INTRODUCTION

In the last decades, an increasing interest has been devoted to the development of numerical techniques such as stochastic finite elements (e.g. [START_REF] Ghanem | Stochastic finite elements: A spectral approach[END_REF][START_REF] Babuška | Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation[END_REF], in order to assess the impact of randomness on the response of mechanical systems. Uncertainties in material properties or loading are quite well mastered in the framework of these techniques. However, there are only a few available numerical strategies to deal with uncertainties in the geometry although it is of great interest in various applications. The effect of randomness in the geometry on the response of mechanical systems is often important. It is thus imperative to be able to correctly identify the randomness in geometry for obtaining reliable numerical predictions of the behavior of such systems.

The identification of a probabilistic model is a very critical point. It usually requires many samples and robust identification techniques of random variables or fields. Experimental campaigns or in-site measurements are often very expensive, a fact that drastically limits the number of available samples and thus the quality of identification. Among the different techniques that can be used to identify random shapes, shape recovery from simple images ("pictures" of the shape) has the following advantages: it is non-intrusive, it allows obtaining many samples at a very low cost and it can be relatively precise. This identification procedure leads to a characterization of the random geometry in a form that can be directly used for the numerical simulation of the physical problem. For the computation of the response, one generally has to solve partial differential equations defined on random domains. The number of numerical strategies proposed for this kind of problems is limited (e.g. [START_REF] Xiu | Numerical methods for differential equations in random domains[END_REF][START_REF] Canuto | A fictitious domain approach to the numerical solution of pdes in stochastic domains[END_REF]. Recently, the eXtended Stochastic Finite Element Method (X-SFEM) [START_REF] Nouy | X-SFEM, a computational technique based on X-FEM to deal with random shapes[END_REF][START_REF] Nouy | An eXtended Stochastic Finite Element Method for solving stochastic partial differential equations on random domains[END_REF] has been proposed. This approach relies on the implicit representation of complex geometries using random level-set functions and on the use of a Galerkin approximation at both stochastic and deterministic levels.

The methodology proposed in this paper is an efficient identification procedure of random geometry in a form suitable for numerical simulation within the X-SFEM. The method starts from a collection of images, representing different outcomes of the random shape to identify. The key-point is to represent the random geometry in an implicit manner using the level-set technique [START_REF] Sethian | Level-set methods and fast marching methods[END_REF]. This technique consists in representing the boundary of a shape with a level-set function, which is the signed distance function to the boundary. In our case, the random geometry will be characterized by a random level-set function, one outcome of which represents an outcome of the random boundary of the shape to be recovered. The problem of random geometry identification is thus equivalent to the identification of a random level-set function, which is a random field.
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The paper is organized as follows: in section 2, we describe the principle of shape recovery from images with the level-set technique. In section 3, we introduce an empirical Karhunen-Loève decomposition of the samples, which allows representing the samples of the level-set on a reduced basis of deterministic modes and corresponding random variables. In sections 4 and 5, some methodologies are presented in order to identify a polynomial chaos representation of random variables. In section 4, we deal with the general case of mutually dependent random variables, while in section 5 a hypothesis of independence of random variables is introduced. Section 6 will illustrate the methodologies on a "manufactured" problem and finally some conclusions will be provided in section 7.

THE LEVEL-SET TECHNIQUE FOR SHAPE RECOVERY

The problem of shape recovery from an image is now a well mastered problem within the context of level-set techniques [START_REF] Sethian | Level-set methods and fast marching methods[END_REF]. Here, we briefly recall the basis of this method. We suppose that we have a contrasted image, defined by a mapping :

I D ∈ → x
ℝ , whose value I(x) represents the grayness intensity at location D ∈ x (where 2 D ⊂ ℝ or even 3 D ⊂ ℝ ). The aim is to detect the boundary of the underlying shape. This boundary is in fact located in the region where the intensity has the highest gradients. The aim of shape recovery consists in building a level-set function ( ) φ x whose iso-zero is located in this region with high intensity gradients. The basic idea consists in propagating a front, represented by this iso-zero of a time-dependent level-set ( , ) t φ x , which will "lock" on the desired boundary.

The equation of motion of a level-set ( , )

t φ x is a Hamilton-Jacobi partial differential equation of the form: ( , ) ( , ) ( , ) 0 t t F t t φ φ ∂ + ∇ = x x x (1) 0 ( , 0) ( ) φ φ = x x
where F is the speed of the front in the outward normal direction (from negative to positive values of φ ). In order to make the iso-zero lock in high inten- sity gradients zones, the speed has to vanish in these zones. A classical choice for F [START_REF] Sethian | Level-set methods and fast marching methods[END_REF] is the following:

1 (1 ) 1 ( ) F c G I σ εκ = - + ∇ * (2)
where κ is the curvature of the front, ε>0 a small parameter, I the mapping of grayness intensity and G σ a Gaussian smoothing filter with characteristic width σ.

( ) G I σ ∇ *
represents the gradient of the image convolved with the filter. The curvature term is a classical regularization term leading to a smooth front. Parameter c allows imposing an arbitrary small value of the speed in high intensity gradients zones.

A basic choice for the initial level-set 0 φ consists in a small circular front at the interior of the boundary to be recovered. Many algorithms have been proposed in order to solve the equation of motion (1) (see [START_REF] Sethian | Level-set methods and fast marching methods[END_REF]. After discretization and resolution, this leads to a discretized level-set N φ ∈ ℝ .

REDUCTION OF INFORMATION THROUGH KARHUNEN-LOEVE DECOMPOSITION

In our problem, the random shape to identify is a discretized random level-set represented by a random vector :

N φ Θ → ℝ defined on an abstract prob- ability space ( , , ) P Θ Β . The sample discretized level- sets ( ) 1 { } k Q k φ
= are obtained by applying Q times the shape recovery technique of section 2 to a set of sample images ( )

1 { } k Q k I = .
The probabilistic identification of the random discretized level-set φ from samples ( ) { } k φ is infeasible in practice due to the high dimensionality of the underlying probabilistic inverse problem. A reduction of information is thus unavoidable. This reduction of information consists in expressing the levelset in terms of a small set of random variables 1 ( ,... ) n X X := X. The problem of identification of the random level-set is then transformed into the problem of identification of a smaller random vector X(θ) from a collection of samples

( ) 1 { } k Q k = X .
In the general case where the shape is not known a priori, a reduction of information through discrete empirical Karhunen-Loève (K-L) decomposition of level-set samples is used.

If φ µ is the empirical mean of level-set samples

( ) k φ and ( ) ( ) k k φ φ φ µ = - ɶ
the centered samples, the unbiased empirical covariance matrix of samples writes:

( ) ( ) 1 1 1 Q k k T k Q φ φ φ = = -∑ C ɶ ɶ (3) 
We denote by 

) ( ) ( ) 1 ˆm k k k i i i i s X φ φ φ µ = ≈ = + ∑ U , ( ) ( ) 1 k T k i i i X s φ = U (4)
where the

( ) 1 { } k m i i X = appear as the components of ( ) k φ ɶ on the reduced basis of modes 1 {( )} m i i i s = U
associated with the m larger eigenvalues.

It is easy to show that the approximation error is:

2 ( ) ( ) 1 1 1 1 Q N k k i k i m s Q φ φ = = + - = -∑ ∑ (5)
where ⋅ denotes the classical 2-norm in N ℝ . The number of modes to be kept can then be chosen as the smallest integer m such that 2 1 1

N N i KL i i m i s s ε = + = ≤ ∑ ∑ , (6) 
where KL ε is a tolerance which is fixed a priori and allows controlling the reduction error. Finally, samples of the level-set are approximated by:

( ) ( ) 1 m k k i i i X φ φ µ = ≈ + ∑ U ɶ , i i i s = U U ɶ (7)
and the X i to be identified are centered normalized uncorrelated random variables.

POLYNOMIAL CHAOS REPRESENTATION OF RANDOM VARIABLES

The problem is now to identify a random vector :

m Θ → X
ℝ defined on an abstract probability space ( , , ) P Θ Β , based on a set of independent samples

( ) 1 { } k Q k = X .
In this section, no further assumption will be made and a random vector with arbitrary probability law will be identified (a simplifying assumption of independence between the random variables will be introduced in section 5). For this purpose and following [START_REF] Desceliers | Maximum likelihood estimation of stochastic chaos representations from experimental data[END_REF], we use a polynomial chaos (PC) representation of X, identified with a maximum likelihood principle. This leads to the solution of an optimization problem on a Stiefel manifold. A numerical strategy is proposed for solving this optimization problem.

Polynomial chaos decomposition

We consider that X is a second order random vector and that a non-linear mapping :

m m g → ℝ ℝ exists such that ( ) = X g ξ , where 1 ( ,..., ) m ξ ξ = ξ
is an mdimensional vector of independent random variables with known probability law P ξ and support m ⊂ Ξ ℝ . We denote by ( , , )

B P Ξ ξ Ξ the m-dimensional probability space defined by random vector ξ. Then, random vector X admits a generalized chaos representation [START_REF] Xiu | The Wiener-Askey polynomial chaos for stochastic differential equations[END_REF][START_REF] Soize | Physical systems with random uncertainties: chaos representations with arbitrary probability measure[END_REF]):

( ) ( ( )) m H α α α θ θ ∈ℑ = ∑ X X ξ (8)
where { } m H α α∈ℑ is a Hilbertian basis of 2 ( , ) L dP ξ Ξ endowed with its natural inner product. Coefficients X α of the chaos decomposition are then simply defined as the L 2 -projection of g on the :

m H α α ∀ ∈ ℑ , ( ) 
2 ( , )
, ( ) ( )

L P H E H α α α = = = ξ Ξ X g g ξ ξ ( ) ( ) ( ) H dP α Ξ = ∫ ξ g y y y (9)
where E denotes the mathematical expectation. The random vector X is finally approximated by truncating the generalized PC expansion to a degree p in Equation 8:

, ( ) ( ( )) m p H α α α θ θ ∈ℑ ≈ ∑ X X ξ (10) where , 
{ ; } m m p m p α α ℑ = ∈ ℑ = ≤ ℕ .

Maximum likelihood estimation of chaos coefficients

As in [START_REF] Desceliers | Maximum likelihood estimation of stochastic chaos representations from experimental data[END_REF], we impose the second order moments of samples to be conserved after the probabilistic identification. Let us denote 

Maximum likelihood principle

The likelihood function, for a given matrix of coefficients A, is defined by

( ) 1 ( ) ( ; ) Q k k L p = = ∏ X A X A , (12) 
where X (k) are the samples and ( ; ) p ⋅ X A is the joint probability density function (pdf) of the chaos decomposition of X. Due to the prohibitive cost of the estimation of joint pdfs and also due to the small number of samples available in practice, it was proposed by [START_REF] Desceliers | Maximum likelihood estimation of stochastic chaos representations from experimental data[END_REF] to use a pseudo likelihood function:

( ) 1 1 ( ) ( ; ) i Q m k X i k i L p X = = = ∏∏ A A (13)
whose estimation requires only the evaluation of marginal pdfs. In practice, for numerical reasons, the opposite of the pseudo log-likelihood function is rather used:

( ) 1 1 ( ) log( ( )) log( ( ; )) i Q m k X i k i f L p X = = = - = -∑∑ A A A . ( 14 
)
Finally, matrix A is defined by the following optimization problem on a compact Stiefel manifold:

( , ) arg min ( )

S P m f ∈ = A A A (15)

Solution of the optimization problem

The solution of optimization problem ( 15) is a relatively hard task due to the nature of function f and the possibly high dimensionality. In particular, f may present local minima probably leading to a bad probabilistic representation of X. Thus a global optimization procedure must be provided. In this work, a global random search algorithm is used in order to provide several initializations for a classical descent algorithm. Samples of the random search algorithm are generated with respect to the uniform probability measure on the Stiefel manifold (see e.g. [START_REF] Fang | Some methods for generating both an nt-net and the uniform distribution on a Stiefel manifold and their applications[END_REF]. In order to use a wider class of descent algorithms and to reduce the dimension of the optimization problem, the problem can be reformulated as an unconstrained optimization problem. This is possible by introducing a minimal parametrization of the compact Stiefel manifold ( , ) S P m (see [START_REF] Stefanou | Identification of random shapes from images through polynomial chaos expansion of random level set functions[END_REF]. In many cases, unconstrained optimization algorithms exhibit relatively good convergence properties for problems where constrained optimization algorithms do not converge.

POLYNOMIAL CHAOS REPRESENTATION OF MUTUALLY INDEPENDENT RANDOM VARIABLES

The resolution of problem ( 15) resulting from a general maximum likelihood approach may be infeasible in practice due to the possible large number of parameters to be identified. In this section, we will assume that random variables X i are mutually independent. This hypothesis, which will be validated in the numerical example, seems reasonable in practice due to the small number of available samples. Under this assumption, each random variable can be separately decomposed on a one-dimensional polynomial chaos basis of degree p:

, , 0 0 ( ) ( ( )) ( ( )) p i i i i i X X h X h α α α α α α θ ξ θ ξ θ ∞ = = = ≈ ∑ ∑ (16) 
where ξ i are independent identically distributed random variables with support Ξ ⊂ ℝ and probability law P ξ . { } h α α∈ℕ form an orthonormal polynomial basis of 2 ( , ) L dP ξ Ξ

. Two possible strategies for the identification of the one-dimensional chaos decompositions are proposed: the maximum likelihood estimation described in the previous section (greatly simplified when applied to independent random variables) and a projection method using empirical cumulative distribution functions of samples as an approximation of mapping g appearing in Equation 9 [START_REF] Stefanou | Identification of random shapes from images through polynomial chaos expansion of random level set functions[END_REF]. The latter method leads to a very fast computation of the decomposition.

NUMERICAL EXAMPLE: RANDOM ROUGH CIRCLE RECOVERED FROM SAMPLE IMAGES

In this example, the samples of the random shape to identify are obtained using the shape recovery technique based on the level-set method described in section 2 of the paper. The starting point for the identification procedure is a set of Q=100 images, which are artificially generated from a random levelset function analytically defined in a square domain [0,1]× [0,1] as follows:

( , ) ( , ) R a

φ θ θ = -- x x c (17) 
The iso-zero of level-set φ is a random "rough" cir- cle C(θ) shown in Figure 1. c is the "center" of the circle and ( , ) R a θ is a random field indexed by the polar angle a of the polar coordinate system centered at c, defined as:

1 2 1 ( , ) 0.2 0.03 ( ) 0.015[ ( ) cos( ) R a Y Y k a θ θ θ = + + + 3 1 4 2 5 2 ( )sin( ) ( ) cos( ) ( ) sin( )] Y k a Y k a Y k a θ θ θ + + (18) 
where k 1 , k 2 are deterministic constants and

1 5 ( ( ),..., ( )) Y Y θ θ are independent identically distrib- uted uniform random variables: ( 3, 3) i Y U ∈ - , i=1,…,5.
With an appropriate choice of the speed of the front (see Equation 2) and by applying 100 times the shape recovery technique to the initial set of sample images, the corresponding set of 100 discretized level-sets to identify is obtained. It is worth noting that, since the recovery procedure involves calculation of image gradients whose accuracy depends on the mesh size, a sufficiently fine mesh must be used for the recovery in order to be able to capture details of shape features. In our case, a 100× 100 mesh has been used to this purpose. Figure 2 illustrates the filtered gradients of two sample images I (k) and the corresponding iso-zero of the recovered level-sets. Legendre and Hermite chaos are used for the representation of the random variables X resulting from K-L decomposition of the recovered level-sets. The pseudo log-likelihood function, the pdf of the initial (resulting from K-L expansion) and identified random variables as well as the error in the probability P in (x) to be inside the hole are used as error criteria in the comparison. The probability P in (x) is defined by: ( ) ( ( , ) 0)

in P P φ θ = < x x (19) 
and can be evaluated from samples as follows:

{ } ( ) 1 ( ) {1... }; ( ) 0 k in P Card k Q Q φ ≈ ∈ < x x . ( 20 
)
Using a tolerance KL ε equal to 0.05 in Equation 6leads to a K-L decomposition of the sample levelsets in 8 terms and thus 8 random variables have to be identified in this case. The K-L modes corresponding to the 8 retained terms are shown in Figure 3.
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Figure 3. The K-L modes corresponding to the 8 retained terms of the sample level-sets.

In Figure 4, the values of the pseudo log-likelihood calculated for the initial and identified random variables are plotted as a function of the order p of PC decomposition using the three identification alternatives described in sections 4-5 and the two types of PC. Values of the pseudo log-likelihood up to p=3 have been calculated in the case of the maximum likelihood estimation without independence hypothesis (denoted as ML(D)) due to the very large computational cost required for higher order PC expansions. For Hermite PC, the results obtained with the maximum likelihood estimation with independence hypothesis (denoted as ML(I)) and the projection method using empirical cumulative distribution functions (denoted as EP(I)) practically coincide. For low order Legendre PC, the ML(D) technique gives better results in likelihood but the results of the two other methods substantially improve as p grows up. This fact implies that the independence assumption is suitable to this problem and has not been strongly affected by the recovery procedure. In the Legendre PC case, the convergence is somewhat slow perhaps due to the complexity of the problem. The marginal pdfs of the first 5 random variables shown in Figure 5 are close to the uniform confirming that the recovery procedure was sufficiently accurate. Similar results are obtained with the EP(I) technique and Legendre chaos of order p=1 and p=3 for the error in the probability to be inside the hole, presented in Figure 6. Before closing this section, it can be stated that the two techniques assuming independence are very competitive in terms of accuracy compared to the ML(D) approach, while the projection method EP(I) is the approach having the smallest computational cost for the identification procedure. 
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CONCLUSIONS

In this paper, an efficient identification procedure of random geometry has been proposed in a form suitable for numerical simulation within the eXtended Stochastic Finite Element Method (X-SFEM). The method starts from a collection of images representing different outcomes of the random shape to identify. The key-point of the method is to represent the random geometry in an implicit manner using the level-set technique. In this context, the problem of random geometry identification is equivalent to the identification of a random level-set function, which is a random field. This random field is first decomposed using an empirical Karhunen-Loève expansion, which allows representing the samples of the level-set on a reduced basis of deterministic modes. The problem is thus transformed into the probabilistic identification of a few random variables, which are the components of the random level-set on this reduced basis of modes. The random variables are represented on a polynomial chaos basis and three efficient numerical strategies are used in order to identify the coefficients of their polynomial chaos decomposition. The performance of these strategies has been evaluated on a "manufactured" random geometry problem using various error criteria. It can be concluded that the two techniques assuming independence (ML(I) and EP(I)) are very competitive in terms of accuracy compared to the ML(D) approach, while the projection method EP(I) is the approach having the smallest computational cost for the identification procedure. This conclusion is in accordance with the assumption of independence which is very often used in practice due to the small collection of images that is usually available.
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  whose rows are the remaining chaos coefficients of X. The conservation of covariance matrix imposes the following constraint on A: the coefficients is then equivalent to the identification of an orthogonal matrix P m × ∈ A ℝ . The set of orthogonal matrices in P m × ℝ is the compact Stiefel manifold denoted ( , ) S P m .
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 1 Figure 1. Schematic representation of a "rough" circle.

Figure 2 .

 2 Figure 2. Gradient intensity of two filtered sample images and corresponding iso-zero of the recovered level-sets.

  Pseudo log-likelihood values of the initial and identified random variables as a function of the order p of PC decomposition: (a) Legendre chaos, (b) Hermite chaos.

Figure 5 .

 5 Figure 5. Marginal pdf of the first 5 initial and identified random variables (Legendre chaos, p=1, EP(I)).

  Error in the probability to be inside the hole (EP(I), Legendre chaos) with (a) p=1 and (b) p=3.
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