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fourth order partial differential equations 
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Abstract. In this work we propose a novel strategy for discretizing beam and plate models in the 
framework of a meshless Hermite moving least square approach which allows a natural and simple 
enforcement of boundary conditions. 
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INTRODUCTION 

In this work we focus on the numerical treatment of structural problems involving plate 
and beam models using standard and enriched moving least squares approximations. 

Several researchers have studied the use of meshfree solution techniques for beam and 
plate problems (see [1] for references). In [2], the element free Galerkin (EFG) method 
was used and Lagrange multipliers were used to apply the essential boundary conditions. 
In [3], the meshless local Petrov-Galerkin (MLPG) technique was used for the solution 
of lD beam problems using the generalized moving least squares (GMLS) interpolation. 

In this work we considered a Hermite moving least square approximation (HMLS) 
associated with a Galerkin discretization. Thus, different degrees of freedom are associ
ated to each node consisting of the unknown field and some of its derivatives. 

The definition of the HMLS and GMLS approximations are very close. The main 
difference lies in the polynomial basis scaling that allows for optimal rates. 

This procedure allows a simple enforcement of the boundary conditions, in particular 
those related to the rotations, avoiding the necessity of proceeding by introducing these 
boundary conditions via the use of Lagrange multipliers, as usually performed in the 
standard moving least square technique (see [2]). 

In the first part of this work we introduce the Hermite moving least squares formu
lation, and then the problematic related to the boundary conditions enforcement is ad
dressed. Finally some examples allows to appreciate the potentialities of the proposed 
strategy. 
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HERMITE MLS APPROXIMATION 

For the sake of simplicity from now, the strategy will be described in the one
dimensional case. 

Let X = { x1 · · · Xn } be a cloud of n nodes. Function uex ( x) is defined from 
its nodal values. Thus, at each node xi, we consider two degrees of freedom ul = 
[ u~ u1 J. The first one concerns the field uex (x) and the second one its derivative. 
We define the unknown vectors containing the nodal degrees of freedom as 02/T = 
[ u! · · · u~ u! · · · u~ J . 

The aim of the approximation is the representation of uex ( x) from 02/. We denote by 
uappT (x) = [ uuapp (x) uxapp (x) J the degrees of freedom related to the reconstructed 
function. 

Let x be an evaluation point andy another point located in the neighborhood of x. We 
define the local approximation vu (x,y) centered at x and evaluated aty by 

Vu (x,y) =puT (y ax) 9 (x) (1) 

where puT (x) = [ 1 x · · · ~! (x)P J is a polynomial basis of degree p, and a a scale 

factor. 
The diffuse derivative of the approximation can be written as 

d 1 T (y-x) dyvu(x,y)=a- px -a- 6(x) (2) 

with pxT (x) = [ 0 1 · · · (p~l)! (x)p-l J. Writing Vx (x,y) =a fy Vu (x,y), equations 

(1) and (2) lead to 

[ 
~u (; ,y) l = pT (y -X) [ 9 0 (X) ] 

X ( ,y) a ep (x) 
(3) 

with P (x) = [ pu (x) px (x) J. Thus, the second degree of freedom represents the 
diffuse derivative multiplied by the scale factor a. 
The reconstructed function uapp (x) is defined by 

uapp (x) = v (x,x) 

= pT (0) 9 (x) 

Vector 6 minimizes 

J(6 (x)) = ~ L (vu (xi,x)- un2 Wri(xi,x) 
2 iEl(x) 

+ ~ L (vx (xi,x)- un2 Wri(xi,x) 
iEl(x) 

(4) 

(5) 
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where Wri(xi,x) represents the weight function related to the node xi, and ri is the radius 
of the domain of influence ofwri(xi,x). Equation (5) can be also written as 

1 T 
J(9(x))= 

2
(92'(x)9(x)-%") /P(x)(92'(x)9(x)-%") (6) 

with 9T (x) = [ pu ( ~1) · · · pu ( ~n) px ( ~1) · · · px ( ~n) J where ~i = xi~x, 1P (x) 
is a diagonal matrix whose non null entries are defined by 

diag(IP (x)) = [ Wr1 (x1,x) · · · Wrn(xn,x) Wr1 (x1,x) · · · Wrn(xn,x) J (7) 

The value of 9 minimizing J is derived by solving the system 

M(x) 9 (x) = 9T (x) IP (x) %" 

with the moment matrixM(x) defined by M(x) = 9T (x) IP (x) 92' (x). 
The approximation is defined by 

uapp (x) = L Ni (x) Ui 

iEl(x) 

= Jf/T (x) %" 

where Ni (x) define the matrix of the shape functions 

N() _ [ fflui(x) ffl\(x) l 
1 X - Nxu i (x) Nxxi (x) 

and sr (x) define the matrix containing all the shape functions 

T - [ Jf/uuT (x) Jf/uxT (x) l 
Jf/ (x)- Jf/xuT (x) Jf/xxT (x) 

with saJ3T (x) = [ NaJ31 (x) · · · NaJ3 n (x) ] . 

(8) 

(9) 

(10) 

(11) 

The expression of Jf/T (x) is obtained from equations (4), (8), (9) by eliminating 9 (x) . 
We obtain 

JV (x) = IP (x) 92' (x)P(O) 

DISCRETE FORM AND BOUNDARY CONDITIONS 
ENFORCEMENT 

Beam models can be written in the generic form 

6 2u(x) = f(x) 
u(O) = Uo 
urX(O) =u0 
u(L) = u[, 
urX(L) = u[_ 

X E [O ,L] 

(12) 

(13) 
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This model is solved by considering its associated variational formulation that is 
discretized by applying the just introduced Hermite moving least squares formulation, 
leading to the linear system: 

KOJ/ = f (14) 

In the context of a standard moving least square approximation it is well known that 
the enforcement of essential boundary conditions requires a particular treatment because 
the shape functions related to internal nodes do not vanish on the domain boundary. 

In the context of the just developed Hermite MLS strategy there is another problem 
because the additional degree of freedom represents the diffuse derivative multiplied by 
the scale factor a. 

To circumvent this difficulty we are transforming equation ( 14) in order to explicit the 
real derivatives. 

For this purpose we define the matrix d which defines at each point the relation 
between the nodal degrees of freedom and the approximated values 

(15) 

or 

(16) 

with 

(17) 

We can also, from the derivative of d, compute the real nodal derivatives from the nodal 
values 

(18) 

that are noted by 
(19) 

We define now the matrix d as 

(20) 

that is also noted by 
ujfapp = szff£ (21) 

In this way, we have established a relation between the nodal degrees of freedom and 
the approximated values and their derivatives. 
Now, the system (14) can be rewritten as 

(22) 

making possible the direct enforcement of essential boundary conditions. 
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NUMERICAL RESULTS 

We are analyzing the convergence of the proposed strategy. For this purpose we consider 
a beam subjected to the following boundary conditions: u(O) = 0, u,x(O) = 0, u(L) = 1, 
u,x(L) = 1. Moreover, a uniform load is distributed along its length f (x) =g. The 
internodal distance will be noted by h. 

The results depicted in figures 1 and 2 were obtained by considering g = 10, L = 1, 
a = 3.6 x h, ai = a. The weight function was a cubic spline, p = 3, and the numerical 
integration was performed by using 5 Gauss points in each subdomain, being 5 the 
number of subdomains between each two consecutive nodes. 

Figure 1 represents the displacement field, whose associated error is depicted in figure 
2 using different norms: L00

, L2 and H 1. 

We can notice that the convergence rates are in the norms L 00

, L 2 and H 1 respectively 
4.2, 4.5, 3.3. These values correspond to the optimal ones. 
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FIGURE 1. Displacement field (n = 15) 
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CONCLUSIONS 

In this paper we have proposed a Hermite moving least squares discretization strategy 
specially adapted for solving models related to bi-harmonic differential operators as the 
ones encountered in models involving beam or plate structures. This approach allows 
to a simple, efficient and direct enforcement of boundary conditions. The preliminary 
convergence analysis shows optimal convergence rates. 

In contrast to the classical and standard moving least squares approach, the Hermite 
variant increases the number of degrees of freedom by considering not only the nodal 
displacement, but also different field derivatives, with an unfavorable incidence in the 
computing time. 

We are now developing a mixed approach that consists of a standard MLS approxima
tion inside the domain but that becomes a Hermite-MLS when the domain boundary is 
approached. Thus, only extra-degrees of freedom are introduced at the nodes located in 
the boundary neighborhood allowing an accurate enforcement of boundary conditions. 
As the number of degrees of freedom is only slightly higher its impact on the CPU time 
will be no more significant. 
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