S exp (p i ) and the theoretical one S th (p i , J) where p i is the pressure into the probe and J is the set of parameters :

( ) ( ) [ ] ∑ - = N 1 2 i th i exp J , p S p S L ( ) ( ) k k f J L Inf J L ℜ ∈ = (Eq. 18) ( ) ( )       ∂ ∂       ∂ ∂ + = - + k 1 k 2 2 k 1 k J J L J J L J J
However, the simultaneous optimisation of all the parameters by the Gauss-Newton algorithm leads to divergent computations or erroneous estimates because of the identical weight assigned to the parameters. This problem is emphasised by the coupling that links some of the parameters, the friction angle and the dilation angle for instance.

Therefore, in order to reduce the number of parameters that have to be simultaneously optimised, we establish an identification procedure based on a sensitivity study and on laboratory experiments.

-Identification procedure

The linear elastic perfectly plastic model is defined by 4 parameters : the earth pressure at rest p 0 , the shear modulus G, the friction angle ϕ' and the dilation angle ψ.

The value of the earth pressure at rest measured at the beginning of the pseudo-elastic stage of the pressuremeter curve, often integrates experimental errors (removal of the load during sounding, partial collapse of the borehole, …). So, without reliable geotechnical investigations or information about the historical record of the site to estimate the earth pressure, we calculate p 0 from the relation :

' K p v 0 0 σ = (Eq. 19)
where K 0 is the coefficient of earth pressure and σ v ' the vertical effective stress at the depth z at which the pressuremeter test is carried out (σ' v = γ h .z -u where γ h is the unit weight of the soil and u the pore pressure). The unknown disturbance due to the boring stage also affects the beginning of the pressuremeter curve. Consequently, the optimisation procedure is applied on the portion of the curve which corresponds to u(a)/a > 1,5 %, as proposed by [START_REF] Cambou | Utilisation de l'essai pressiométrique pour l'identification de paramètres intrinsèques du comportement d'un sol[END_REF]).

The shear modulus G is determined on an unload / reload cycle on which the effect of the initial disturbance is negligible :

( ) cycle cyc a a u 2 p G       ∆ ∆ = (Eq. 20)
But this value G cyc has to be corrected since the elastic properties of soils are highly dependent of the stress and strain states. [START_REF] Bellotti | Interpretation of moduli from self-boring pressuremeter tests in sands[END_REF] proposed the relation :
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where p c ' is the pressure into the probe at the time of unloading.

For natural uncemented sands, the dilation angle ψ is correlated to the friction angle ϕ' by : °-ϕ = ψ 30 ' (Eq. 22)

Consequently, only the friction angle ϕ' has to be optimised when considering the elastic perfectly plastic model.

The strain softening constitutive model adds 3 parameters : the softening rate α, the decrease of the friction angle β and the dilatancy characteristic in the critical state χ. The parameter α is optimised simultaneously with the friction angle ϕ'. The value of χ is set to 0 in the critical state since it is characterised by a constant volume deformation in the case of uncemented sands. Finally, the parameter β is the ratio between sin(ϕ cv ) and sin(ϕ') where ϕ cv and ϕ' are respectively the critical state friction angle and the peak friction angle. The two angles are highly correlated. The parameter β mainly depends on the density of the soil and on the mean stress. [START_REF] Bolton | The strength and dilatancy of sands[END_REF] proposed : ( )
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In order to avoid convergence towards values which do not present any physical meaning, we also add initial constraints on the parameters. For instance, the friction angle must be comprised between 20 and 55°, as it is the case for most of the uncemented soils.

The optimisation computation involves a change in the value of the friction angle, and, consequently, a change in the values of the domain bounds p pl and p pa . Then, we have to finally control that the expression of the pressuremeter curve used in the optimisation process corresponds to the pressure level into the probe.

-APPLICATIONS

In order to show the effect of the strain softening and the effect of the definition of the compatibility rules on the value of the friction angle determined by optimisation, we present two pressuremeter tests, named SP1-8 and SP2-8. They were carried out in a clean fine sand formation at 8 meters depth (σ v ' = 128 kPa, K 0 = 1).

The value of the shear modulus G, after being corrected (Eq. 21), is 33 MPa. The dilation angle is correlated to the friction angle according to (Eq. 22). χ is set to 1 in the strain softening domain and to 0 in the critical state. The friction angle at critical state is 33°, then β is close to 0,8.

According to the procedure previously described, computations with the large strain hypothesis model by [START_REF] Yu | Finite cavity expansion in dilatant soils : loading analysis[END_REF]) (Eq. 17) lead to a value of the friction angle equal to 39,7° for the test SP1-8 and 51,0° for the test SP2-8. These values enclose the value of the friction angle ϕ' triax (ϕ' triax = 43°) obtained by means of laboratory triaxial tests if we also take into account the difference due to the stress path. The field data and the theoretical pressuremeter curves are compared in Figure (3a).

Considering the elastic perfectly plastic model with the small strain assumption (Eq. 14), the optimised value of the friction angle is respectively 34,1° for the test SP1-8 and 41,0° for the test SP2-8.

Finally, with our strain-softening model, the pair of optimised values (ϕ', α) is respectively (ϕ' = 43°, α = 30) for the test SP1-8 and (ϕ' = 43°, α = 1) for the test SP2-8. The value α = 30 means that the decrease of the strength is relatively fast after the peak whereas the value α = 1 corresponds to a slow decrease from the peak to the critical state.

The difference between the two tests could be attributed to different site conditions (local cementation between grains, different shear moduli, …). In particular, the determination of the earth pressure at rest is an usual problem in geomechanics. If we assume, for example, that K 0 = 0,5 instead of K 0 = 1, optimisation computations lead to a value of the friction angle equal to 48° for the test SP1-8 and the elastic perfectly plastic model using a large strain hypothesis (Eq. 17). We note that the result of the computations is very sensitive to the value of the earth pressure at rest that also depends on the quality of the borehole.

In all cases, the theoretical pressuremeter curves accurately fit the field data, as shown in Figure (3b) for the test SP2-8. 

-CONCLUSIONS

We present a semi-analytical expression of the pressuremeter curve assuming a linear elastic plastic model with a post-peak strain softening. We confront this model with the expressions of the pressuremeter curve obtained considering a linear elastic perfectly plastic model, with a small strain hypothesis or a large strain one. These expressions are then implemented in a commercial software that also provides an optimisation tool.

Using the procedure developed to identify the friction angle of uncemented sands from field tests, we show the great effect of the strain softening and of the definition of the compatibility rules (small or large strain hypothesis) on the values of the friction angle determined by optimisation. The strain softening model can also provide information about the state of the soil in which the pressuremeter tests are carried out. But, the analytical resolution of the mechanical problem do not allow the simultaneous identification of many parameters. Further developments will be necessary to achieve this goal.
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