F Lanata 
  
F Schoefs Gem 
  
Identification of random variables via Markov Chain Monte Carlo: Benefits on reliability analysis

The capability in evaluating the failure probability of the structure has been checked by comparing the obtained prediction density with the real simulated probability density function of a simple random parameter whose probabilistic structure was known.

NUMERICAL SIMULATION

The purpose of the numerical simulation is the evaluation of the algorithm convergence as a function of the number N of available observations and of the length M of the generated chains on the model's parameters. Due to the interest in characterizing extreme values of the random variable for a further failure probability analysis, the comparison between the true probability density function of the random variable k(ω) and the generated predictive one has been performed using a parameter representative of the distribution tails.

True population and sampling

The true distribution function of the random variable k(ω) has been generated by simulating 20,000 samples from a beta distribution of parameters (α, β) = (5,2). The beta distribution has been chosen because it is particularly adaptable to represent a group of density functions simply adjusting the parameters. Moreover, its support is bounded (here between 0 and 1) and is suitable to represent physical processes. Five samples of reduced size have been randomly extracted from the true population to verify the accuracy of the proposed method for various values of N (in this article 20, 40, 60, 80 and 100). The real values of the parameters are always contained in the estimated confidence intervals due to the great uncertainty in the parameters even when the variance is reduced as larger samples are considered.

Metropolis-Hastings on sampled data

The best fitting of extracted samples being the beta distribution, the vector of the hyper-parameters

INTRODUCTION

The evaluation of failure probability in structural engineering is strongly dependent on the quantification of uncertainties associated with mechanical and model parameters. The uncertainties analysis can take advantage from the long-term monitoring of structural response that has shown to be the only way to understand complex interaction mechanisms and in-service structural behaviour, in particular when old designed structures need the definition of a new safety level due to the continuous evolution in loads and changes of environmental actions. Nowadays, the number of continuously monitored structures is increasing but the way to include this valuable information in a reliability analysis is not clear yet. Therefore, monitoring information is hardly used to improve the knowledge of involved parameters. Structural monitoring gives information on response quantities (displacements, strains, etc.) and not on input parameters of the structural model. Generally, an inverse analysis has to be performed to get the model parameters and/or the variables of interest from measurements [START_REF] Schoefs | Polynomial chaos representation for identification of mechanical characteristics of instrumented structures[END_REF]. Uncertainties can be taken into account by considering the obtained parameters as random variables.

As for the long-term monitoring of a pilesupported wharf in the Great Maritime Port of Nantes-Saint Nazaire in France (see full article for details), a procedure of parameter identification has to be constructed when a limited number of data is available. This article proposes a Bayesian framework, based on the Markov Chain Monte Carlo (MCMC) approach, to introduce model uncertainties in the identification process when monitoring data are available [START_REF] Ghanem | On the construction and analysis of stochastic models: characterization and propagation of the errors associated with limited data[END_REF]. The prior densities of the model's parameters (called hyper-parameters in the following) are assessed from the available simulated measurements. The posterior densities are generated using a cascade Metropolis-Hastings algorithm. They are finally propagates through the model to obtain the probability density function of the mechanical parameter of interest. is constituted by the two parameters of the beta distribution, α and β. A normal prior distribution conditioned to the observations has been assumed for both parameters and it has been used as transition probability to generate a new state of the chain. The transition distribution has been inferiorly limited to 0 because the parameters can assume only positive values. Two independent Markov chains have been generated using the MCMC algorithm detailed in the full article. The final acceptation rate assessed from a 5000-sample Markov chain is around 50-55%. A 20,000-sample Markov chain has been also tested. The estimated values of the parameters are very close to the ones estimated from the 5000-sample chain, so to conclude that the shorter chain has already reached the stationary convergence to the posterior distribution [START_REF] Perrin | Prise en compte des données expérimentales dans un modèle probabiliste de propagation de fissure[END_REF].

The generated posterior density functions of the hyper-parameters are close to the prior ones with a variance reduced by a factor 2 due to the increased number of samples. The parameters α have a greater influence on the uncertainties of the predictive probability density of the random variable k(ω).

RESULTS AND CONCLUSIONS

Each couple of parameters α and β from the two generated chains has been used to assess the predictive probability density function of the random variable under study. The collection of all these distributions has given an envelope of the final probability density function incorporating the uncertainty in its parameters. Figure 1 shows an example of the envelope in terms of cumulative density functions. A larger scatter is visible when few observations are available making impossible any consideration about the real distribution function (in dashed black). It has been shown in the full article that the choice of the prior information on the final estimation of the real distribution has gradually less influence on the results as the number of observations increases.

In view of a reliability analysis, the comparison has been further detailed and focused on the distribution tails. The critical value of the random variable k lim associated to an assigned failure probability has been evaluated from the real population through the cumulative density function. This critical value has been then used to assess the failure probability for each distribution function obtained with the random parameters of the beta distribution.

Some reasonable values of the failure probability have been chosen, far from the probability of collapse for a civil structure but close to Service Limit States target probabilities. Thus, they are small enough to evaluate the reliability of the proposed procedure in function of the number of available observations. Figure 2 shows the results associated to a failure probability of 1%. The introduction of model's uncertainties can strongly influence the results when only limited number of data is available. The method can only be taken into consideration starting with a number of measurements around 100. 
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 1 Figure 1. True population cumulative density function (dashed black) and cumulative density functions (continuous gray) assessed through the MCMC of α and β with a normal prior distribution (N = 100).
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 2 Figure 2. Failure probability for the true population (dotted line) and for the distributions assessed through the MCMC of α and β with a normal prior distribution as a function of observations N.